MILLA, SUSANA RITA. Relationships and Utilization of Arachis Germplasm in Peanut Improvement
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pathogen-Induced Addjski of the Wild Peanut, Arachis Diogoi, Potentiates
http://www.diva-portal.org Postprint This is the accepted version of a paper published in . This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination. Citation for the original published paper (version of record): Bag, P. (2018) Pathogen-induced AdDjSKI of the wild peanut, Arachisdiogoi, potentiates tolerance of multiple stresses in E. coli andtobacco Plant Science https://doi.org/10.1016/j.plantsci.2018.03.033 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-156687 Pathogen-induced AdDjSKI of the wild peanut, Arachis diogoi, potentiates tolerance of multiple stresses in E. coli and tobacco Sakshi Rampuria1*, Pushan Bag1, Conner J Rogan2, Akanksha Sharma1, Walter Gassmann3, P.B Kirti1, 1Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India. 2Division of Biological Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA. 3Division of Plant Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA. *Correspondence: Sakshi Rampuria, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India. Tel.: +914023134545; Fax: +914023010120. P.B Kirti [email protected] Highlights Chloroplastic AdDjSKI enhances tolerance of E.coli against salinity, osmotic, acidic and alkaline stress conditions. AdDjSKI over expression lines in tobacco exhibits enhanced heat, salinity, drought and osmotic stress tolerance along with enhanced disease resistance against phytopathogenic fungi P. -
09-Plantas Alimentícias.Indd
Iheringia Série Botânica Museu de Ciências Naturais ISSN ON-LINE 2446-8231 Fundação Zoobotânica do Rio Grande do Sul Lista preliminar das plantas alimentícias nativas de Mato Grosso do Sul, Brasil Ieda Maria Bortolotto, Geraldo Alves Damasceno-Junior & Arnildo Pott Fundação Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, Laboratório de Botânica. Bairro Universitário, CEP 79070-900, Campo Grande, Mato Grosso do Sul. [email protected] Recebido em 27.IX.2014 Aceito em 17.V.2016 DOI 10.21826/2446-8231201873s101 RESUMO – Apresentamos o inventário preliminar das plantas alimentícias silvestres do Mato Grosso do Sul usadas na dieta humana ou com potencial para uso. Incluímos espécies que constam em publicações e em trabalhos inéditos dos autores, cujas coletas, realizadas no estado, estão incorporadas nos herbários CGMS, COR e CPAP. Adicionalmente, foram incluídas espécies de Arecaceae, coletadas no estado depositadas em outros Herbários e espécies dos gêneros Arachis, Dioscorea e Passifl ora que constam na Lista de Espécies da Flora do Brasil para o Mato Grosso do Sul. Foram encontradas 294 espécies, distribuídas em 160 gêneros e 67 famílias botânicas. As famílias mais ricas foram Fabaceae (49) e Myrtaceae (38), seguidas por Arecaceae (32) e Passifl oraceae (12). Esta é a primeira listagem de espécies alimentícias do estado. Palavras chaves: frutos comestíveis, Cerrado, Pantanal ABSTRACT – Preliminary list of native food plants of Mato Grosso do Sul, Brazil - We present a preliminary inventory of wild food plants found in Mato Grosso do Sul that are used in human diet or potentially useful. Species were compiled from publications and from data collected by the authors; specimens deposited in CGMS, COR and CPAP herbaria were also included. -
<I>Milla Biflora</I>
Plant Ecology and Evolution 150 (1): 76–86, 2017 https://doi.org/10.5091/plecevo.2017.1276 REGULAR PAPER Morphometric analysis of Milla biflora (Asparagaceae: Brodieaoideae), with an identification key for Milla Jorge Gutiérrez1, Teresa Terrazas2,* & Isolda Luna-Vega3 1Herbario JES, Área de Biología, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo. Texcoco, 56230, Estado de México, Mexico 2Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, Mexico City, Mexico 3Laboratorio de Biogeografía y Sistemática, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, Mexico City, Mexico *Author for correspondence: [email protected] Background and aims – The taxonomical delimitation of Milla biflora has been controversial and is possibly associated with the high morphological variation of this taxon. The aims of this study were to find morphological characters that allow to distinguish groups among M. biflora and to analyse the morphological variation, with the purpose of generating an identification key. Methods – A multivariate analysis was based 24 quantitative characters of nine species of the genus Milla. Nine morphometric characters that had the highest loadings in the multivariate analysis plus 18 qualitative characters were used to run a cluster analysis. Key results – Discriminant analysis showed that the quantitative characters selected by the canonical discriminant analysis do not allow distinguishing all the species studied. Only the combination of qualitative and quantitative characters favours the separation of the species through the cluster analysis. Cluster analysis allowed the recognition of 35 groups with a dissimilarity value > 0.80. Twenty-six morphotypes differ from the other Milla species, previously recognized, in at least one character. -
Peanut Science
PEANUT SCIENCE VOLUME 31 JULy-DECEMBER 2004 NUMBER 2 Phenotypic and Molecular Evaluation of Interspecific Peanut (Arachis) Lines W.P.Anderson'>, G. Kocherr', C.C. Holbrook', and H.T. Stalker' ABSTRACT molecular markers to tag resistance genes for use in Peanut breeders are constantly in search of new conventional breeding programs and stack these genes sources of genes that confer tolerance or resistance to in highly productive peanut cultivars. biotic and abiotic stresses to improve the production and quality. The objective of this study was to evaluate peanut lines generated from interspecific crosses for Key Words: Root-knot nematode, RFLP, AFLP, amounts of wild species introgression, including genes for resistance to peanut root-knot nematodes, tomato disease resistance. spotted wilt virus and leaf spot diseases. Nine diploid Arachis species were crossed with peanut breeding lines and 130 different interspecific hybrid lines were Improvement of peanut (Arachis hypogaea L.) culti developed. These lines were evaluated for the amount vars has historically been achieved by crossing elite by of introgression using RFLP analyses, plant elite genotypes. This procedure often results in genotypes morphology, and disease resistant phenotypes. Based withhigher yields, but may cause vulnerability to biotic on RFLPs, 41 lines showed measurable introgression and/or abiotic stresses. During the last few decades peanut and 12 hexaploid-derived lines were polymorphic for breeding programs have attempted to incorporate genes at least four probes. Greenhouse and field evaluations for increased tolerance or resistance to known diseases indicated that resistance was not present in the lines tested for tomato spotted wilt virus, early leaf spot, or of peanut. -
Taxonomy of the Genus Arachis (Leguminosae)
BONPLANDIA16 (Supi): 1-205.2007 BONPLANDIA 16 (SUPL.): 1-205. 2007 TAXONOMY OF THE GENUS ARACHIS (LEGUMINOSAE) by AntonioKrapovickas1 and Walton C. Gregory2 Translatedby David E. Williams3and Charles E. Simpson4 director,Instituto de Botánicadel Nordeste, Casilla de Correo209, 3400 Corrientes, Argentina, deceased.Formerly WNR Professor ofCrop Science, Emeritus, North Carolina State University, USA. 'InternationalAffairs Specialist, USDA Foreign Agricultural Service, Washington, DC 20250,USA. 4ProfessorEmeritus, Texas Agrie. Exp. Stn., Texas A&M Univ.,Stephenville, TX 76401,USA. 7 This content downloaded from 195.221.60.18 on Tue, 24 Jun 2014 00:12:00 AM All use subject to JSTOR Terms and Conditions BONPLANDIA16 (Supi), 2007 Table of Contents Abstract 9 Resumen 10 Introduction 12 History of the Collections 15 Summary of Germplasm Explorations 18 The Fruit of Arachis and its Capabilities 20 "Sócias" or Twin Species 24 IntraspecificVariability 24 Reproductive Strategies and Speciation 25 Dispersion 27 The Sections of Arachis ; 27 Arachis L 28 Key for Identifyingthe Sections 33 I. Sect. Trierectoides Krapov. & W.C. Gregorynov. sect. 34 Key for distinguishingthe species 34 II. Sect. Erectoides Krapov. & W.C. Gregory nov. sect. 40 Key for distinguishingthe species 41 III. Sect. Extranervosae Krapov. & W.C. Gregory nov. sect. 67 Key for distinguishingthe species 67 IV. Sect. Triseminatae Krapov. & W.C. Gregory nov. sect. 83 V. Sect. Heteranthae Krapov. & W.C. Gregory nov. sect. 85 Key for distinguishingthe species 85 VI. Sect. Caulorrhizae Krapov. & W.C. Gregory nov. sect. 94 Key for distinguishingthe species 95 VII. Sect. Procumbentes Krapov. & W.C. Gregory nov. sect. 99 Key for distinguishingthe species 99 VIII. Sect. -
Antonio José Cavanilles (1745-1804)
ANTONIO JOSÉ CAVANILLES (1745-1804) Segundo centenario de la muerte de un gran botánico ANTONIO JOSÉ CAVANILLES (1745-1804) Segundo centenario de la muerte de un gran botánico Valencia Real Sociedad Económica de Amigos del País 2004 1. Dalia (cultivar de Dahlia pinnata Cav.). Según el sistema internacional de clasificación, pertenece al grupo “flor semicactus”. 2. Rosa (Rosa x centifolia L.). 3. Amapola (Papaver rhoeas L.). Variedad de flor doble. 4. Tulipán (variedad de jardín de Tulipa gesneriana L.) 5. Áster de China (Callistephus chinensis L.) = Nees (Aster chinensis L.), variedad de flor doble. 6. Jazmín oloroso (Jasminum odoratissimum L.). 7. Adormidera (Papaver somniferum L.). Variedad de jardín. 8. Crisantemo (Chysanthemum x indicum L.). 9. Clavel (Dianthus caryophyllus L.). 10. Perpetua (Helichrysum italicum (Roth) G. Don = Gnaphalium italicum Roth.). 11. Hortensia (Hydrangea macrophylla (Thunb.) (Ser. = Viburnum macrophyllum Thunb.) 12. Fucsia (Fuchsia fulgens DC.). Identificación y esquema por María José López Terrada. Edita: Real Sociedad Económica de Amigos del País Valencia, 2004 ISBN: 84-482-3874-5 Depósito legal: V. 4.381 - 2004 Artes Gráficas Soler, S. L. - La Olivereta, 28 - 46018 Valencia ÍNDICE Presentación de Francisco R. Oltra Climent. Director de la Real Socie- dad Económica de Amigos del País de Valencia ........................... 1 La obra de Cavanilles en la “Económica”, de Manuel Portolés i Sanz. Coordinador por la Real Sociedad Económica de Amigos del País de Valencia de “2004: año de Cavanilles” ...................................... 3 Botànic Cavanilles per sempre, de Francisco Tomás Vert. Rector de la Universitat de València ........................................................ 5 Palabras de Rafael Blasco Castany. Conseller de Territorio y Vivienda de la Generalitat Valenciana ..................................................... -
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny. -
Botanical Inventory of the Proposed Ta'u Unit of the National Park of American Samoa
Cooperative Natiad Park Resou~cesStudies Unit University of Hawaii at Manoa Department of Botany 3 190 Made Way Honolulu, Hawaii 96822 (808) 956-8218 Technical Report 83 BOTANICAL INVENTORY OF THE PROPOSED TA'U UNIT OF THE NATIONAL PARK OF AMERICAN SAMOA Dr. W. Arthur Whistler University of Hawai'i , and National Tropical Botanical Garden Lawai, Kaua'i, Hawai'i NatidPark Swice Honolulu, Hawai'i CA8034-2-1 February 1992 ACKNOWLEDGMENTS The author would like to thank Tim Motley. Clyde Imada, RdyWalker. Wi. Char. Patti Welton and Gail Murakami for their help during the field research catried out in December of 1990 and January of 1991. He would also like to thank Bi Sykes of the D.S.I.R. in Chtistchurch, New Zealand. fur reviewing parts of the manuscript, and Rick Davis and Tala Fautanu fur their help with the logistics during the field work. This research was supported under a coopemtive agreement (CA8034-2-0001) between the University of Hawaii at Man08 and the National Park !&mice . TABLE OF CONTENTS I . INTRODUCTION (1) The Geography ...........................................................................................................1 (2) The Climate .................................................................................................................1 (3) The Geology............................................................................................................... 1 (4) Floristic Studies on Ta'u .............................................................................................2 (5) Vegetation -
Eg, Engler, Bentham, and Hooker
Flora Malesiana ser. I, Vol. 11 (2) (1993) 375-384 Alliaceae J.R.M. Buijsen Leiden, The Netherlands) Alliaceae Agardh, Theor. Syst. PI. (1858) 32; Dahlgren, Clifford & Yeo, Fam. Monocot. (1985) 193-196. — Liliaceae subfam. Allioideae, Melchior in Melchior, Syll. Pflan- zenfam.ed. 12(1964)521. Perennial herbs with bulbs, bulb-like corms or rhizomes. Leaves simple, basally concen- trated, spirally set or distichous. Inflorescence usually umbellate and with 1, 2 or more membranous spathes. Flowers generally bisexual, actinomorphic or sometimes zygomor- phic. Tepals in 2 whorls, free or often connate, forming a campanulate or tubularperianth with erect, spreading or sometimes recurved lobes. Stamens usually 6 or sometimes 5 with several staminodes, free, inserted at the base of the tepals or in the perigone-tube; anthers dorsifixed. Ovary superior, 3-celled, with axillary placentas, septal nectary grooves loculicidal Seeds present on the ovary; ovules 2 to several per locule. Fruit a capsule. often half-ovoid, half-globose ortetrahedraland triangular in transection, sometimes ovoid or ellipsoid to subglobose and roundedin transection. Distribution— As circumscribed by Dahlgren et al. (1985) this segregate fromLilia- ceae s. 1. comprises the South African Agapanthoideae, the mainly Chilean Gilliesioideae, and Allioideaewith the neogeic tribeBrodiaeeaeand the nearly cosmopolitan Allieae. Taxonomy — The taxonomic position of the genus Allium and related genera is still disputed. Earlierbotanists (e.g., Engler, Bentham, and Hooker) placed them in the Lilia- ceae, as recently followed again by, e.g., Cronquist (1981) and Mabberley (1987). Alter- natively, they were included in the Amaryllidaceae by, e.g., Hutchinson and Traub (see Hanelt 1990). Often also Allium and its close relatives are recognized as a distinct family close the al. -
New Nomenclatural Combinations for Blue Dicks ( Dipterostemon Capitatus ; Asparagaceae: Brodiaeoideae)
Preston, R.E. 2017. New nomenclatural combinations for blue dicks ( Dipterostemon capitatus ; Asparagaceae: Brodiaeoideae). Phytoneuron 2017-15: 1–11. Published 22 February 2017. ISSN 2153 733X NEW NOMENCLATURAL COMBINATIONS FOR BLUE DICKS (DIPTEROSTEMON CAPITATUS; ASPARAGACEAE: BRODIAEOIDEAE) ROBERT E. PRESTON ICF 630 K Street, Suite 400 Sacramento, California 95814 [email protected] ABSTRACT Dichelostemma capitatum (Benth.) Alph.Wood, traditionally treated as one of five geophyte species included in Dichelostemma Kunth, a genus endemic to the western USA and northern Mexico, has been the subject of nearly perpetual taxonomic confusion since the early 19 th century. In this paper, I review the errors that perpetuated the misapplication of names to D. capitatum , resurrect Dipterostemon Rydb. as the alternative genus for D. capitatum , and propose new infraspecific combinations. Dichelostemma pulchellum (Salisb.) A. Heller, a name persistently misapplied to D. capitatum , is a confused name that is synonymous with D. congestum (Sm.) Kunth. Dipterostemon capitatus (Benth.) Rydb. subsp. pauciflorus (Torr.) R.E. Preston, comb. nov. , and D. capitatus (Benth.) Rydb. subsp. lacuna-vernalis (L.W. Lenz) R.E. Preston, comb. nov. , are proposed. The genus Dichelostemma traditionally has consisted of five geophyte species endemic to the western USA and northern Mexico (Pires 2002; Pires & Keator 2012). Phylogenetic studies place Dichelostemma in the Themidaceae (Fay & Chase 1996; Fay et al. 2000; Pires et al. 2001; Pires & Sytsma 2002) and more recently in the subfamily Brodiaeoideae of the Asparagaceae (Chase et al. 2009; Steele et al. 2012; Chen et al. 2013). These studies also indicate that Dichelostemma is not monophyletic; Dichelostemma capitatum (Benth.) Alph.Wood is sister to the clade that includes Brodiaea and the other four species of Dichelostemma . -
(Largeflower Triteleia): a Technical Conservation Assessment
Triteleia grandiflora Lindley (largeflower triteleia): A Technical Conservation Assessment © 2003 Ben Legler Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project January 29, 2007 Juanita A. R. Ladyman, Ph.D. JnJ Associates LLC 6760 S. Kit Carson Cir E. Centennial, CO 80122 Peer Review Administered by Society for Conservation Biology Ladyman, J.A.R. (2007, January 29). Triteleia grandiflora Lindley (largeflower triteleia): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/ projects/scp/assessments/triteleiagrandiflora.pdf [date of access]. ACKNOWLEDGMENTS The time spent and the help given by all the people and institutions mentioned in the References section are gratefully acknowledged. I would also like to thank the Colorado Natural Heritage Program for their generosity in making their files and records available. I also appreciate access to the files and assistance given to me by Andrew Kratz, USDA Forest Service Region 2. The data provided by the Wyoming Natural Diversity Database and by James Cosgrove and Lesley Kennes with the Natural History Collections Section, Royal BC Museum were invaluable in the preparation of the assessment. Documents and information provided by Michael Piep with the Intermountain Herbarium, Leslie Stewart and Cara Gildar of the San Juan National Forest, Jim Ozenberger of the Bridger-Teton National Forest and Peggy Lyon with the Colorado Natural Heritage Program are also gratefully acknowledged. The information provided by Dr. Ronald Hartman and B. Ernie Nelson with the Rocky Mountain Herbarium, Teresa Prendusi with the Region 4 USDA Forest Service, Klara Varga with the Grand Teton National Park, Jennifer Whipple with Yellowstone National Park, Dave Dyer with the University of Montana Herbarium, Caleb Morse of the R.L. -
Xochiquetzallia (Asparagaceae, Brodiaeoideae), a New Genus Segregated from the Paraphyletic Dandya
A peer-reviewed open-access journal PhytoKeys 139: 39–49Xochiquetzallia (2020) , a new genus for Mexico and Dandya circumscription 39 doi: 10.3897/phytokeys.139.46890 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Xochiquetzallia (Asparagaceae, Brodiaeoideae), a new genus segregated from the paraphyletic Dandya Jorge Gutiérrez1, Teresa Terrazas2 1 Área de Biología, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, Carretera México-Texcoco km 38.5, Texcoco 56230, Estado de México, México 2 Instituto de Biología, Universidad Na- cional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México Corresponding author: Jorge Gutiérrez ([email protected]) Academic editor: C. Morden | Received 27 September 2019 | Accepted 16 December 2019 | Published 27 January 2020 Citation: Gutiérrez J, Terrazas T (2020) Xochiquetzallia (Asparagaceae, Brodiaeoideae), a new genus segregated from the paraphyletic Dandya. PhytoKeys 139: 39–49. https://doi.org/10.3897/phytokeys.139.46890 Abstract A new genus, Xochiquetzallia, for the Brodiaeoideae, Asparagaceae family is here proposed. A taxonomic analysis based on morphology highlights its synapomorphies. The characters that distinguish Xochiquet- zallia are the absence of a pith in the gynophore and the presence of an entire stigma. The recognition of Dandya purpusii as a monotypic genus is supported by the development of a short floral tube (< 2 mm) and a pith in the gynophore, as well as a divided stigma shared with the other genera of the Milla clade, Bessera, Jaimehintonia, Petronymphe and Milla. A key to its taxonomic determination is given for both the Xochiquetzallia species and the Milla clade genera. Keywords Asparagales, geophyte, gynophore, Mexico, Milla clade Introduction Dandya H.E.