Medical Aspects of Chemical Warfare Abbreviations and Acronyms

Total Page:16

File Type:pdf, Size:1020Kb

Medical Aspects of Chemical Warfare Abbreviations and Acronyms Medical Aspects of Chemical Warfare Abbreviations and Acronyms ABBREVIATIONS AND ACRONYMS A CPRP: chemical personnel reliability program CR: dibenz(b,f)(1,4)oxazepine AA: arachidonic acid CS: o-chlorobenzylidene malononitrile AC: hydrogen cyanide CSA: The Covenant, the Sword, and the Arm of the Lord ACGIH: American Conference of Governmental Industrial Hy- CSEPP: Chemical Stockpile Emergency Preparedness Program gienists CSF: colony-stimulating factor Ach: acetylcholine CSMSPD: chemical surety medical support program director AChE: acetylcholinesterase Ct: concentration (C) of agent vapor or aerosol in air multiplied ADMS: assistant director of medical services by time (t) of exposure AEF: American Expeditionary Forces CWA: chemical warfare agent AEGL: acute exposure guidance level CWC: Chemical Weapons Convention (1993) AML: area medical laboratory CWS: US Army Chemical Warfare Service AMN: atropine methylnitrate AR: Army Regulation ARC: American Red Cross D ARDS: acute respiratory distress syndrome ATCA: 2-aminothiazoline-4-carboxylic acid DA PAM: Department of the Army pamphlet ATNAA: antidote treatment nerve agent autoinjector DA: diphenylchloroarsine ATP: adenosine triphosphate DC: diphenylcyanoarsine aTSP: active topical skin protectant DCE: defense coordinating element A-V: atrial-ventricular DEET: N,N-diethyl-meta-toluamide DEPMEDS: deployable medical system DFP: diisopropyl phosphorofluoridate B DHHS: Department of Health and Human Services DHP: diisopropylfluorophosphate BA: bromoacetone DHS: Department of Homeland Security BAL: British anti-Lewisite (dimercaprol) DM: diphenylaminoarsine BALF: bronchoalveolar lavage fluid 4-DMAP: 4-dimethylaminophenol BAS: battalion aid station DMS: director of medical services BBC: bromobenzyl cyanide DNA: deoxyribonucleic acid BChE: butyrylcholinesterase DoD: Department of Defense BEF: British Expeditionary Forces DOE: Department of Energy BMZ: basement membrane zone DOJ: Department of Justice BTX: batrachotoxin DOT: Department of Transportation BZ: 3-quinuclidinyl benzilate DVA: Department of Veterans Affairs C E CA: bromobenzyl cyanide ECG: electrocardiogram CaE: carboxylesterase EDTA: ethylenediaminetetraacetate CAI: chemical accident or incident EEG: electroencephalogram CAIRA: chemical accident or incident response and assistance EKG: electrocardiogram cAMP: adenosine 3’,5’-cyclic monophosphate EMEDS: expeditionary medical support CANA: convulsive antidote, nerve agent EMS: emergency medical service CAS: Chemical Abstracts Service EMT: emergency medical technician CB: chemical-biological EOC: emergency operations center CBIRF: Chemical/Biological Incident Response Force EPA: Environmental Protection Agency CBR: chemical, biological, and radiological Eq: equine CBRN: chemical, biological radiological, and nuclear ER: endoplasmic reticulum CBRNE: chemical, biological, radiological, nuclear, explosive Er: YAG: erbium: yttrium-aluminium-garnet CBRRT: chemical biological rapid response team ESF: emergency support function CDC: Centers for Disease Control and Prevention CEA: cultured epidermal autograft cGMP: current Good Manufacturing Practice F CHASE (Operation): Cut Holes and Sink ‘Em ChE: cholinesterase FBI: Federal Bureau of Investigation CK: cyanogen chloride FBS: fetal bovine serum CN- : cyanide anion FCC: federal coordinating center CN: chloroacetophenone FDA: Food and Drug Administration CNO- : cyanate FEMA: Federal Emergency Management Agency CNS: central nervous system FHP: force health protection COLPRO: collective protection FOC: full operational capability CP EMEDS: collectively protected expeditionary medical support FRC: forward resuscitation care xxiii Medical Aspects of Chemical Warfare Abbreviations and Acronyms G L GA: tabun LCt50: the vapor or aerosol exposure that is lethal to 50% of the GABA(A): gamma-aminobutyric A exposed population GB: sarin LD50: median lethal dose GD: soman LDPI: laser Doppler perfusion imaging GF: cyclosarin LHON: Leber hereditary optic neuropathy GK-11: gacyclidine LPS: lipopolysaccharide GM1: monosialotetrahexosylganglioside LSD: lysergic acid diethylamide GSA: General Services Administration GSH: glutathione M H MAC: multiagency coordination MANAA: medical aerosolized nerve agent antidote H: mustard MCE: maximum credible event H2O2: hydrogen peroxide MDMA: 3, 4-methylene-dioxymethylamphetamine H2S: hydrogen sulfide MEDCOM: medical command HAZMAT: hazardous materials MEDEVAC: medical evacuation HAZWOPER: hazardous waste operations and emergency MITS: medical identification and treatment systems response MO: medical officer HC: hexachloroethane MOPP: mission-oriented protective posture HCN: hydrogen cyanide MPE: most probable event HD: mustard (distilled) MRI: magnetic resonance imaging HE: high explosives MRT: mean residence time HHS: Department of Health and Human Services MRT: medical response team HN2: nitrogen mustard MS C LRIP: milestone C low rate initial production HSS: health service support MT: metric ton Hu PON1: human paraoxonase 1 MTF: medical treatment facility HWA: Heereswaffenamt MULO: multipurpose overboot I N ICAM: improved chemical agent monitor N2O: nitrogen oxide ICG: indocyanine green N2O4: nitrogen tetroxide ICS: incident command system NAAG: N-acetyl-aspartyl-glutamate IDLH: immediately dangerous to life or health NaCN: sodium cyanide IgG: immunogammaglobulin NAD+ : nicotinamide adenine dinucleotide IL: interleukin NaNO2: sodium nitrite IM: intramuscular NATO: North Atlantic Treaty Organization IMA: installation medical authority NBC: nuclear, biological, chemical IND: investigational new drug NCO: noncommissioned officer IOC: initial operational capability NCS: National Communications System IOT&E: initial operational test and evaluation NDA: new drug application IP: intraperitoneal injection NDMS: National Disaster Medical System IPE: individual protective ensemble/equipment NF: number facility IV: intravenous NIMS: National Incident Management System NIOSH: National Institute for Occupational Safety and Health NMDA: N-methyl D-aspartate J NO: nitric oxide NO : nitrogen dioxide JFO: joint field office 2 NORTHCOM: Northern Command JPEO: joint program executive office NRP: National Response Plan JPEO-CBD: Joint Program Executive Office for Chemical Biologi- NSAID: nonsteroidal antiinflammatory drug cal Defense NSP: neurotoxic shellfish poisoning JPMO: joint product management office JSGPM: joint service general purpose mask JSLIST: joint service lightweight integrated suit technology O JSMLT: joint service mask leakage tester JSPDS: joint service personnel skin decontamination system OC: oleoresin capsicum JTF: joint task force OH: hydroxyl radical OP: organophosphorus OPCW: Organization for the Prohibition of Chemical Weapons K OPIDN: organophosphorus ester–induced delayed neurotoxicity Ops: operations KCN: potassium cyanide OSHA: Occupational Safety and Health Administration Km: a measure of the strength of binding of a substrate to an enzyme xxiv Medical Aspects of Chemical Warfare Abbreviations and Acronyms P U PADPRP: poly(adenosine diphosphate-ribose) polymerase UN: United Nations PAF: platelet-aggregating factor USACHPPM: US Army Center for Health Promotion and Preven- 2-PAM Cl: 2-pralidoxime chloride tive Medicine 2-PAM: 2-pralidoxime USAMRICD: US Army Medical Research Institute of Chemical PAPP: p-aminopropiophenone Defense PARP: poly(ADP-ribose) polymerase USAMRIID: US Army Medical Research Institute of Infectious PATS: protection assessment test system Diseases PB: pyridostigmine bromide USDA: US Department of Agriculture PBN: alpha-phenyl-N-tert-butylnitrone USJCOM: US Joint Forces Command PBN: N-tert-butyl-alfa-phenylnitrone USMC: US Marine Corps PbTx: brevetoxin PCP: phencyclidine PFIB: perfluoroisobutylene V pHu: plasma-derived human V/Q: ventilation profusion ratio PKC: protein kinase C VAC: Vacuum-Assisted Closure Therapy PLA : phospholypase A2 2 VR1: vallinoid receptor subtype 1 pMo: plasma-derived mouse 2-PMPA: 2-pentanedioic acid POM: program objective memorandum W PPE: personal protective equipment PR: protective ratio WBGT: wet-bulb globe temperature PS: chloropicrin WMD: weapons of mass destruction PTSD: posttraumatic stress disorder PTX: palytoxin R RADS: reactive airways dysfunction syndrome RBC-ChE: red blood cell cholinesterase RCA: riot control agent RD50: dose required to cause a 50% decrease in respiration REM: rapid eye movement RH: relative humidity rHu BChE: recombinant human butyrylcholinesterase RNA: ribonucleic acid RPM: respiratory rate, pulse, and motor function RSDL: Reactive Skin Decontamination Lotion S SCN- : thiocyanate SE: status epilepticus SERPACWA: skin exposure reduction paste against chemical warfare agents SMART: special medical augmentation response team SNS: strategic national stockpile SRBD: seizure-related brain damage SS: Schutzstaffel START: simple triage and rapid treatment STEL: short-term exposure limit STM: Sacco triage method STX: saxitoxin T TBSA: total body surface area TEN: toxic epidermal necrosis TIC: toxic industrial chemical TIM: toxic industrial material TNF: tumor necrosis factor TRP: transient receptor potential TTX: tetrodotoxin TWA: time-weighted average xxv Medical Aspects of Chemical Warfare Index INDEX A chemical weapons and, 129, 145 compared with Aum Shinrikyo, 129 Aberdeen Biological Chemical Agent Disposal Facility description, 129 mustard agent container drainage, 597 Alexander, Lt. Col. Stewart Abood, Leo Bari disaster and, 105 anticholinergic deliriant research, 424 Alkyl methylphosphonic acids Abramson, Dr. Harold nerve agents
Recommended publications
  • Index Vol. 12-15
    353 INDEX VOL. 12-15 Die Stichworte des Sachregisters sind in der jeweiligen Sprache der einzelnen Beitrage aufgefiihrt. Les termes repris dans la Table des matieres sont donnes selon la langue dans laquelle l'ouvrage est ecrit. The references of the Subject Index are given in the language of the respective contribution. 14 AAG (Alpha-acid glycoprotein) 120 14 Adenosine 108 12 Abortion 151 12 Adenosine-phosphate 311 13 Abscisin 12, 46, 66 13 Adenosine-5'-phosphosulfate 148 14 Absorbierbarkeit 317 13 Adenosine triphosphate 358 14 Absorption 309, 350 15 S-Adenosylmethionine 261 13 Absorption of drugs 139 13 Adipaenin (Spasmolytin) 318 14 - 15 12 Adrenal atrophy 96 14 Absorptionsgeschwindigkeit 300, 306 14 - 163, 164 14 Absorptionsquote 324 13 Adrenal gland 362 14 ACAI (Anticorticocatabolic activity in­ 12 Adrenalin(e) 319 dex) 145 14 - 209, 210 12 Acalo 197 15 - 161 13 Aceclidine (3-Acetoxyquinuclidine) 307, 13 {i-Adrenergic blockers 119 308, 310, 311, 330, 332 13 Adrenergic-blocking activity 56 13 Acedapsone 193,195,197 14 O(-Adrenergic blocking drugs 36, 37, 43 13 Aceperone (Acetabutone) 121 14 {i-Adrenergic blocking drugs 38 12 Acepromazin (Plegizil) 200 14 Adrenergic drugs 90 15 Acetanilid 156 12 Adrenocorticosteroids 14, 30 15 Acetazolamide 219 12 Adrenocorticotropic hormone (ACTH) 13 Acetoacetyl-coenzyme A 258 16,30,155 12 Acetohexamide 16 14 - 149,153,163,165,167,171 15 1-Acetoxy-8-aminooctahydroindolizin 15 Adrenocorticotropin (ACTH) 216 (Slaframin) 168 14 Adrenosterone 153 13 4-Acetoxy-1-azabicyclo(3, 2, 2)-nonane 12 Adreson 252
    [Show full text]
  • The Detection and Determination of Esters
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1958 The etD ection and Determination of Esters. Mohd. Mohsin Qureshi Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Qureshi, Mohd. Mohsin, "The eD tection and Determination of Esters." (1958). LSU Historical Dissertations and Theses. 501. https://digitalcommons.lsu.edu/gradschool_disstheses/501 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. Copright by Mohcl Mohsin Qureshi 1959 THE DETECTION AND DETERMINATION OF ESTERS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Mohd. Mohsin Qureshi M.Sc., Aligarh University, 1944 August, 1958 ACKNOWLEDGMENT The author wishes to express his sincere apprecia­ tion and gratitude to Dr. Philip W. West under whose guidance this research was carried out. He is grateful to Dr. James G. Traynham for sup­ plying him with a number of esters and for his many helpful suggestions. The financial support given to him by the Continental Oil Company is gratefully acknowledged. He offers his sincere thanks to Miss Magdalena Usategul for her valuable suggestions and her ungrudging help during the course of this investigation. Dr. Anil K.
    [Show full text]
  • Aldrich Vapor
    Aldrich Vapor Library Listing – 6,611 spectra This library is an ideal tool for investigator using FT-IR to analyze gas phase materials. It contains gas phase spectra collected by Aldrich using a GC-IR interface to ensure chromatographically pure samples. The Aldrich FT-IR Vapor Phase Library contains 6,611 gas phase FT-IR spectra collected by Aldrich Chemical Company using a GC interface. The library includes compound name, molecular formula, CAS (Chemical Abstract Service) registry number, Aldrich catalog number, and page number in the Aldrich Library of FT-IR Spectra, Edition 1, Volume 3, Vapor-Phase. Aldrich Vapor Index Compound Name Index Compound Name 6417 ((1- 3495 (1,2-Dibromoethyl)benzene; Styrene Ethoxycyclopropyl)oxy)trimethylsilane dibromide 2081 (+)-3-(Heptafluorobutyryl)camphor 3494 (1-Bromoethyl)benzene; 1-Phenylethyl 2080 (+)-3-(Trifluoroacetyl)camphor bromide 262 (+)-Camphene; 2,2-Dimethyl-3- 6410 (1-Hydroxyallyl)trimethylsilane methylenebicyclo[2.2.1]heptane 6605 (1-Methyl-2,4-cyclopentadien-1- 2828 (+)-Diisopropyl L-tartrate yl)manganese tricarbonyl 947 (+)-Isomenthol; [1S-(1a,2b,5b)]-2- 6250 (1-Propynyl)benzene; 1-Phenylpropyne Isopropyl-5-methylcyclohexano 2079 (1R)-(+)-3-Bromocamphor, endo- 1230 (+)-Limonene oxide, cis + trans; (+)-1,2- 2077 (1R)-(+)-Camphor; (1R)-(+)-1,7,7- Epoxy-4-isopropenyl-1- Trimethylbicyclo[2.2.1]heptan- 317 (+)-Longifolene; (1S)-8-Methylene- 976 (1R)-(+)-Fenchyl alcohol, endo- 3,3,7-trimethyltricyclo[5.4.0 2074 (1R)-(+)-Nopinone; (1R)-(+)-6,6- 949 (+)-Menthol; [1S-(1a,2b,5a)]-(+)-2- Dimethylbicyclo[3.1.1]heptan-2-
    [Show full text]
  • Chemical Warfare Agent (CWA) Identification Overview
    Physicians for Human Rights Chemical Warfare Agent (CWA) Identification Overview Chemical Warfare Agent Identification Fact Sheet Series Table of Contents This Chemical Warfare Agent (CWA) Identification Fact Sheet is part 2 Physical Properties of a Physicians for Human Rights (PHR) series designed to fill a gap in 2 VX (Nerve Agent) 2 Sarin (Nerve Agent) knowledge among medical first responders to possible CWA attacks. 2 Tabun (Nerve Agent) This document in particular outlines differences between a select 2 BZ (Incapacitating Agent) group of vesicants and nerve agents, the deployment of which would 2 Mustard Gas (Vesicant) necessitate emergency medical treatment and documentation. 3 Collecting Samples to Test for Exposure 4 Protection PHR hopes that, by referencing these fact sheets, medical professionals 5 Symptoms may be able to correctly diagnose, treat, and document evidence of 6 Differential Diagnosis exposure to CWAs. Information in this fact sheet has been compiled from 8 Decontimanation 9 Treatment publicly available sources. 9 Abbreviations A series of detailed CWA fact sheets outlining in detail those properties and treatment regimes unique to each CWA is available at physiciansforhumanrights.org/training/chemical-weapons. phr.org Chemical Warfare Agent (CWA) Identification Overview 1 Collect urine samples, and blood and hair samples if possible, immediately after exposure Physical Properties VX • A lethal dose (10 mg) of VX, absorbed through the skin, can kill within minutes (Nerve Agent) • Can remain in environment for weeks
    [Show full text]
  • Tinnitus Hopes Put to Sleep by Latest Auris Failure
    March 14, 2018 Tinnitus hopes put to sleep by latest Auris failure Madeleine Armstrong Ketamine is best known as a horse tranquiliser or a recreational drug, but it has also been proposed as a treatment for various disorders from depression to Alzheimer’s. Hopes of developing the drug in tinnitus have been dashed by the failure of Auris’s Keyzilen in a second phase III trial. As well as leaving Auris’s future looking bleak – Keyzilen is the second of its phase III candidates to flunk in four months – the setback could also be bad news for the sparse tinnitus pipeline. According to EvaluatePharma there is only one other candidate in active clinical development, Otonomy’s OTO-313, and this uses the same mechanism of action as Keyzilen (see table below). Tinnitus pipeline Generic Project Company Pharma class Trial(s) Notes name Phase III Auris Esketamine TACTT2 Keyzilen NMDA antagonist Failed Aug 2016 Medical hydrochloride (NCT01803646) TACTT3 Failed Mar 2018 (NCT02040194) Phase I OTO- Phase I/II trial to OTO-311 abandoned in Otonomy NMDA antagonist Gacyclidine 313 start H1 2019 favour of this formulation Preclinical Auris AM-102 Undisclosed - - Medical KCNQ2 Knopp Kv7 potassium - - Program Biosciences channel modulator Source: EvaluatePharma. Both projects are psychoactive drugs targeting the NMDA receptor. Tinnitus is commonly caused by loud noise and resulting damage to the sensory hair cells in the cochlea. Initial trauma to the inner ear has been shown to trigger excess production of glutamate, which leads to the hyperactivation of NMDA receptors and, in turn, cell death. Blocking the NMDA receptor could therefore have a protective effect – but it is unclear how this mechanism would work once the damage to hair cells had been done.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • Chlorine.Pdf
    Chlorine 7782-50-5 Hazard Summary Chlorine is a commonly used household cleaner and disinfectant. Chlorine is a potent irritant to the eyes, the upper respiratory tract, and lungs. Chronic (long-term) exposure to chlorine gas in workers has resulted in respiratory effects, including eye and throat irritation and airflow obstruction. No information is available on the carcinogenic effects of chlorine in humans from inhalation exposure. A National Toxicology Program (NTP) study showed no evidence of carcinogenic activity in male rats or male and female mice, and equivocal evidence in female rats, from ingestion of chlorinated water. EPA has not classified chlorine for potential carcinogenicity. Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (2), which contains information on oral chronic toxicity and the RfD, The California Environmental Protection Agency's (CalEPA's) Technical Support Document for the Determination of Noncancer Chronic Reference Exposure Levels (3), and EPA's Drinking Water Criteria Document for Chlorine, Hypochlorous Acid and Hypochlorite Ion (1). Uses Chlorine is a commonly used household cleaner and disinfectant. It is widely used as an oxidizing agent in water treatment and chemical processes. It is also used in the bleaching process of wood pulp in pulp mills. (8) Sources and Potential Exposure Workers may be exposed to chlorine in industries where it is produced or used, particularly in the food and paper industries. In addition, persons breathing air around these industries may be exposed to chlorine. (1) Exposure to chlorine may also occur through drinking water and swimming pool water, where it is used as a disinfectant.
    [Show full text]
  • Adverse Reactions to Hallucinogenic Drugs. 1Rnstttutton National Test
    DOCUMENT RESUME ED 034 696 SE 007 743 AUTROP Meyer, Roger E. , Fd. TITLE Adverse Reactions to Hallucinogenic Drugs. 1rNSTTTUTTON National Test. of Mental Health (DHEW), Bethesda, Md. PUB DATP Sep 67 NOTE 118p.; Conference held at the National Institute of Mental Health, Chevy Chase, Maryland, September 29, 1967 AVATLABLE FROM Superintendent of Documents, Government Printing Office, Washington, D. C. 20402 ($1.25). FDPS PRICE FDPS Price MFc0.50 HC Not Available from EDRS. DESCPTPTOPS Conference Reports, *Drug Abuse, Health Education, *Lysergic Acid Diethylamide, *Medical Research, *Mental Health IDENTIFIEPS Hallucinogenic Drugs ABSTPACT This reports a conference of psychologists, psychiatrists, geneticists and others concerned with the biological and psychological effects of lysergic acid diethylamide and other hallucinogenic drugs. Clinical data are presented on adverse drug reactions. The difficulty of determining the causes of adverse reactions is discussed, as are different methods of therapy. Data are also presented on the psychological and physiolcgical effects of L.S.D. given as a treatment under controlled medical conditions. Possible genetic effects of L.S.D. and other drugs are discussed on the basis of data from laboratory animals and humans. Also discussed are needs for futher research. The necessity to aviod scare techniques in disseminating information about drugs is emphasized. An aprentlix includes seven background papers reprinted from professional journals, and a bibliography of current articles on the possible genetic effects of drugs. (EB) National Clearinghouse for Mental Health Information VA-w. Alb alb !bAm I.S. MOMS Of NAM MON tMAN IONE Of NMI 105 NUNN NU IN WINES UAWAS RCM NIN 01 NUN N ONMININI 01011110 0.
    [Show full text]
  • Aldrich Raman
    Aldrich Raman Library Listing – 14,033 spectra This library represents the most comprehensive collection of FT-Raman spectral references available. It contains many common chemicals found in the Aldrich Handbook of Fine Chemicals. To create the Aldrich Raman Condensed Phase Library, 14,033 compounds found in the Aldrich Collection of FT-IR Spectra Edition II Library were excited with an Nd:YVO4 laser (1064 nm) using laser powers between 400 - 600 mW, measured at the sample. A Thermo FT-Raman spectrometer (with a Ge detector) was used to collect the Raman spectra. The spectra were saved in Raman Shift format. Aldrich Raman Index Compound Name Index Compound Name 4803 ((1R)-(ENDO,ANTI))-(+)-3- 4246 (+)-3-ISOPROPYL-7A- BROMOCAMPHOR-8- SULFONIC METHYLTETRAHYDRO- ACID, AMMONIUM SALT PYRROLO(2,1-B)OXAZOL-5(6H)- 2207 ((1R)-ENDO)-(+)-3- ONE, BROMOCAMPHOR, 98% 12568 (+)-4-CHOLESTEN-3-ONE, 98% 4804 ((1S)-(ENDO,ANTI))-(-)-3- 3774 (+)-5,6-O-CYCLOHEXYLIDENE-L- BROMOCAMPHOR-8- SULFONIC ASCORBIC ACID, 98% ACID, AMMONIUM SALT 11632 (+)-5-BROMO-2'-DEOXYURIDINE, 2208 ((1S)-ENDO)-(-)-3- 97% BROMOCAMPHOR, 98% 11634 (+)-5-FLUORODEOXYURIDINE, 769 ((1S)-ENDO)-(-)-BORNEOL, 99% 98+% 13454 ((2S,3S)-(+)- 11633 (+)-5-IODO-2'-DEOXYURIDINE, 98% BIS(DIPHENYLPHOSPHINO)- 4228 (+)-6-AMINOPENICILLANIC ACID, BUTANE)(N3-ALLYL)PD(II) CL04, 96% 97 8167 (+)-6-METHOXY-ALPHA-METHYL- 10297 ((3- 2- NAPHTHALENEACETIC ACID, DIMETHYLAMINO)PROPYL)TRIPH 98% ENYL- PHOSPHONIUM BROMIDE, 12586 (+)-ANDROSTA-1,4-DIENE-3,17- 99% DIONE, 98% 13458 ((R)-(+)-2,2'- 963 (+)-ARABINOGALACTAN BIS(DIPHENYLPHOSPHINO)-1,1'-
    [Show full text]
  • Argonne Report.Pdf
    CONTENTS NOTATION ........................................................................................................................... xi ABSTRACT ........................................................................................................................... 1 1 INTRODUCTION ........................................................................................................... 5 1.1 Overview of the Emergency Response Guidebook ................................................ 5 1.2 Organization of this Report ..................................................................................... 7 2 GENERAL METHODOLOGY ....................................................................................... 9 2.1 TIH List ................................................................................................................... 10 2.1.1 Background ................................................................................................. 10 2.1.2 Changes in the TIH List for the ERG2012 ................................................. 11 2.2 Shipment and Release Scenarios ............................................................................ 11 2.2.1 Shipment Profiles ........................................................................................ 12 2.2.2 Treatment of Chemical Agents ................................................................... 14 2.3 Generics, Mixtures, and Solutions .......................................................................... 17 2.4 Analysis of Water-Reactive
    [Show full text]
  • Measurement Technique for the Determination of Photolyzable
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. D13, PAGES 15,999-16,004,JULY 20, 1997 Measurement techniquefor the determination of photolyzable chlorine and bromine in the atmosphere G. A. Impey,P. B. Shepson,• D. R. Hastie,L. A. Bartie• Departmentof Chemistryand Centre for AtmosphericChemistry, York University,Toronto, Ontario, Canada Abstract. A techniquehas been developed to enablemeasurement of photolyzablechlorine and bromineat tracelevels in the troposphere.In thismethod, ambient air is drawnt•ough a cylindricalflow cell, whichis irradiatedwith a Xe arc lamp. In the reactionvessel of the photoactivehalogen detector (PHD), photolyrically active molecules Clp (including C12, HOC1, C1NO,C1NO2, and C1ONO2) and Brp (including Br2, HOBr, BrNO, BrNO2, and BrONO2) are photolyzed,and the halogenatoms produced react with properieto form stablehalogenated products.These products are thensampled and subsequently separated and detected by gas chromatography.The systemis calibratedusing low concentrationmixtures of C12and Br2 in air from commerciallyavailable permeation sources. We obtaineddetection limits of 4 pptv and 9 pptv as Br2 andC12, respectively, for 36 L samples. 1. Introduction (or C12)in the Arctic, largely as a result of the lack of suitable analyticalmethodologies. This paperreports the developmentof The episodicdestruction of groundlevel ozonein the Arctic at a measurementtechnique for the determinationof rapidly sunriseis a phenomenonthat hasbeen observed for many years. photolyzingchlorine (referred to hereas Clp) and bromine (Brp) With the onsetof polar sunrise,ozone levels are often observed speciesat pansper trillion by volume(pptv) mixingratios in the to drop from a backgroundconcentration of •40 ppbv to almost atmosphere.Impey et al. [this issue]discuss the resultsobserved zero on a timescaleof a day or less [Barrie et al., 1988] for from a field studyconducted in the Canadianhigh Arctic at Alert, periodsof 1-10 days.
    [Show full text]
  • Technical Note 159 Chemical Warfare Agent Measurements By
    Technical Note TN-159 03/06/WH CHEMICAL WARFARE AGENT MEASUREMENTS BY PID INTRODUCTION nerve agents at these levels. However, it can locate sources and Many chemical warfare agents, including nerve agents and related detect the agents at levels well below levels that are lethal in one compounds, can be detected by PID. Table 1 lists some common minute (see LCy 50 in table 1). Compounds with low vapor pressures agents and several of their physical properties and PID Correction tend to respond more slowly on the PID, in some cases requiring Factors (CF). The CF is used by calibrating the instrument with several minutes. In the case of VX, the lethal dose is above its vapor isobutylene, and then multiplying the reading by the CF to obtain the pressure at room temperature. There fore, the lethal one-minute true concentration. (See Technical Note TN-106 for full details.) dose can be attained only if the air is hot or the chemical is sprayed as an aerosol. At the maximum concentration, more than one- DISCUSSION AND CONCLUSIONS minute exposure is required for lethal effects. All the warfare agents listed in Table 1 can be detected with a 10.6 Table 2 shows that many of the common decomposition products eV lamp, except phosgene, which requires an 11.7 eV lamp, and of aged warfare agents can also bedetected by PID. These are HCN and ClCN, which cannot be detected by PID. often more volatile than the agent itself (especially for VX) and thus VX has inherent sensitivity, but it is too heavy a compound to get the products serve as a more easily detectable surrogate than the to the PID sensor and thus cannot be reliably measured.
    [Show full text]