P122 Natural Resource Economics

Total Page:16

File Type:pdf, Size:1020Kb

P122 Natural Resource Economics Centre for Development, Environment and Policy P122 Natural Resource Economics Prepared by: Emmanuelle Quillérou, Laurence Smith and Michael Stockbridge Based on earlier versions by Jamie Morrison and Michael Warner © SOAS | 3741 Natural Resources Economics Module Introduction ABOUT THIS MODULE This module develops a rationale for, and explains the methodologies used in, the application of economic theory to the allocation of natural resources. The main emphasis is placed on enhancing the learner’s ability to evaluate critically a rapidly growing, but technical, area of the economic literature. In order to achieve this, the rationale for the use of economic concepts, theory and models is first developed. Using a series of resource sectors as examples, a number of economic models are then explained in detail in a way that is intended to raise the learner’s confidence in the interpretation and assessment of various policy insights that are derived from the models. Practical policy applications are used throughout the module in order to bridge the gap between theory and practice. Also whilst developing and applying the microeconomic applications in depth, a number of ‘departures’ from basic models are explored throughout the module in the context of the ‘sustainable development’ debate. STRUCTURE OF THE MODULE This module starts by introducing key concepts in natural resource economics. After a brief classification of natural resources we look at the concept of sustainability and the intellectual foundations of natural resource economics, identifying what distinguishes the discipline from environmental economics and ecological economics. This is followed by an examination of the interconnections between the economy and the environment, including the services that the environment supplies to the economy. When applied in research and policy analysis natural resource economics relies on empirical evidence and is a quantitative discipline. Thus the second unit of the module takes time to introduce and refresh the methods and tools of natural resource economics thoroughly including the application of mathematics and spreadsheet-based modelling. Next the module examines the concepts of sustainability and sustainable development and reflects upon the various debates and arguments that surround these contentious concepts. The first section of Unit 3 provides a broad introduction to the subject noting the difficulties of defining sustainability and highlighting the different perspectives from which the concept can be studied and analysed. The next section narrows the focus down to an economic perspective, looking at some basic economic models of sustainability, including models of optimal growth. The final section concludes by looking at how sustainability is conceived and measured in the ecological sciences and considers what insights ecology might hold for the limits to growth. The theoretical foundations that underpin most of the economic analysis that takes place in relation to natural resource management originate from welfare economics. The module reviews some of the key philosophical assumptions that inform economic approaches to welfare analysis and builds on this by explaining what economists typically mean by efficiency and how efficiency relates to the concept of welfare and equity. It also looks at why competitive markets are viewed as a benchmark for achieving efficiency and also at why markets are not always able to deliver efficiency. This leads to a consideration of alternative non-market arrangements for allocating resources, in particular, other institutions and an assessment of how they compare in efficiency terms. © SOAS CeDEP 2 Natural Resources Economics Module Introduction The concepts and tools examined in the first parts of the module are then applied to analysis of the exploitation and management of different natural resources. First the focus falls on the economic characteristics of non-renewable natural resources and what distinguishes them from renewable resources. Key concepts and ideas reviewed include resource rents and dynamic efficiency, and the Hotelling model which serves as the foundation for much of the economic analysis in this module. Conclusions are drawn about the concept of economic scarcity and its drivers for the non-renewables sector. Moving on, the module then explores the bio-economic characteristics of critical zone renewable natural resources. It examines the complex relationships that policy-makers need to take into account in developing policy that ensures efficient resource allocation. For this, static and dynamic models that aid the formulation of appropriate policy are examined, along with their key limitations. Continuing the analysis of renewable resources, the module covers the resources provided by forests and other wooded land. Plantation forests are renewable resources but have a range of characteristics that differentiate their assessment, management and utilisation from other renewable resources such as fisheries. Natural and undisturbed forests provide a resource that has conventionally been regarded as a renewable resource in the past, but when multiple non-timber benefits and ecosystem services are considered discussion centres on what is irreplaceable and thus a non-renewable resource, at least in the short and medium term. Consideration is given to the policy mix necessary to achieve more socially optimal management of forest resources in meeting the long-term goals and needs of society. Finally, the module critically assesses the attempts that have been made by economists to modify national income accounting conventions so as to create a measure of sustainable income. The resulting guidelines for ‘environmental accounting’, also known as ‘natural resource accounting’ and ‘green accounting’ are summarised and assessed in relation to the goal of sustainable development. Alternative measures of ‘genuine saving’ or ‘genuine investment’ that have been proposed as indicators of sustainable national income and welfare are also reviewed. Thus the last unit considers how economists have explored whether measurement of wealth can be made more holistic by taking into account all forms of capital, including natural, human and social capital. Parallel approaches that involve the compilation and use of biophysical indicators of sustainability without integration into national economic accounts are also considered. © SOAS CeDEP 3 Natural Resources Economics Module Introduction WHAT YOU WILL LEARN Module Aims The specific aims of the module are: To explain the rationale for the use of economics in informing natural resource allocation decisions. To develop skills in using economic theory to analyse critically natural resource problems. To give confidence in accessing a specialised literature and quantitative approaches, in particular in applying spreadsheet applications for the latter. To assess the limitations of, and possibilities for, extending the orthodox applications of economic theory by comparing the outcomes with insights derived from alternative paradigms. To explain the economic approach to the measurement of sustainable development and the incorporation of sustainability criteria in economic policy. Module Learning Outcomes By the end of this module, students should be able to: discuss the extent of and critically appraise factors contributing to, natural resource scarcity develop and argue a rationale for the use of natural resource economics theory and methods critically apply the insights gained from the economic methods used in the temporal and inter-temporal theories of resource allocation to the analysis of natural resource use problems critically examine how an economist can contribute to the development of policy that supports sustainable development assess critically the limitations of the neoclassical paradigm in the allocation of resources and demonstrate an in-depth understanding of how current research initiatives are attempting to overcome these limitations. © SOAS CeDEP 4 Natural Resources Economics Module Introduction ASSESSMENT This module is assessed by: an examined assignment (EA) worth 40% a written examination worth 60%. Since the EA is an element of the formal examination process, please note the following: (a) The EA questions and submission date will be available on the Virtual Learning Environment (VLE). (b) The EA is submitted by uploading it to the VLE. (c) The EA is marked by the module tutor and students will receive a percentage mark and feedback. (d) Answers submitted must be entirely the student’s own work and not a product of collaboration. For this reason, the VLE is not an appropriate forum for queries about the EA. (e) Plagiarism is a breach of regulations. To ensure compliance with the specific University of London regulations, all students are advised to read the guidelines on referencing the work of other people. For more detailed information, see the FAQ on the VLE. © SOAS CeDEP 5 Natural Resources Economics Module Introduction STUDY MATERIALS There are two textbooks for this module. ❖ Perman, R., Ma, Y., Common, M., Maddison, D. &, McGilvray, J. (2011) Natural Resource and Environmental Economics. 4th edition. Pearson Education. ❖ Conrad, J. (2010) Resource Economics. 2nd edition. Cambridge University Press. For each of the module units, the following are provided. Key Study Materials Key readings are drawn mainly from the textbooks, relevant academic journals and internationally respected reports. They are provided
Recommended publications
  • Resource Advisor Guide
    A publication of the National Wildfire Coordinating Group Resource Advisor Guide PMS 313 AUGUST 2017 Resource Advisor Guide August 2017 PMS 313 The Resource Advisor Guide establishes NWCG standards for Resource Advisors to enable interagency consistency among Resource Advisors, who provide professional knowledge and expertise toward the protection of natural, cultural, and other resources on wildland fires and all-hazard incidents. The guide provides detailed information on decision-making, authorities, safety, preparedness, and rehabilitation concerns for Resource Advisors as well as considerations for interacting with all levels of incident management. Additionally, the guide standardizes the forms, plans, and systems used by Resource Advisors for all land management agencies. The National Wildfire Coordinating Group (NWCG) provides national leadership to enable interoperable wildland fire operations among federal, state, tribal, territorial, and local partners. NWCG operations standards are interagency by design; they are developed with the intent of universal adoption by the member agencies. However, the decision to adopt and utilize them is made independently by the individual member agencies and communicated through their respective directives systems. Table of Contents Section One: Resource Advisor Defined ...................................................................................................................1 Introduction ............................................................................................................................................................1
    [Show full text]
  • Wilderness Character Resource Brief
    WILDERNESS CHARACTER National Park Service U.S. Department of the Interior Resource Brief Wilderness Stewardship Division Background The National Park Service (NPS) is responsible for the stewardship of 61 designated wilderness areas. Per agency policy, the NPS also manages eligible, proposed, recommended, and potential wilderness. In total, over 80 percent of all NPS lands are managed as wilderness, from Alaska to Florida. Preserving Wilderness Character The 1964 Wilderness Act’s Statement of Policy, Section 2(a) states that wilderness areas “shall be administered... so as to provide for the protection of these areas, the preservation of their wilderness character.” This affrmative legal mandate to preserve wilderness character, and related NPS policy, applies to all NPS wilderness. Wilderness character is a holistic concept based on the interaction of biophysical environments, personal experiences, and symbolic meanings. This includes intangible qualities like a sense of adventure and challenge or refuge and inspiration. Wilderness character also includes fve tangible qualities associated with the biophysical environment: • Natural - Wilderness ecological systems are Monitoring Wilderness Character substantially free from the effects of modern civilization How do NPS managers preserve wilderness character? Wilderness character monitoring helps address this • Untrammeled - Wilderness is essentially free from question by 1) assessing how management decisions the intentional actions of modern human control and actions may affect individual
    [Show full text]
  • Ecosystem Services and Natural Resources
    ECOSYSTEM SERVICES AND NATURAL RESOURCES Porter Hoagland1*, Hauke Kite-Powell1, Di Jin1, and Charlie Colgan2 1Marine Policy Center Woods Hole Oceanographic Institution Woods Hole, MA 02543 2Center for the Blue Economy Middlebury Institute of International Studies at Monterey Monterey, CA 93940 *Corresponding author. This working paper is a preliminary draft for discussion by participants at the Mid-Atlantic Blue Ocean Economy 2030 meeting. Comments and suggestions are wel- come. Please do not quote or cite without the permission of the authors. 1. Introduction All natural resources, wherever they are found, comprise physical features of the Earth that have economic value when they are in short supply. The supply status of natural resources can be the result of natural occurrences or affected by human degradation or restoration, new scientific in- sights or technological advances, or regulation. The economic value of natural resources can ex- pand or contract with varying environmental conditions, shifting human uses and preferences, and purposeful investments, depletions, or depreciation. It has now become common to characterize flows of goods and services from natural resources, referred to as “ecosystem” (or sometimes “environmental”) services (ESs). The values of ES flows can arise through direct, indirect, or passive uses of natural resources, in markets or as public goods, and a variety of methodologies have been developed to measure and estimate these values. Often the values of ES flows are underestimated or even ignored, and the resulting im- plicit subsidies may lead to the overuse or degradation of the relevant resources or even the broader environment (Fenichel et al. 2016). Where competing uses of resources are potentially mutually exclusive in specific locations or over time, it is helpful to be able to assess—through explicit tradeoffs—the values of ES flows that may be gained or lost when one or more uses are assigned or gain preferential treatment over others.
    [Show full text]
  • ECOSYSTEM SERVICES: a GUIDE for DECISION MAKERS Acknowledgments
    JANET RANGANATHAN CIARA RAUDSEPP-HEARNE NICOLAS LUCAS FRANCES IRWIN MONIKA ZUREK KAREN BENNETT NEVILLE ASH PAUL WEST ECOSYSTEM SERVICES A Guide for Decision Makers PLUS The Decision: A fictional story about a community facing ecosystem change ECOSYSTEM SERVICES A Guide for Decision Makers JANET RANGANATHAN CIARA RAUDSEPP-HEARNE NICOLAS LUCAS FRANCES IRWIN MONIKA ZUREK KAREN BENNETT NEVILLE ASH PAUL WEST Each World Resources Institute report represents a timely, scholarly treatment of a subject of public concern. WRI takes responsibility for choosing the study topics and guaranteeing its authors and researchers freedom of inquiry. It also solicits and responds to the guidance of advisory panels and expert reviewers. Unless otherwise stated, however, all the interpretation and fi ndings set forth in WRI publications are those of the authors, and do not necessarily refl ect the views of WRI or the collaborating organizations. Copyright © 2008 World Resources Institute. All rights reserved. ISBN 978-1-56973-669-2 Library of Congress Control Number: 2007941147 Cover and title page images by Getty Images and Hisashi Arakawa (www.emerald.st) Table of Contents FOREWORD i ACKNOWLEDGMENTS iii SUMMARY iv CHAPTER 1: Introduction 1 Ecosystem services and development 3 Condition and trends of ecosystem services 6 Entry points for mainstreaming ecosystem services 8 About this guide 9 The Decision: Where the Secretary connects ecosystems and human well-being 11 CHAPTER 2: Framing the Link between Development and Ecosystem Services 13 Make the connections
    [Show full text]
  • Theory of Ecosystem Services
    Seminar 2 Theory of Ecosystem Services Speaker Dr. Stephen Polasky Valuing Nature: Economics, Ecosystem Services, and Decision-Making by Dr. Stephen Polasky, University of Minnesota INTRODUCTION The past hundred years have seen major transformations in human and ecological systems. There has been a rapid rise in economic activity, with a tenfold increase in the real value of global gross domestic product (GDP) (DeLong 2003). At the same time, the Millennium Ecosystem Assessment found many negative environmental trends leading to declines in a majority of ecosystem services (Millennium Ecosystem Assessment 2005). A major reason for the rapid increase in the production of goods and services in the economy and deterioration in the provision of many ecosystem services is the fact that market economic systems reward production of commodities that are sold in markets and accounted for in GDP, but does not penalize anyone directly for environmental degradation that leads to a reduction in ecosystem services. As Kinzig et al. (2011) recently wrote about ecosystem services: “you get what you pay for” (or, alternatively, you don’t get what you don’t pay for). Ecosystems provide a wide array of goods and services of value to people, called ecosystem services. Though ecosystem services are valuable, most often no one actually pays for their provision. Ecosystem services often are invisible to decision-makers whose decisions have important impacts on the environment. Because of this, decision-makers tend to ignore the impact of their decisions on the provision of ecosystem services. Such distortions in decision-making can result in excessive degradation of ecosystem functions and reductions in the provision of ecosystem services, making human society and the environment poorer as a consequence.
    [Show full text]
  • Ecology: Biodiversity and Natural Resources Part 1
    CK-12 FOUNDATION Ecology: Biodiversity and Natural Resources Part 1 Akre CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning. Copyright © 2010 CK-12 Foundation, www.ck12.org Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share Alike 3.0 Un- ported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc-sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), which is incorporated herein by this reference. Specific details can be found at http://about.ck12.org/terms. Printed: October 11, 2010 Author Barbara Akre Contributor Jean Battinieri i www.ck12.org Contents 1 Ecology: Biodiversity and Natural Resources Part 1 1 1.1 Lesson 18.1: The Biodiversity Crisis ............................... 1 1.2 Lesson 18.2: Natural Resources .................................. 32 2 Ecology: Biodiversity and Natural Resources Part I 49 2.1 Chapter 18: Ecology and Human Actions ............................ 49 2.2 Lesson 18.1: The Biodiversity Crisis ............................... 49 2.3 Lesson 18.2: Natural Resources .................................. 53 www.ck12.org ii Chapter 1 Ecology: Biodiversity and Natural Resources Part 1 1.1 Lesson 18.1: The Biodiversity Crisis Lesson Objectives • Compare humans to other species in terms of resource needs and use, and ecosystem service benefits and effects.
    [Show full text]
  • Natural Resources, Spring 1999
    NATURAL RESOURCES MANAGEMENT AND PROTECTION TASK FORCE REPORT PRESIDENT’S COUNCIL ON SUSTAINABLE DEVELOPMENT The views expressed in this report are those of the Task Force members and were not the subject of endorsement by the full Council. Many of the federal officials who serve on the Council also serve on the Council’s Task Forces and participated actively in developing the Task Force’s recommendations, but those recommendations do not necessarily reflect Administration policy. PRESIDENT’S COUNCIL ON SUSTAINABLE DEVELOPMENT TASK-FORCE-REPORT-ON-NATURAL RESOURCES To obtain copies of this Report, please contact: President’s Council on Sustainable Development 730 Jackson Place, NW Washington, D.C. 20503 1-800-363-3732 (202) 408-5296 Website: http://www.whitehouse.gov/PCSD TASK FORCE MEMBERSHIP CO-CHAIRS Richard Barth, Chairman, President, and CEO, Ciba-Geigy Corporation James R. Lyons, Undersecretary for Natural Resources and the Environment, U.S. Department of Agriculture Theodore Strong, Executive Director, Columbia River Inter-Tribal Fish Commission MEMBERS Bruce Babbitt, Secretary, U.S. Department of the Interior James Baker, Undersecretary for Oceans and Atmosphere, National Oceanic and Atmospheric Administration, U.S. Department of Commerce Carol Browner, Administrator, U.S. Environmental Protection Agency A.D. Correll, Chairman and CEO, Georgia-Pacific Corporation Fred D. Krupp, Executive Director, Environmental Defense Fund Michele Perrault, International Vice President, Sierra Club John C. Sawhill, President and CEO, The Nature Conservancy PRESIDENT’S COUNCIL ON SUSTAINABLE DEVELOPMENT TASK-FORCE-REPORT-ON-NATURAL RESOURCES TABLE OF CONTENTS PREFACE. i EXECUTIVE SUMMARY. ii INTRODUCTION. 1 CHAPTER 1:TASK FORCE APPROACH. 5 The Role of the Watershed.
    [Show full text]
  • SACSCOC Resource Manual for Principles of Accreditation
    RESOURCE MANUAL for The Principles of Accreditation: Foundations for Quality Enhancement Southern Association of Colleges and Schools Commission on Colleges 2020 Edition RESOURCE MANUAL for The Principles of Accreditation: Foundations for Quality Enhancement 1866 Southern Lane Decatur, GA 30033-4097 www.sacscoc.org SACSCOC Southern Association of Colleges and Schools Commission on Colleges Third Edition Published: 2020 Statement on Fair Use The Southern Association of Colleges and Schools Commission on Colleges (SACSCOC) recognizes that for purposes of compliance with its standards, institutions and their representatives find it necessary from time to time to quote, copy, or otherwise reproduce short portions of its handbooks, manuals, Principles of Accreditation, and other publications for which SACSCOC has protection under the Copyright Statute. An express application of the Copyright Statute would require these institutions to seek advance permission for the use of these materials unless the use is deemed to be a “fair use” pursuant to 17 USC §107. This statement provides guidelines to institutions and their representatives as to what uses of these materials SACSCOC considers to be “fair use” so as not to require advance permission. SACSCOC considers quotation, copying, or other reproduction (including electronic reproduction) of short portions (not to exceed 250 words) of its handbooks, manuals, Principles of Accreditation, and other publications by institutions of higher education and their representatives for the purpose of compliance with SACSCOC’s standards to be fair use and not to require advance permission from SACSCOC. The number of copies of these quotations must be limited to 10. Representatives of institutions shall include employees of the institutions as well as independent contractors, such as attorneys, accountants, and consultants, advising the institution concerning compliance with SACSCOC’s standards.
    [Show full text]
  • Biological Resources and Biodiversity
    Environment at a Glance Indicators – Biological resources and biodiversity Environment at a Glance Indicators Biological resources and biodiversity Context Issues at stake Biodiversity and ecosystem services are integral elements of natural capital. Biodiversity, which encompasses species, ecosystems, and genetic diversity, provides invaluable ecosystem services (including raw materials for many sectors of the economy) and plays an essential role in maintaining life-support systems and quality of life. The loss of biodiversity is a key concern nationally and globally. Pressures on biodiversity include changes in land cover and sea use, over-exploitation of natural resources, pollution, climate change and invasive alien species. Policy challenges The main challenge is to ensure effective conservation and sustainable use of biodiversity. This implies strengthening the degree of protection of species, habitats and terrestrial, marine and other aquatic ecosystems. Strategies include eliminating illegal exploitation and trade of endangered species, putting in place ambitious policies (covering regulatory approaches, economic instruments, and other information and voluntary approaches); and integrating biodiversity concerns into economic and sectoral policies. Biodiversity protection also requires reforming and removing environmentally harmful subsidies and strengthening the role of biodiversity-relevant taxes, fees and charges, as well as other economic instruments such as payments for ecosystem services, biodiversity offsets and tradable permits
    [Show full text]
  • Water Demand Management, Natural Resource Reconstruction and Traditional Value Systems: a Case Study from Yemen
    WATER DEMAND MANAGEMENT, NATURAL RESOURCE RECONSTRUCTION AND TRADITIONAL VALUE SYSTEMS: A CASE STUDY FROM YEMEN Occasional Paper No. 14 Water Issues Study Group School of Oriental and African Studies (SOAS) University of London By G. LichtenthŠler & A.R. Turton gl3&soas.ac.uk & [email protected] INTRODUCTION: Previous research has shown that under conditions of extreme water scarcity, such as in the Middle East, natural resource reconstruction can take place (Allen & Karshenas, 1996). This may not always be the case however, as certain societies seem better able to cope with this process than others. This phenomenon has been linked to the adaptive capacity of a society (Turton, 1999) where it has been shown that all social entities are not equally endowed. A shortage of adaptive capacity has been redefined as a second- order scarcity (Ohlsson, 1998; 1999). What is currently being regarded by most researchers as a manifestation of resource scarcity is in fact probably the result of a second-order scarcity of social resources, which impacts in turn on the way that social entities deal with the first order scarcity of a natural resource such as water. In terms of this thinking, a shift in emphasis to second-order scarcities would be appropriate. Furthermore, it has been demonstrated that in a society where resource capture is being actively pursued, natural resource reconstruction is unlikely to occur because it reduces the overall legitimacy of the political system (Turton, 1999). A study of these aspects in Yemen (LichtenthŠler, 1999) is therefore considered to be extremely fruitful because of four fundamental reasons.
    [Show full text]
  • Optimize and Protect Your Natural Resources
    Get involved with EQIP The EQIP application process is continuous throughout the year. Information and applications Optimize can be obtained at any local NRCS Field Office. To find out if EQIP is a perfect fit for your operation, contact your local NRCS office at a and protect USDA Service Center in your area or click on to www.wa.nrcs.usda.gov. your natural Application Process The EQIP application process consists of the resources... EQIP can help producers improve irrigation water following five steps: efficiency. water that is lost to the field. 1. A landowner submits an application to In order to improve the application of water a local USDA Service Center, NRCS and make it more uniform, sprinkler irrigation office, or conservation district office. systems are cost-shared and installed. These 2. NRCS ranks each application using the systems apply water to the plant when needed locally developed natural resources at a rate the soil can manage. There is no deep ranking process. percolation or runoff with the sprinkler irrigation 3. When funds are allocated, NRCS system. What this means is a better use of the commits funds to high ranking resources; water, power, fertilizer, and chemicals applications. which equals better quality crops. 4. NRCS works with the applicant to develop an EQIP conservation plan and Irrigation Water Management contract containing practices which will With the installation of new irrigation solve identified resource problems. systems, landowners need to learn how and when 5. Following contract signature by to apply water. For most of the new systems it NRCS and the selected entity, funds is possible to apply water almost anytime it is are obligated to the project and the needed.
    [Show full text]
  • Natural Resource Economics - Jason F
    ECONOMICS INTERACTIONS WITH OTHER DISCIPLINES – Vol. II - Natural Resource Economics - Jason F. Shogren NATURAL RESOURCE ECONOMICS Jason F. Shogren University of Wyoming, Laramie, USA Keywords: natural resource, natural resource economics, non-renewable resource, renewable resource, biodiversity, non-market valuation Contents 1. Introduction 2. Non-renewable Resources 2.1 Optimal Depletion 2.2 Resource Scarcity 2.3 Energy 3. Renewable Resources 3.1 Fisheries (or Groundwater) 3.2 Forests 3.3 Commons and Property Rights 3.4 Regulation and Incentives 4. Protecting Biodiversity 5. Climate Protection 6. Non-market Valuation 7. Concluding Comments Acknowledgements Glossary Bibliography Biographical Sketch Summary Natural resource economics examines how society can more efficiently use its scarce natural resources, both non-renewable resources, such as minerals and fossil fuels, and renewable resources, such as fisheries and forests. Theory and empirical research explores alternative models on how people and societies choose to use and manage their limited resources. For non-renewable resources, natural resource economics suggests that theUNESCO efficient path to extract such resources – EOLSS over time is to balance the market price with both the marginal extraction costs and the opportunity cost, or shadow price of extracting the resource sooner rather than later. This shadow price is also called the user cost, resourceSAMPLE royalty, or scarcity rent. User CHAPTERS costs capture the idea that there is an additional cost for extracting a resource today since it cannot be extracted tomorrow. Theory also suggests the scarcity rent should grow at a rate equal to the rate of interest. This is called Hotelling’s rule, which says that a unit of resource extracted in any period should yield the same rent, in present value terms.
    [Show full text]