The Stobbe Vane: Tacking Upwind with the Self-Steering Vane by Mike Stobbe

Total Page:16

File Type:pdf, Size:1020Kb

The Stobbe Vane: Tacking Upwind with the Self-Steering Vane by Mike Stobbe The Stobbe Vane: Tacking Upwind with the Self-Steering Vane By Mike Stobbe In the previous article, I described how the vanes built by Jeff Stobbe should be prepared for use. Sailing with the self-tacking vane is relatively straightforward. Much of it comes down to careful preparation beforehand. Many thanks to Drew Marshall for his review and helpful comments contributing to this article. It is assumed that the boat has already been dynamically balanced with respect to the mast position and jib pivot position. If the boat is well balanced to windward, it will pretty much sail itself, and the vane will have a very light duty to perform. A "problem" with vane-controlled boats is that even a mediocre vane setting will enable a boat to beat so relatively well, that many skippers are content to leave it at that and not bother to seek the most out of it. You are now ready to go sailing. This article is not about rigging or the setting of the sails, however, it's worth mentioning to the reader that for good upwind performance, the rigging should be set to ensure that the jibstay is really taut. Set the vane onto the vane post, and engage the operating pin with the tiller slot. Clip on the safety line. Tacking upwind (beating) with a self-steering vane is quite simple. With the vane locked, rotate the vane body until it is pointed exactly straight ahead, with the feather right aft. The correct way to do this, is to rotate the vane until the operating pin is hard up against the end of the tiller slot, and then to continue rotating, against the friction grip of the clamp-screw, until the vane body aligns with the straight-ahead mark obtained from the degree-board. The incorrect way to do this, is to grasp the rudder blade, and rotate the vane while holding tiller in the straight-ahead position. The latter method will torque the tiller's clamping block on the rudder post. It may slip, unnoticed until you release the boat…too late! The correct method puts no stress on the rudder post or the construction joint between the rudder post and rudder blade. The vane must be locked to make this straight-ahead setting. After the vane is set to the straight-ahead position, use the beaded chain to set the rudder-centering elastic to a very weak tension, just enough to keep the beaded chain from dragging on the deck. If the boat is equipped with a slotted comb, set the beaded chain on- center. No rudder offset is used when beating. Note that the centering elastic not only returns the tiller to center, it also offers resistance to the vane rotation. When beating, we want the former, but not the latter. Thus, we want as little tension on the centering elastic as will still do the job. Now unlock the vane. Ensure that the gying spring is hooked on the side of the feather bracket that is nearest to the shore that you will be walking on. At Spreckels Lake, the prevailing wind and shape of the lake dictate beating westward, walking along the north shore. Thus the gying spring will always be attached to the starboard side. If you wanted to sail a windward board walking along the south shore, you would clip the spring to the port side of the feather. 1 With the sheets set in their beating positions, place the boat into the water, pointing into the wind. Holding it by the stern, allow it to pay off until the sails just fill and stop luffing. As the boat begins to heel over to the wind, let it go, and closely observe its progress. Potential adjustments will be to the gying spring tension and the tacking angle. The tension in the gying spring should be fine-tuned each day that the boat is used. Take note of how the quickly the boat tacks upon release or turn-out with the pole. If it consistently tries to tack immediately, within one or two boat-lengths from shore, then the gying spring is too tight. If it goes all the way across the lake without tacking at all (apart from induced tacks caused by large wind shifts), then the gying spring is too loose. The difference between too loose and too tight is very slight, however. This is a very sensitive adjustment. Make gying spring adjustments of only about ¼" or less, by sliding the transverse adjusting hook on the feather bracket. Observe the boat to gauge its effect before adjusting again. The initial setting should prove to be very close. However, in general, windier days require a bit more tension, and lighter days a bit less tension. Also, be aware that for the vane to flop over, the boat must come upright at least momentarily, due to a lull in the wind or being headed by a wind shift. On Spreckels Lake one can always count on this, but if sailing elsewhere under strong and steady wind, the boat may stay heeled over on its initial tack for a long time; the vane unable to flip over due to the steady wind pressure on the vane feather. In such conditions, the gying spring will need significantly more tension. For the same reason, the boat should be turned out far enough for the sails to fully fill. The boat needs to be heeling a bit as it leaves the shore to ensure that the feather droops to leeward. If it leaves the shore with the feather still flipped to windward (i.e. in the same position it was in when it approached the shore on the other tack), then the boat will immediately try to tack, and will probably fail because it will not have gained enough momentum (known as "way") to complete the tack. Failure to tack is more fully discussed at the end of this article. As mentioned at the beginning of this article, a really well-balanced boat will sail itself, going to windward. A clear advantage of vane control, however, is a faster response to being headed. With or without a vane, a well-balanced yacht will naturally rise to a lift. A headed yacht without a vane, however, will begin luffing, slow down, gradually pay off until the sails fill again, and then gather speed on the new course. A well set-up vane-controlled boat, by contrast, should quickly steer to the new course when headed, with only a brief moment of luffing, provided that the skipper has the correct relationship between the slack gying spring tension and the tiller-centering elastic tension. Upon consideration, one will realize that this relationship also plays a role in a vane-controlled boat's ability to complete a tack, as tacking is essentially a continuation of the response to being headed. After a little practice, you will soon become familiar with the effects of the gying spring tension. Once you're experienced enough to be confident of the effects of adjustments to the gying spring, you may even try using it as a racing tactic. Two scenarios are likely possibilities during a race. In the first case, shown on Figure 14, one is nearing the last tack of a windward board on a lake where the wind direction is far from perpendicular to the finish line. Under such conditions, one end of the line will be favored over the other, and a shorter sailing distance will be required to reach the favored end. Note, as depicted on Figure 14, that if two boats leave Point "B" the skipper who increases his gying spring tension to 2 force a short tack, may reach the finish line at Point "C". The skipper who continues with a gying spring having a low tension, makes a long tack, and is shown reaching the finish line at Point "D". The second skipper will only have reached Point "D' " when the first skipper finishes. Figure 14. Short Tack vs. Long Tack to the Finish Line 3 Figure 15. Short Tack vs. Long Tack for the Best Wind The second scenario involves using the gying spring tension to induce a long tack or a short tack to avoid known wind shadows caused by trees, or to stay as much as possible in areas of the lake known to have the best winds. An example is shown on Figure 15. A word of caution, however. On a lake with very shifty and unsteady wind such as Spreckels Lake, the distance a boat will travel before self-tacking is very uncertain. One must weigh the risk of wasting the time for a change of trim for the purpose of taking advantage of what may be a very fleeting wind condition, against a benefit that may or may not be realized. 4 The vane tacking angle must also be fine-tuned, but once set, will not need to be adjusted very often. Once you are satisfied with the tacking angle, you can leave this adjustment alone much of the time. The final tacking angle is dependent upon many factors; some are under the skipper's control, and some are built in to the hull design and cut of the sails. Notice I don't refer to the "correct" tacking angle. There is no "correct" tacking angle. There is only the tacking angle best suited to your boat and the way you like to sail it. Good windward work depends entirely upon sail trim. The angle at which a boat sails into the wind will vary with the trim of the sails.
Recommended publications
  • An Analytical Approach to the Question of a Clock Change
    An Analytical Approach to the Question of a Clock Change by Samuel Halpern One of the ongoing arguments that continues to be brought up is the question of whether or not clocks on Titanic were put back some time before the accident took place Sunday night, April 14, 1912. Some of the deck crew, awakened by the accident at 11:40 p.m. ship’s time, thought that it was close to the time that they were due to take their watch on deck, which would be at 12 o’clock. Despite Boatswain’s Mate Albert Haines, who was awake and on duty at the time, testifying that “The right time, without putting the clock back, was 20 minutes to 12,” there are some that try to argue that a 24 minute clock adjustment had already taken place, and the time of the accident on an unadjusted clock still keeping April 14th time would have been 4 minutes past 12. The underlying question that would resolve this issue is the run time from noon Sunday to the time of the accident. If the run time from noon to the time of the accident was 11 hours 40 minutes, then no clock change had yet taken place, and the time of collision was 11:40 p.m. in unadjusted hours. If the run time was more than 12 hours, then there was a clock change of some 23 or 24 minutes, and the time of collision was 11:40 p.m. in adjusted hours. It really is that simple. So how do we determine the actual run time from the available evidence that does not have to rely on subjective estimates such as time intervals or other measures that people may have perceived? The answer is to take an analytical approach to the problem using the taffrail log mileage data offered by quartermasters George Rowe and Robert Hichens at the inquiries.
    [Show full text]
  • Gunwale (Canoe Rails) Repair Guide Wood Gunwale Repair
    Gunwale (Canoe Rails) Repair Guide Wood Gunwale Repair Canoes with fine woodwork are a tradition at Mad River Canoe. The rails, seats and thwarts on your Mad River Canoe are native Vermont straight-grained ash, chosen for its resiliency, strength and aesthetic appearance. Unlike aluminum or plastic materials, white ash will not kink upon impact and cause undue damage to the canoe hull. There are more options involved in repair of wood gunwales than with vinyl or aluminum, making this section a bit longer than the corresponding instructions for other types of rails. Don't let the length of this document intimidate you - here's an overview of this section to help you plan your repair strategy: General Information - Everyone should read this section. Pre-installation preparation - Everyone should read this section. Gunwale replacement instructions - How to replace both rails of your canoe. Replacing Gunwales with inset decks (including complete deck replacement) - If your canoe has inset decks you will likely have to replace them when you replace your rails. The other option is: Short-splicing method to preserve original inset decks when rerailing - You may cut the existing inwales of your canoe to avoid replacing your existing deck. The new inwale must be carefully spliced to the section of existing inwale. Installation of a 4' splicing section - If you have damage to a small section of gunwale, you can splice in a replacement section on the inside, outside or both. General Information Ordering replacement ash gunwales Rails can be ordered from an authorized Mad River dealer. Replacement ash rails are available for all Mad River Canoes.
    [Show full text]
  • Leopard 58' Catamaran – RABBLE ROUSER
    Leopard 58' Catamaran – RABBLE ROUSER Make: Leopard Boat Name: RABBLE ROUSER Model: 58' Catamaran Hull Material: Fiberglass Length: 58 ft Draft: 5 ft 7 in Price: $ 1,550,000 Builder: Robertson & Caine Year: 2014 Designer: Simonis Voogd Location: Ft. Lauderdale, FL, United States RABBLE ROUSER RABBLE ROUSER is an exceptional Owner’s version of the Leopard 58 with 4 cabin layout. Built and launched as a Leopard 58 but that’s where it starts and ends. In the hands of her current and original owner she was transformed into one of the most customized, highly detailed, well equipped and unique Leopard 58’s in existence. From her Carbon fiber roller furling boom to make sailing easy, to the custom cabinetry to enhance the already generous storage space, and a custom electrical system, where there was an opportunity to improve or make better, it was done. With low hours on both her engines and generators, this boat has East Coast Yacht Sales - Allen Schiller, CPYB at Dion's Yacht Yard, 23 Glendale Street, Salem, MA 01970, United States Tel: 617-529-5553 cell Tel: 707-414-0414 Fax: 978-744-7071 [email protected] seen very light use. You owe it to yourself to at least get onboard and see if RABBLE ROUSER is the boat for you. An Addendum section captures many of the changes and the thought process behind them. Measurements Cruising Speed: 9.5 kn Displacement: 61730 Cruising Speed RPM: 2200 lb LOA: 57 ft 7 in Fuel Tanks #: 4 LWL: 54 ft 2 in Fuel Tanks Capacity: 394 gal Beam: 27 ft 9 in Fresh Water Tanks #: 2 Max Bridge Clearance: 90 ft 3 in Fresh Water
    [Show full text]
  • Parts of a Ship: the Basics
    Parts of a Ship: The Basics PORT SIDE MAIN FORE MAIN WINDLASS STERN AFT BOW TILLER MAST MAST HATCH HATCH STARBOARD SIDE Overhead view of the schooner Sultana he front of a ship is called the bow, and the back is called the stern. If you were standing T on the ship’s deck looking forward (towards the bow), the left side would be the port side and the right side would be the starboard side. Close to Sultana’s stern is the tiller, a long stick attached to a device called a rudder used for steering the ship. Other important items include the main mast, the fore mast and the windlass (a large simple machine used for pulling up the anchor). POOP DECK QUARTER DECK MIDDLE DECK FORE DECK MAIN TILLER HATCH ultana’s deck is divided into four sections. At the front of the ship is the fore deck, where S the anchors are stored and the fore mast is located. The largest section of the ship is the middle deck where the main hatch is located. Historically, this is where cargo would have been loaded and unloaded. Towards the ship’s stern is the quarter deck. On larger ships, only the high ranking officers were allowed to stand in this area. Sultana’s smallest deck is the poop deck, where sailors steered with the tiller. Parts of a Ship: The Basics NAME: ____________________________________________ DATE: ____________ DIRECTIONS: Use information from the reading to answer each of the following questions in a complete sentence. 1. What is the front of a ship called? What do you call the back end of a ship? 2.
    [Show full text]
  • The Evolution of Decorative Work on English Men-Of-War from the 16
    THE EVOLUTION OF DECORATIVE WORK ON ENGLISH MEN-OF-WAR FROM THE 16th TO THE 19th CENTURIES A Thesis by ALISA MICHELE STEERE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF ARTS May 2005 Major Subject: Anthropology THE EVOLUTION OF DECORATIVE WORK ON ENGLISH MEN-OF-WAR FROM THE 16th TO THE 19th CENTURIES A Thesis by ALISA MICHELE STEERE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF ARTS Approved as to style and content by: C. Wayne Smith James M. Rosenheim (Chair of Committee) (Member) Luis Filipe Vieira de Castro David L. Carlson (Member) (Head of Department) May 2005 Major Subject: Anthropology iii ABSTRACT The Evolution of Decorative Work on English Men-of-War from the 16th to the 19th Centuries. (May 2005) Alisa Michele Steere, B.A., Texas A&M University Chair of Advisory Committee: Dr. C. Wayne Smith A mixture of shipbuilding, architecture, and art went into producing the wooden decorative work aboard ships of all nations from around the late 1500s until the advent of steam and the steel ship in the late 19th century. The leading humanists and artists in each country were called upon to draw up the iconographic plan for a ship’s ornamentation and to ensure that the work was done according to the ruler’s instructions. By looking through previous research, admiralty records, archaeological examples, and contemporary ship models, the progression of this maritime art form can be followed.
    [Show full text]
  • SAN FELIPE: Step by Step Pack 2 ™
    SAN FELIPE: Step by Step Pack 2 ™ Your parts Stern reinforcement Bulkheads The poop deck Bulkhead planks Planks Tools and equipment Knife File Pencil Wood glue Sandpaper a Using leftover 5 x 5-mm wooden strips, measure and cut beams for Frames 12 and 13. b To identify the bulkheads, mark them with letters A, B and C before removing them. A B C 49 SAN FELIPE: Step by Step ™ c Cut the planks into short lengths and glue them onto the bulkheads. d Cut off the overlapping bulkhead planking and mark the joints with a pencil. e Test-fit bulkhead A below the forecastle deck, aligning it with the outer edge of Frame 4. Trim with a A file if necessary to ease the fit, then glue into place. 50 SAN FELIPE: Step by Step ™ f Glue bulkhead B into place under the stern deck, resting up against the bow side of Frame 9. B g Glue bulkhead C up against Frame 12, making sure that the top of the bulkhead doesn’t extend above the beam. C h Apply glue to the stern reinforcement and place it in the slots of Frame 14, as shown in the photo. 51 SAN FELIPE: Step by Step ™ i Prepare the planks as before and glue them onto the poop deck. When dry, cut off any planking that extends past the edge of the deck. Then mark points to imitate the nails. j Once complete, glue the poop deck in place, resting on top of Frames 12-14. k The photo shows how the assembly should look at this stage.
    [Show full text]
  • Deck Runoff NOD, Phase I Uniform National Discharge Standards For
    This document is part of Appendix A, Deck Runoff: Nature of Discharge for the “Phase I Final Rule and Technical Development Document of Uniform National Discharge Standards (UNDS),” published in April 1999. The reference number is EPA-842-R-99-001. Phase I Final Rule and Technical Development Document of Uniform National Discharge Standards (UNDS) Appendix A Deck Runoff: Nature of Discharge April 1999 NATURE OF DISCHARGE REPORT Deck Runoff 1.0 INTRODUCTION The National Defense Authorization Act of 1996 amended Section 312 of the Federal Water Pollution Control Act (also known as the Clean Water Act (CWA)) to require that the Secretary of Defense and the Administrator of the Environmental Protection Agency (EPA) develop uniform national discharge standards (UNDS) for vessels of the Armed Forces for “...discharges, other than sewage, incidental to normal operation of a vessel of the Armed Forces, ...” [Section 312(n)(1)]. UNDS is being developed in three phases. The first phase (which this report supports), will determine which discharges will be required to be controlled by marine pollution control devices (MPCDs)—either equipment or management practices. The second phase will develop MPCD performance standards. The final phase will determine the design, construction, installation, and use of MPCDs. A nature of discharge (NOD) report has been prepared for each of the discharges that has been identified as a candidate for regulation under UNDS. The NOD reports were developed based on information obtained from the technical community within the Navy and other branches of the Armed Forces with vessels potentially subject to UNDS, from information available in existing technical reports and documentation, and, when required, from data obtained from discharge samples that were collected under the UNDS program.
    [Show full text]
  • Modifying a SKUD Mkl Gunwale and Reinforcing the Deck August 2010
    Modifying a SKUD Mkl gunwale and reinforcing the deck August 2010 Following is a suggested procedure to modify the gunwales of MkI SKUD 18s to more closely resemble the gunwale shape of the MkII boats. Please note this is not a recommended procedure and owners proceeding with the modification do so at their own risk. The early Mkl boats had very little support under the side decks and are very soft. A stiffener was introduced from about boat 019. For these early boats it would be a feasible proposition to modify their gunwales and fit deck beams at the same time. Of these boats, 001 to 009 are particularly light and will benefit most from modification. Boats 010 to 018 will also benefit. Access Sailing Systems has modified hull 033 but used a method (see diagram #2) which left the old flange attached and folded that back on and glassed over it to help maintain a straight and true sheerline. This method requires turning the boat over and is extra work. The method described below (see also diagram #1) is what we would employ if doing another boat. 1. Support the hull in its cradle. 2. Remove the cowling, bow fitting, spin sheet blocks, chain plate fittings. 3. Cut off flange from bow to stern and prop up hull aft if the topsides sag. 4. Mark where deck beams are to be fitted, sand to scuff bonding area. 5. Make deck beams, fit over length deck beams and bond in place with “plexus”. 6. When cured, trim off excess deck beam and trim for new sheerline.
    [Show full text]
  • Glossary of Terms (List Will Be Updated on a Continual Basis)
    Glossary of Terms (list will be updated on a continual basis) The words below are new to our Glossary of Terms. These words will be integrated into our overall list, which is below the new words. Chafing Gear – pads, mats, ropes and other materials tied around pieces of rigging to protect them from rubbing on spars and other parts of the rig Foxes – pieces of scrap line made by twisting together several strands or yarns Hand, Reef & Steer – traditional qualifications of an able seaman, to hand is to take in or furl a sail and to reef is to shorten sail and to steer is to take a turn at the helm Helmsman – the Sailor stationed at the ship’s helm (wheel) in charge of steering and keeping a straight course Marline – light, two-stranded line; often tarred and used for seizings Marlinespike – a tapered metal spike used to separate strands of rope, untie knots and as a handle for hauling away on seizings, whippings, etc. Merchant Service – the industry concerned with commercial shipping ventures (i.e., non-military) Rating – denotes a Sailor’s rank, responsibilities and rate of pay (i.e., able seaman, ordinary seaman, boy, etc.) Rigging – the lines and ropes that hold the masts, spars and sails Sail Making – the work of mending, replacing and sewing sails; the sail maker would often advise on how best to set and trim sails Seizing – method of binding two ropes or objects together involving wrapping them tightly with line Splice – weaving together to strands of separate ropes to form one longer rope Watches – division of labor aboard ship; the
    [Show full text]
  • May 14, 2002 PURPOSE: to Inform the Office of Apprenticeship Training, Employer
    BULLETIN 2002 ­ 06 Date: May 14, 2002 U.S. Department of Labor Distribution: Subject: New Apprenticeable Employment and Training Occupation ­ Able Seaman Administration National Office Office of Apprenticeship All Field Tech Code: 200 Training, Employer and Labor SD+RD+SAC+; Lab.Com Services (OATELS) Washington, D.C. 20210 Symbols: DSNIP/FG Action: Immediate PURPOSE: To inform the Office of Apprenticeship Training, Employer and Labor Services (OATELS), Bureau Apprenticeship and Training (BAT) Staff of a new apprenticeable occupation: Able Seaman RAIS Code: 1043 O*NET Code: 53­5011.01 Training Term: 2,760 hours Type of Training: Time ­ based BACKGROUND: OATELS’ Division of Standards and National Industry Promotion initiated the apprenticeability request for this occupation. The Able Seaman stands watch at bow or on wing of bridge to look for obstructions in the path of the vessel. He/She turns wheel on bridge or uses emergency steering apparatus to steer vessel as directed by the Mate. The Able Seaman overhauls lifeboats, and lifeboat gear and lowers or raises lifeboats with winch or falls. Other task includes painting and chipping rust on the deck or superstructure of the ship. A Qualified Able Seaman must hold a certificate issued by U.S. Coast Guard. When working aboard vessels carrying liquid cargoes, the Able Seaman must hold a tanker operator’s certificate. An Able Seaman may stow or remove cargo from ship’s hold. Assessment Sheets for Navigational Watch, a suggested work process schedule and related instruction outline are attached for your review. Able Seaman will be added to the list of occupations recognized as apprenticeable by the Office of Apprenticeship Training, Employer and Labor Services when the list is reissued.
    [Show full text]
  • The Boat in the Storm an Interactive Story Based on Mark 4:35–41
    Resources for religious education classes Stories of Hope: The Miracles of Jesus The Boat in the Storm An interactive story based on Mark 4:35–41 Materials required: Masking tape; stool; cushion Preparation: Mark the outline of the boat on the floor with tape according to the diagram below. Place the stool and the cushion as indicated. One person should act as narrator. Depending on the size of the class there are two ways of allocating acting roles to the pupils: 1) Jesus, Peter and four other disciples The four disciples act as the oarsmen in the narrative and sit in the positions indicated on the diagram; all other pupils form the outline of the boat. 2) as above but with 7 additional disciples in the boat as indicated on the diagram. The pupils forming the boat should sit or kneel on the outline marked on the floor and either interlock their arms, put their arms around their neighbours’ shoulders, or hold hands so that there are no gaps between them. At the beginning of the story, the 5 or 12 disciples and Jesus stand outside the boat on the ‘shore’. The pupils forming the boat enact the movements marked in italics in the story, and the disciples and Jesus act out the underlined movements appropriate for each character. Diagram: Story: It was evening and the sun was already low on the horizon. The Lake of Galilee was calm with only a few waves making their way lazily to the shore and the surface of the water gleaming with hues of gold and orange.
    [Show full text]
  • 2882 Deck Rigging
    dskjlaksdjklasjlkasjd NRS Deck Rigging Kit Instructions This deck rigging kit contains the necessary hardware to add bungee lacing to both the bow and stern decks of your kayak. Once installed, this lacing can be used to secure kayak accessories such as bilge pumps, gloves, water bottles, paddle floats, and spare paddles within easy reach. The bungee lacing can be arranged in many ways. Touring kayaks typically have more open deck space in front of the cockpit than behind it. Most bow rigging arrangements have three eyelets on either side, and sometimes an additional eyelet centered at the boat end of the rigging to keep gear from sliding forward. The stern rigging arrangement can either have two or three eyelets on either side, depending on available space, with an optional eyelet centered at the stern end. Kit Includes: • 14 nylon eyelets • 28 stainless bolts • 28 rubber-coated well nuts • 24’ of ¼” bungee cord Additional Items you’ll need: • Pen, Pencil, or Marker • Electric Drill & 3/16” d rill bi t • Phillips-head screwdriver • Aquaseal or silicone sealant (optional) Directions: 1. Determine desired position and configuration for the deck rigging. 2. Place the eyelets in position on the deck and mark each bolt hole location. (Check to ensure the hole placement won’t interfere with existing internal or external kayak hardware.) 3. With 3/16” drill bit, pre-drill each of the bolt holes . 4. Using the included stainless steel bolts, position each of the eyelets on the kayak deck. 5. For extra waterproof security, place a bead of Aquaseal or marine-grade silicone sealant between the eyelet and the hull.
    [Show full text]