Matrix Assisted Laser Desorption/Ionization Orthogonal Acceleration Time-Of-Flight Mass Spectrometry: Development and Characterization of a New Instrument

Total Page:16

File Type:pdf, Size:1020Kb

Matrix Assisted Laser Desorption/Ionization Orthogonal Acceleration Time-Of-Flight Mass Spectrometry: Development and Characterization of a New Instrument Matrix Assisted Laser Desorption/Ionization Orthogonal Acceleration Time-of-Flight Mass Spectrometry: Development and Characterization of a New Instrument By David Sean Selby A candidate for the degree of Doctor of Philosophy Submitted to the University of New South Wales December 2002 Certificate of Originality I hereby declare that this submission is my own work and to the best of my knowledge it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgment is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged. David Selby Abstract The performance of a linear matrix assisted laser desorption/ionization mass spectrometer (MALDI-oa-TOFMS) was improved with more reproducible sample preparation methods, a higher rate digitiser for integrating signals and customisable computer control, data acquisition and analysis in the LabVIEW programming environment. This resulted in a ~20% improvement in resolution (up to 4,400) and enabled measurement of desorption velocities of 1,000 - 1,800 ms-1 for analytes with m/z 615 – 1,350 Da, with matrix ion velocities being 4,000 – 4,800 ms–1. Detector limitations and restrictions on source axis energy (and hence velocity) required for the analysis of ions prevented detection of other species with this instrument. A 20 kV reflecting geometry MALDI-oa-TOFMS was constructed to overcome these limitations and extend the mass range. This mass spectrometer was able to analyse ions desorbed with a wide range of energies (32 – 197 eV). The resolution was found to be 8,000 -10,000. Best mass accuracy was 15-80 ppm (internal standards ). External calibration gave larger mass errors, mostly due to timing jitter, but the mass axis was stable for >2 weeks. Mass accuracy was independent of the analyte and matrix used. Ions with m/z of ~10,000 - 20,000 Da were observable with the use of a pulsed lens in the target region. This lens increased signal approximately 20 times, but degraded resolution. The detection limit of the instrument (sample consumed) was estimated to vary from 10 – 90 fmol, by extrapolation, with more moles required at higher m/z. The microsphere plate (MSP) electron multiplier used in the reflecting instrument was found to have a temporal response of < 1 ns FWHM, but with a low secondary electron conversion efficiency, making it unsuitable for high m/z species. Experiments were also performed with a novel rectangular mesh grid, which (in correct orientation) provided similar resolution to conventional square mesh grids, but with significantly improved transmission and hence sensitivity. i Acknowledgments Before commencing this project I knew little about the practicalities of automated instrument control, design and characterization, while by its completion I had learned enough to become an important member of a team. I would like to thank a number of individuals who contributed to this process. Firstly I would like to thank the two scientists who made this project possible: my supervisor, Associate Professor Michael Guilhaus, who in addition to his thorough supervision often made one feel more like a colleague than a student, for which I especially thank him; my co-supervisor, Dr Victor Mlynski, who was responsible for modifying the linear oa-TOF instrument into MALDI mode and largely responsible for the physical design and construction of the reflecting geometry MALDI-oa-TOF instrument. Secondly I would like to thank others who made a significant contribution to the project: Paul Hallohan and Mitchell Davis from the School of Chemical ScienceÕs Mechanical Workshop, who fabricated parts to our exacting standards; John Morgan of the School of Chemical ScienceÕs Electronics Workshop, who provided assistance on innumerable occasions concerning computers and electronics; Dr Len Cherkson of the School of Chemical ScienceÕs Electronics Workshop, who designed our push out pulse generator; Dr Joseph Brophy, operator of the School of ChemistryÕs Mass Spectrometry Unit, who provided samples and advice; Dr Keith Fischer and Rui Zang, who provided samples; and Associate Professor Mark Duncan formerly of the Ray Williams Biomedical Mass Spectrometry Facility and Martin Bucknall and Ann Poljack of the Ray Williams Biomedical Mass Spectrometry Facility, who provided advice, samples and access to a commercial MALDI instrument. Thirdly I would like to thank those who helped to make the stay enjoyable: My fellow students in the Analytical Mass Spectrometry group, Patricia Calderon, Brett Ireland, Mark Lewin (who was also an excellent proof reader), Nirand Pongpun and Nageeb Sousou, and Dr Robert Goldsack of Tim-Tam fame. Finally (and perhaps most importantly) I would like to thank my parents, Janice Selby and Luc Szulevicz, without whose upbringing I would not have turned out the way I did or have had the persistence to complete this thesis. 179 Contents Chapter 1: Introduction 1.1 Overview of Thesis 1 1.2 Time-of-Flight Mass Spectrometry 2 1.2.1 Introduction to Mass Spectrometry 2 1.2.2 The Time-of-Flight Analyser 3 1.2.3 Resolution and TOF Mass Analyser Performance 5 1.2.4 Other Measures of TOFMS Performance 6 1.2.5 Improving Resolution: Ion Optics, Time-Lag Focusing and the Ion 8 Mirror 1.2.6 Coupling with Continuous Ionization Sources 10 1.3 Orthogonal Acceleration Time-of-Flight Mass Spectrometry 11 1.3.1 Introduction to Orthogonal Acceleration Time-of-Flight Mass 11 Spectrometry 1.3.2 Principles Specific to oa-TOFMS 12 1.3.3 Types of oa-TOFMS Instruments and Applications 15 1.4 Matrix Assisted Laser Desorption/Ionization 18 1.4.1 The Development of MALDI 18 1.4.2 Theory of Desorption/Ionization 20 1.4.3 Performance Limiting Factors: Initial Kinetic Energy, Detector 20 Efficiency and Reproducibility 1.4.4 Improving TOFMS Performance with Sample Preparation 22 1.4.5 Improving Performance with Instrumentation: Ion Mirrors and Delayed 23 Extraction ii 1.4.6 Range of Applications: Types of Analyte and Obtaining Structural 24 Information 1.5 MALDI-oa-TOF Combination 26 1.5.1 MALDI-oa-TOF Instrumentation and Applications 26 1.5.2 MALDI with Hybrid Sector/oa-TOF Analysers 27 1.5.3 Why Combine MALDI with non-tandem oa-TOF Analysis? 29 1.6 Computer Simulations of oa-TOFMS 31 1.6.1 The Importance of Simulations in the Design and Characterization of 31 oa-TOF Instruments 1.6.2 I-Opt 31 1.6.3 SimTOF 33 1.7 Aims 35 Chapter 2: Instrumentation and General Methods 2.1 Overview of Instruments and Methods 36 2.2 Prototype Linear MALDI-oa-TOF 36 2.3 MALDI-oa-TOF with an Ion Mirror 37 2.4 A Commercial Instrument: The Voyager 39 2.5 Sample Preparation 39 2.5.1 Matrices, Analytes and Solvents 40 2.5.2 Cleaning of Sample Slides 40 2.5.3 Dried Droplet Sample Preparation 40 2.5.4 Electrospray Sample Deposition 41 iii Chapter 3: Computerised Instrument Control and Analysis 3.1 A Brief Introduction to LabVIEW and Virtual Instruments 43 3.2 Computer Hardware 44 3.3 Instrument Control 45 3.3.1 Computer Controlled Laser Triggering and oa Pulse 45 3.3.2 Control and Monitoring of Power Supplies 46 3.4 Data Acquisition and Analysis 48 3.4.1 Data Acquisition 48 3.4.2 Analysis 50 3.5 Other Programs and Macros 51 Chapter 4: Improving Performance of the Linear MALDI-oa-TOF 4.1 Importance of Improving Performance 53 4.2 Optimising Dried Droplet Sample Preparation 53 4.2.1 Dried Droplet Sample Preparation Methods 53 4.2.2 Appearance of Target and Spectral Quality for Dried Droplet Samples 54 4.3 Electrospray Deposition Sample Preparation 55 4.3.1 Electrospray Deposition Procedures 55 4.3.2 Appearance of Target and Quality of Spectra Obtained with 56 Electrospray Deposition 4.4 Using a Faster Digitiser and the Effects of Laser Power 58 4.4.1 Procedures Used in Assessing Effects of Digitiser and Laser Power 58 4.4.2 Measured Effect of Digitiser Rate 59 4.4.3 Effect of Laser Power 60 4.5 Summary of Early Experiments and Sample Preparation 61 iv Chapter 5: Fundamental Studies – Desorption Velocity/Energy Experiments on the Linear Instrument 5.1 Importance of Desorption Velocity/Energy 62 5.2 Velocity Distribution in the Desorption Axis 63 5.2.1 Introduction: Published MALDI Desorption Velocities and Relevance to 63 oa-TOF Instrument Geometry 5.2.2 Experimental: Methods used to Measure Source Axis Velocity 65 Distribution 5.2.3 Results and Discussion: Source Axis Velocity and its Effect on 66 Instrument Performance 5.3 Correlation of Velocity and Position in the TOF Axis 67 5.3.1 Relevance of Correlation or Lack of Correlation of Position and 67 Velocity to Instrument Performance 5.3.2 Experiments and Simulations used to Determine the Degree of 68 Correlation 5.3.3 Comparison of Experimental Results with Simulations 70 5.4 Extension to Other Samples: Higher m/z and Matrix Effects 71 5.4.1 Methods of Sample Preparation and Analysis 72 5.4.2 Analysis of High m/z and HCCA Matrix Results 73 5.4.3 Conclusions – Limits of the Instrument 75 Chapter 6:Testing and Improving MALDI-oa-TOF with an Ion Mirror 6.1 Introduction 76 6.2 Initial Experiments with Fullerene Standard, Gramicidin S and Insulin in 77 DHB Matrix
Recommended publications
  • About Magnetic Sector Mass Spec- Trometers
    About Magnetic Sector Mass Spec- trometers Double-focusing magnetic sector mass spectrometers provide high sensitivity, high resolution, and a reproducibility that is unmatched in any other kind of mass analyzer. A double-focusing magnetic sector mass spectrometer has at least four components: . An ion source in which ions are formed and accelerated to energies of up to as high as 10 kilovolts. A magnetic sector with a magnetic field that exerts a force perpendicular to the ion mo- tion to deflect ions according to their momentum. An electric sector with an electric field that exerts a force perpendicular to the ion mo- tion to deflect ions according to their kinetic energy. A detector that produces a response that is proportional to the number of ions. Slits are placed in the ion path to define the positions and energies of the ions that strike the detector. In general, decreasing the slit widths increases the mass resolution but re- duces the number of ions that are detected. Additional electrostatic lenses are com- monly used to shape and deflect the ion beam to optimize peak shape and maximize ion beam transmission from the source to the detector. JEOL uses octapole and quadrupole focusing lenses to simplify the ion optical design. Collision chambers in the first field-free region (just after the ion source) and second field-free region (just after the magnet and before the electric sector) are used to induce ions to fragment in collision-induced-dissociation experiments (MS/MS). The term "double-focusing" refers to the fact that the combination of electric and mag- netic sectors focuses ions according to both direction and energy to provide higher reso- lution than can be obtained with a single magnetic sector.
    [Show full text]
  • Development of a Method for Xenon Determination in the Microstructure of High Burn-Up Nuclear Fuel
    Diss. ETH No. 17527 Development of a Method for Xenon Determination in the Microstructure of High Burn-up Nuclear Fuel A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH for the degree of Dr. sc. ETH presented by MATTHIAS ISTVAN HORVATH Dipl. Phys. ETH born 24 August 1974 citizen of Châtillon (FR), Männedorf (ZH) - Switzerland citizen of Hungary accepted on the recommendation of Prof. Dr. D. Günther, examiner Prof. Dr. A. Wokaun, co-examiner Prof. Dr. Ch. Heinrich, co-examiner Dr. Ch. Hellwig, co-examiner 2008 II III Acknowledgements As many major work, this thesis could not have been performed and written, without the help and support of numerous people. This is especially true since this work was carried out at PSI and some experiments also at ETH combining different fields of research. I would like to send a special thank to my thesis advisor, Prof. Dr. Detlef Günther, and my supervisor Dr. Christian Hellwig for their support of my work at ETH and PSI. I am grateful to Dr. Marcel Guillong, with whom I got into the "world of LA-ICP-MS", and who’s experience was a great benefit. I would also to thank the members of the groups of Dr. Ines Günther-Leopold (Isotope and Element Analysis), Dr. Didier Gavillet (Surface and Solid State Materials), Daniel Kuster (Hot Cell Experiments), Dr. Johannes Bertsch (Core Safety Material Behavior) at PSI, and the trace element group of Prof. Dr. Detlef Günther at ETH. Without their support and the possibility using their infrastructure, this thesis could not be realized.
    [Show full text]
  • Structural Amd Analytical Studies by Tandem Mass Spectrometry
    STRUCTURAL AMD ANALYTICAL STUDIES BY TANDEM MASS SPECTROMETRY A Thesis submitted by TRACEY MADDEN for the degree of Doctor of Philosophy in the University of London Faculty of Science Department of Pharmaceutical Chemistry The School of Pharmacy University of London ProQuest Number: U556261 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U556261 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 CONTENTS CHAPTER 1: INTRODUCTION 1.1 Tandem Mass Spectrometry ................... 1 REFERENCES ................................. 4 CHAPTER 2: THEORY 2.1 Mass Spectrometry ......................... 5 2.2 Formation of the Molecular Ion ............ 8 2.2.1 Vertical and Adiabatic Ionisation Potentials ......................... 9 2.2.2 Ionisation Efficiency Curve .......... 9 2.2.3 Appearance Energy ................... 10 2.3 Quasi Equilibrium Theory ................. 14 2.4 Fragmentation ............................ 16 2.4.1 Stevenson's Rule .................... 17 2.5 Rearrangement ............................ 19 2.6 Ion Stability ............................ 20 2.6.1 Stable Ions ......................... 20 2.6.2 Unstable Ions ....................... 21 2.6.3 Metastable Ions ..................... 21 2.6.3.1 Kinetic Energy Release ......... 22 2.6.3.2 Metastable Peak Shapes .......
    [Show full text]
  • Copyrighted Material
    Contents Preface................................................................................................... xix Acknowledgments .............................................................................. xxiii Chapter 1 Introduction......................................................................... 1 I. Introduction ..........................................................................................................3 1. The Tools and Data of Mass Spectrometry...............................................4 2. The Concept of Mass Spectrometry..........................................................4 II. History ...................................................................................................................9 III. Some Important Terminology Used In Mass Spectrometry...........................22 1. Introduction..............................................................................................22 2. Ions..........................................................................................................22 3. Peaks ......................................................................................................23 4. Resolution and Resolving Power.............................................................25 IV. Applications........................................................................................................28 1. Example 1-1: Interpretation of Fragmentation Patterns (Mass Spectra) to Distinguish Positional Isomers .........................................................................29
    [Show full text]
  • Lecture 15 Spring 2005
    Geol. 655 Isotope Geochemistry Lecture 15 Spring 2005 ANALYTICAL METHODOLOGY THE MASS SPECTROMETER In most cases, isotopic abundances are measured by mass spectrometry. The exceptions are, as we have seen, short-lived radioactive isotopes, the abundances of which are determined by measuring their decay rate, and in fission track dating, where the abundance of 238U is measured, in effect, by in- ducing fission. (Another exception is spectroscopic measurement of isotope ratios in stars. Frequencies of electromagnetic emissions of the lightest elements are sufficiently dependent on nuclear mass that emissions from different isotopes can be resolved. We will discuss this when we consider stable iso- topes.) A mass spectrometer is simply a device that can separate atoms or molecules according to their mass. There are a number of different kinds of mass spectrometers operating on different principles. Undoubtedly the vast majority of mass spectrometers are used by chemists for qualitative or quantita- tive analysis of organic compounds. We will focus exclusively, however, on mass spectrometers used for isotope ratio determination. Most isotope ratio mass spectrometers are of a similar design, the magnetic-sector, or Nier mass spectrometer*, a schematic of which is shown in Figure 15.1. It consists of three essential parts: an ion source, a mass analyzer and a detector. There are, however, several variations on the design of the Nier mass spectrometer. Some of these modifications relate to the spe- cific task of the instrument; others are evolutionary improvements. We will first consider the Nier mass spectrometer, and then briefly consider a few other kinds of mass spectrometers.
    [Show full text]
  • Modern Mass Spectrometry
    Modern Mass Spectrometry MacMillan Group Meeting 2005 Sandra Lee Key References: E. Uggerud, S. Petrie, D. K. Bohme, F. Turecek, D. Schröder, H. Schwarz, D. Plattner, T. Wyttenbach, M. T. Bowers, P. B. Armentrout, S. A. Truger, T. Junker, G. Suizdak, Mark Brönstrup. Topics in Current Chemistry: Modern Mass Spectroscopy, pp. 1-302, 225. Springer-Verlag, Berlin, 2003. Current Topics in Organic Chemistry 2003, 15, 1503-1624 1 The Basics of Mass Spectroscopy ! Purpose Mass spectrometers use the difference in mass-to-charge ratio (m/z) of ionized atoms or molecules to separate them. Therefore, mass spectroscopy allows quantitation of atoms or molecules and provides structural information by the identification of distinctive fragmentation patterns. The general operation of a mass spectrometer is: "1. " create gas-phase ions "2. " separate the ions in space or time based on their mass-to-charge ratio "3. " measure the quantity of ions of each mass-to-charge ratio Ionization sources ! Instrumentation Chemical Ionisation (CI) Atmospheric Pressure CI!(APCI) Electron Impact!(EI) Electrospray Ionization!(ESI) SORTING DETECTION IONIZATION OF IONS OF IONS Fast Atom Bombardment (FAB) Field Desorption/Field Ionisation (FD/FI) Matrix Assisted Laser Desorption gaseous mass ion Ionisation!(MALDI) ion source analyzer transducer Thermospray Ionisation (TI) Analyzers quadrupoles vacuum signal Time-of-Flight (TOF) pump processor magnetic sectors 10-5– 10-8 torr Fourier transform and quadrupole ion traps inlet Detectors mass electron multiplier spectrum Faraday cup Ionization Sources: Classical Methods ! Electron Impact Ionization A beam of electrons passes through a gas-phase sample and collides with neutral analyte molcules (M) to produce a positively charged ion or a fragment ion.
    [Show full text]
  • An Introduction to Mass Spectrometry
    An Introduction to Mass Spectrometry by Scott E. Van Bramer Widener University Department of Chemistry One University Place Chester, PA 19013 [email protected] http://science.widener.edu/~svanbram revised: September 2, 1998 © Copyright 1997 TABLE OF CONTENTS INTRODUCTION ........................................................... 4 SAMPLE INTRODUCTION ....................................................5 Direct Vapor Inlet .......................................................5 Gas Chromatography.....................................................5 Liquid Chromatography...................................................6 Direct Insertion Probe ....................................................6 Direct Ionization of Sample ................................................6 IONIZATION TECHNIQUES...................................................6 Electron Ionization .......................................................7 Chemical Ionization ..................................................... 9 Fast Atom Bombardment and Secondary Ion Mass Spectrometry .................10 Atmospheric Pressure Ionization and Electrospray Ionization ....................11 Matrix Assisted Laser Desorption/Ionization ................................ 13 Other Ionization Methods ................................................13 Self-Test #1 ...........................................................14 MASS ANALYZERS .........................................................14 Quadrupole ............................................................15
    [Show full text]
  • C7895 Mass Spectrometry of Biomolecules Schedule of Lectures
    C7895 Mass Spectrometry of Biomolecules Schedule of lectures For schedule, please see a separate file with the course outline. Jan Preisler Consulting The last lecture. Please contact me in advance to make an appointment. Chemistry Dept. 312A14, tel.: 54949 6629, [email protected] This material is just an outline; students are advised to print this outline and write down notes durin the lectures. The material will be updated during The course is focused on mass spectrometry of biomolecules, i.e. ionization the semester. techniques MALDI and ESI, modern mass analyzers, such as time-of-flight MS or ion traps and bioanalytical applications. However, the course covers much broader area, including inorganic ionization techniques, virtually all Supporting study material: types of mass analyzers and hardware in mass spectrometry. • J. Gross, Mass Spectrometry, 3rd ed. Springer-Verlag, 2017 • J. Greaves, J. Roboz: Mass Spectrometry for the Novice, CRC Press, 2013 • Edmond de Hoffmann, Vincent Stroobant: Mass Spectrometry: Principles and Applications, 3rd Edition, John Wiley & Sons, 2007 Mass spectrometry of biomolecules 2018 1 Mass spectrometry of biomolecules 2018 2 1 2 Content I. Introduction 1 II. Ionization methods and sample introduction III. Mass analyzers IV. Biological applications of MS V. Example problems Introduction to Mass spectrometry. Brief History of MS. A Survey of Methods and Instrumentation. Basic Concepts in MS: Resolution, Sensitivity. Isotope patterns of organic molecules. Ionization Techniques and Sample Introductin. Electron Impact Mass spectrometry of biomolecules 2018 3 Ionization (EI). Chemical Ionization (CI) 3 4 I. Introduction Study Material • Information sources about mass spectrometry Lecture notes • Brief history of mass spectrometry, a survey of methods and Advice: please take notes, but do not copy the slides; the English slides will instrumentation be provided at the end of the semester.
    [Show full text]
  • Article Is Available Ca
    Geochronology, 2, 343–354, 2020 https://doi.org/10.5194/gchron-2-343-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Expanding the limits of laser-ablation U–Pb calcite geochronology Andrew R. C. Kylander-Clark Department of Earth Science, University of California, Santa Barbara, CA 93106, USA Correspondence: Andrew R. C. Kylander-Clark ([email protected]) Received: 30 May 2020 – Discussion started: 30 June 2020 Accepted: 20 September 2020 – Published: 23 November 2020 Abstract. U–Pb geochronology of calcite by laser-ablation 1 Introduction inductively coupled plasma mass spectrometry (LA-ICPMS) is an emerging field with potential to solve a vast array Calcite U–Pb geochronology by laser-ablation inductively of geologic problems. Because of low levels of U and Pb, coupled plasma mass spectrometry (LA-ICPMS) is a rela- measurement by more sensitive instruments, such as those tively new technique with untapped potential for solving nu- with multiple collectors (MCs), is advantageous. However, merous geochronologic problems from the timing of faulting whereas measurement of traditional geochronometers (e.g., (e.g., Roberts and Walker, 2016; Nuriel et al., 2017; Good- zircon) by MC-ICPMS has been limited by detection of the fellow et al., 2017) and the age of ore deposits (Burisch daughter isotope, U–Pb dating of calcite can be limited by et al., 2017) to paleoclimate, sedimentation, and diagene- detection of the parent isotope if measured on a Faraday sis (e.g., Mangenot et al., 2018; Rasbury et al., 1997; Hoff detector. The Nu P3D MC-ICPMS employs a new detec- et al., 1995; Winter and Johnson, 1995; Wang et al., 1998; tor array to measure all isotopes of interest on Daly detec- Rasbury et al., 1998).
    [Show full text]
  • Compositional Analysis of Complex Organic Mixtures by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Zhigang Wu
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2004 Compositional Analysis of Complex Organic Mixtures by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Zhigang Wu Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES Compositional Analysis of Complex Organic Mixtures by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry By Zhigang Wu A Dissertation submitted to the Department of Chemistry and Biochemistry in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Degree Awarded: Spring Semester, 2004 Copyright2004 Zhigang Wu All Rights Reserved The members of the Committee approve the Dissertation of Zhigang Wu Defended on April 7, 2004. Alan G. Marshall Professor Directing Dissertation William M. Landing Outside Committee Member William T. Cooper Committee Member Timothy A. Cross Committee Member Ryan P. Rodgers Committee Member The Office of Graduate Studies has verified and approved the above named committee members. ii To my parents, Xiaohua Wu and Shiping Cao; iii ACKNOWLEDGMENTS First, I need to thank Dr. Alan G. Marshall, my academic graduate advisor and supporter. His deep and broad academic knowledge and great personality are invaluable throughout my graduate career. His wise and forecasting advices has helped me directly cut to the “point” and inspired me to discover more underneath. I also wish to acknowledge Dr. Ryan P. Rodgers, my supervisor, for his expertise, direction, and support. His initiation and development in petroleum applications have led me to a broader and better understanding of this area.
    [Show full text]
  • 82756031.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Do Charge-Remote Fragmentations Occur under Matrix-Assisted Laser Desorption Ionization Post-Source Decompositions and Matrix-Assisted Laser Desorption Ionization Collisionally Activated Decompositions? M. Rosario M. Domingues, M. Grac¸a O. S.-Marques, Carla A. M. Vale, M. Grac¸a Neves, J. A. S. Cavaleiro, and A. J. Ferrer-Correia Department of Chemistry, University of Aveiro, Aveiro, Portugal Olga V. Nemirovskiy and Michael L. Gross Department of Chemistry, Washington University, St Louis, Missouri, USA The precursor ions of tetraphenylporphyrins that are substituted with fatty acids can be introduced into the gas phase by matrix-assisted laser desorption ionization (MALDI) and undergo post-source and collisionally activated decompositions (CAD) in a time-of-flight mass spectrometer. The goal of the research is to obtain a better understanding of post-source decompositions (PSD); specifically, we asked the question of whether ions undergoing PSD have sufficient energy to give charge-remote fragmentations along an alkyl chain. We chose the porphyrin macrocycle because we expected it to act as an inert “support,” allowing the molecule to be desorbed by MALDI and to be amenable to charge-remote fragmentation. MALDI-PSD and MALDI-CAD spectra are similar to high-energy CAD spectra and consid- erably more informative than low-energy CAD spectra, showing that charge-remote fragmen- tations of the fatty acid moieties do occur upon MALDI-PSD and MALDI-CAD. (J Am Soc Mass Spectrom 1999, 10, 217–223) © 1999 American Society for Mass Spectrometry ost-source decompositions (PSD) of ions pro- ever, observed different fragmentation pathways in duced by matrix-assisted laser desorption (MALDI) MALDI-PSD spectra when compared with those ob- Phas become a valuable structural tool for peptides served in LE-CAD and HE-CAD spectra.
    [Show full text]
  • Chemical Analysis in the Titan Environment
    • Magnetic Sector Mass Spectrometer • Quadrupole mass spectrometer • Quadrupole Ion Traps • Orthogonal Sampling Time of Flight Mass Spectrometer • Fourier Transform MS: Orbitrap Mass Spectrometer • Simulated Titan Chemistry (discharge and VUV) • Spectroscopic characteriza;on • Separa;on and analysis • Structural chemistry • Reac;vity (introduc;on of oxygen) Gas inlet Discharge Source UV Photolysis (ALS) Nier’s ‘mass spectrometer in a briefcase’, constructed in the mid-1960s, was used to convince NASA officials that it was possible to include such instrumentation on spacecraft. Miniature focal plane mass spectrometer with 1000-pixel modified-CCD detector array for direct ion measurement Mahadeva P. Sinha and Mark Wadsworth Rev. Sci. Instrum. 76, (2005); doi:10.1063/1.1840291 Schema'c of the focal plane mass spectrometer of Ma2auch–Herzog geometry Table I. MMS features and performance MMS Mass 395 g (as shown in the photograph) Dimensions 10 cm × 5 cm × 5 cm Ion source Thermionic Mass range 2–250 ResoluQon 330 (50% valley definiQon) SensiQvity 2 μA/Torr Photograph of the miniature mass spectrometer The spectrum measured by the transla'on of a single detector element along the focal plane. The peaks correspond to the residual gases in the vacuum chamber and the doubly charged ions arising from krypton gas introduced into the chamber. Rev. Sci. Instrum. 76, 025103 (2005) © 2005 American InsQtute of Physics A quadrupole mass filter consists of four parallel metal rods. Two opposite rods have an applied potenQal of (U+Vcos(wt)) and the other two rods have a potenQal of -(U+Vcos (wt)), where U is a dc voltage and Vcos(wt) is an ac voltage.
    [Show full text]