Electron Transfer Dissociation and Collision-Induced Dissociation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mass Spectrometer Detectors
Mass Spectrometer Detectors www.sge.com Ion Detectors for Virtually all Mass Spectrometry Applications Electron multipliers are used in a wide range of applications to Figure 2. Secondary Electron Emission detect and measure small signals of ions, electrons or photons. One of the main applications for an electron multiplier is for 6 the detection of ions in a mass spectrometer. ACTIVE FILM Multipliers manufactured by ETP ( a division of SGE Group 5 of Companies) are the result of 15 years experience in 4 supplying high performance electron multipliers for use in mass spectrometry applications. The performance of this 3 unique type of ion detector has seen it become widely used in almost all fields of mass spectrometry (including ICP-MS, 2 GC-MS, LC-MS, TOF and SIMS). 1 An electron multiplier is used to detect the presence of ion Secondary Electron Emissions signals emerging from the mass analyser of a mass 0 spectrometer. It is essentially the "eyes" of the instrument (see 0 100 200 300 400 500 Figure 1). The task of the electron multiplier is to detect Incident Electron Energy (eV) every ion of the selected mass passed by the mass filter. How The average number of secondary electrons emitted from the efficiently the electron multiplier carries out this task surface of an ETP electron multiplier plotted against the represents a potentially limiting factor on the overall system energy of the incident primary electron. sensitivity. Consequently the performance of the electron multiplier can have a major influence on the overall (often referred to as a channel electron multiplier or CEM). -
Development of a Method for Xenon Determination in the Microstructure of High Burn-Up Nuclear Fuel
Diss. ETH No. 17527 Development of a Method for Xenon Determination in the Microstructure of High Burn-up Nuclear Fuel A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH for the degree of Dr. sc. ETH presented by MATTHIAS ISTVAN HORVATH Dipl. Phys. ETH born 24 August 1974 citizen of Châtillon (FR), Männedorf (ZH) - Switzerland citizen of Hungary accepted on the recommendation of Prof. Dr. D. Günther, examiner Prof. Dr. A. Wokaun, co-examiner Prof. Dr. Ch. Heinrich, co-examiner Dr. Ch. Hellwig, co-examiner 2008 II III Acknowledgements As many major work, this thesis could not have been performed and written, without the help and support of numerous people. This is especially true since this work was carried out at PSI and some experiments also at ETH combining different fields of research. I would like to send a special thank to my thesis advisor, Prof. Dr. Detlef Günther, and my supervisor Dr. Christian Hellwig for their support of my work at ETH and PSI. I am grateful to Dr. Marcel Guillong, with whom I got into the "world of LA-ICP-MS", and who’s experience was a great benefit. I would also to thank the members of the groups of Dr. Ines Günther-Leopold (Isotope and Element Analysis), Dr. Didier Gavillet (Surface and Solid State Materials), Daniel Kuster (Hot Cell Experiments), Dr. Johannes Bertsch (Core Safety Material Behavior) at PSI, and the trace element group of Prof. Dr. Detlef Günther at ETH. Without their support and the possibility using their infrastructure, this thesis could not be realized. -
Microchannel Plate Detectors
Reprinted from Nuclear Instruments and Methods, Vol. 162, 1979, pages 587 to 601 MICROCHANNEL PLATE DETECTORS JOSEPH LADISLAS WIZA 1. Introduction typical. Originally developed as an amplification element for A microchannel plate (MCP) is an array of 104-107 image intensification devices, MCPs have direct sensitivity miniature electron multipliers oriented parallel to one to charged particles and energetic photons which has another (fig. 1); typical channel diameters are in the range extended their usefulness to such diverse fields as X-ray1) 10-100 µm and have length to diameter ratios (α) between and E.U.V.2) astronomy, e-beam fusion studies3) and of 40 and 100. Channel axes are typically normal to, or biased course, nuclear science, where to date most applications at a small angle (~8°) to the MCP input surface. The have capitalized on the superior MCP time resolution channel matrix is usually fabricated from a lead glass, characteristics4-6). treated in such a way as to optimize the secondary emission The MCP is the result of a fortuitous convergence of characteristics of each channel and to render the channel technologies. The continuous dynode electron multiplier walls semiconducting so as to allow charge replenishment was suggested by Farnsworth7) in 1930. Actual from an external voltage source. Thus each channel can be implementation, however, was delayed until the 1960s considered to be a continuous dynode structure which acts when experimental work by Oschepkov et al.8) from the as its own dynode resistor chain. Parallel electrical contact USSR, Goodrich and Wiley9) at the Bendix Research to each channel is provided by the deposition of a metallic Laboratories in the USA, and Adams and Manley10-11) at coating, usually Nichrome or Inconel, on the front and rear the Mullard Research Laboratories in the U.K. -
Structural Amd Analytical Studies by Tandem Mass Spectrometry
STRUCTURAL AMD ANALYTICAL STUDIES BY TANDEM MASS SPECTROMETRY A Thesis submitted by TRACEY MADDEN for the degree of Doctor of Philosophy in the University of London Faculty of Science Department of Pharmaceutical Chemistry The School of Pharmacy University of London ProQuest Number: U556261 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U556261 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 CONTENTS CHAPTER 1: INTRODUCTION 1.1 Tandem Mass Spectrometry ................... 1 REFERENCES ................................. 4 CHAPTER 2: THEORY 2.1 Mass Spectrometry ......................... 5 2.2 Formation of the Molecular Ion ............ 8 2.2.1 Vertical and Adiabatic Ionisation Potentials ......................... 9 2.2.2 Ionisation Efficiency Curve .......... 9 2.2.3 Appearance Energy ................... 10 2.3 Quasi Equilibrium Theory ................. 14 2.4 Fragmentation ............................ 16 2.4.1 Stevenson's Rule .................... 17 2.5 Rearrangement ............................ 19 2.6 Ion Stability ............................ 20 2.6.1 Stable Ions ......................... 20 2.6.2 Unstable Ions ....................... 21 2.6.3 Metastable Ions ..................... 21 2.6.3.1 Kinetic Energy Release ......... 22 2.6.3.2 Metastable Peak Shapes ....... -
Copyrighted Material
Contents Preface................................................................................................... xix Acknowledgments .............................................................................. xxiii Chapter 1 Introduction......................................................................... 1 I. Introduction ..........................................................................................................3 1. The Tools and Data of Mass Spectrometry...............................................4 2. The Concept of Mass Spectrometry..........................................................4 II. History ...................................................................................................................9 III. Some Important Terminology Used In Mass Spectrometry...........................22 1. Introduction..............................................................................................22 2. Ions..........................................................................................................22 3. Peaks ......................................................................................................23 4. Resolution and Resolving Power.............................................................25 IV. Applications........................................................................................................28 1. Example 1-1: Interpretation of Fragmentation Patterns (Mass Spectra) to Distinguish Positional Isomers .........................................................................29 -
Lecture 15 Spring 2005
Geol. 655 Isotope Geochemistry Lecture 15 Spring 2005 ANALYTICAL METHODOLOGY THE MASS SPECTROMETER In most cases, isotopic abundances are measured by mass spectrometry. The exceptions are, as we have seen, short-lived radioactive isotopes, the abundances of which are determined by measuring their decay rate, and in fission track dating, where the abundance of 238U is measured, in effect, by in- ducing fission. (Another exception is spectroscopic measurement of isotope ratios in stars. Frequencies of electromagnetic emissions of the lightest elements are sufficiently dependent on nuclear mass that emissions from different isotopes can be resolved. We will discuss this when we consider stable iso- topes.) A mass spectrometer is simply a device that can separate atoms or molecules according to their mass. There are a number of different kinds of mass spectrometers operating on different principles. Undoubtedly the vast majority of mass spectrometers are used by chemists for qualitative or quantita- tive analysis of organic compounds. We will focus exclusively, however, on mass spectrometers used for isotope ratio determination. Most isotope ratio mass spectrometers are of a similar design, the magnetic-sector, or Nier mass spectrometer*, a schematic of which is shown in Figure 15.1. It consists of three essential parts: an ion source, a mass analyzer and a detector. There are, however, several variations on the design of the Nier mass spectrometer. Some of these modifications relate to the spe- cific task of the instrument; others are evolutionary improvements. We will first consider the Nier mass spectrometer, and then briefly consider a few other kinds of mass spectrometers. -
Characterization of Morphological and Chemical Properties of Scandium Containing
Characterization of Morphological and Chemical Properties of Scandium Containing Cathode Materials A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Michael V. Mroz May 2020 © 2020 Michael V. Mroz. All Rights Reserved. 2 This dissertation titled Characterization of Morphological and Chemical Properties of Scandium Containing Cathode Materials by MICHAEL V. MROZ has been approved for the Department of Physics and Astronomy and the College of Arts and Sciences by Martin E. Kordesch Professor of Physics and Astronomy Florenz Plassmann Dean, College of Arts and Sciences 3 ABSTRACT MROZ, MICHAEL V., Ph.D., May 2020, Physics and Astronomy Characterization of Morphological and Chemical Properties of Scandium Containing Cathode Materials Director of Dissertation: Martin E. Kordesch Understanding thermionic cathodes is crucial for the future development of communication technologies operating at the terahertz frequency. Model cathode systems were characterized using multiple experimental techniques. These included Low Energy Electron Microscopy, X-Ray Photoemission Spectroscopy, and Auger Electron Spectroscopy. This was done to determine the mechanisms by which tungsten, barium, scandium, and oxygen may combine in order to achieve high current densities via thermionic emission. Barium and scandium films are found to dewet from the tungsten surfaces studied, and not diffuse out from bulk sources. The dewetted droplets were found to contribute the most to thermal emission. Barium oxide and scandium oxide are also found to react desorb from the emitting surface at lower temperatures then the metals themselves. The function of scandium in scandate cathodes was determined to act as an inhibitor to oxide formation. -
Modern Mass Spectrometry
Modern Mass Spectrometry MacMillan Group Meeting 2005 Sandra Lee Key References: E. Uggerud, S. Petrie, D. K. Bohme, F. Turecek, D. Schröder, H. Schwarz, D. Plattner, T. Wyttenbach, M. T. Bowers, P. B. Armentrout, S. A. Truger, T. Junker, G. Suizdak, Mark Brönstrup. Topics in Current Chemistry: Modern Mass Spectroscopy, pp. 1-302, 225. Springer-Verlag, Berlin, 2003. Current Topics in Organic Chemistry 2003, 15, 1503-1624 1 The Basics of Mass Spectroscopy ! Purpose Mass spectrometers use the difference in mass-to-charge ratio (m/z) of ionized atoms or molecules to separate them. Therefore, mass spectroscopy allows quantitation of atoms or molecules and provides structural information by the identification of distinctive fragmentation patterns. The general operation of a mass spectrometer is: "1. " create gas-phase ions "2. " separate the ions in space or time based on their mass-to-charge ratio "3. " measure the quantity of ions of each mass-to-charge ratio Ionization sources ! Instrumentation Chemical Ionisation (CI) Atmospheric Pressure CI!(APCI) Electron Impact!(EI) Electrospray Ionization!(ESI) SORTING DETECTION IONIZATION OF IONS OF IONS Fast Atom Bombardment (FAB) Field Desorption/Field Ionisation (FD/FI) Matrix Assisted Laser Desorption gaseous mass ion Ionisation!(MALDI) ion source analyzer transducer Thermospray Ionisation (TI) Analyzers quadrupoles vacuum signal Time-of-Flight (TOF) pump processor magnetic sectors 10-5– 10-8 torr Fourier transform and quadrupole ion traps inlet Detectors mass electron multiplier spectrum Faraday cup Ionization Sources: Classical Methods ! Electron Impact Ionization A beam of electrons passes through a gas-phase sample and collides with neutral analyte molcules (M) to produce a positively charged ion or a fragment ion. -
C7895 Mass Spectrometry of Biomolecules Schedule of Lectures
C7895 Mass Spectrometry of Biomolecules Schedule of lectures For schedule, please see a separate file with the course outline. Jan Preisler Consulting The last lecture. Please contact me in advance to make an appointment. Chemistry Dept. 312A14, tel.: 54949 6629, [email protected] This material is just an outline; students are advised to print this outline and write down notes durin the lectures. The material will be updated during The course is focused on mass spectrometry of biomolecules, i.e. ionization the semester. techniques MALDI and ESI, modern mass analyzers, such as time-of-flight MS or ion traps and bioanalytical applications. However, the course covers much broader area, including inorganic ionization techniques, virtually all Supporting study material: types of mass analyzers and hardware in mass spectrometry. • J. Gross, Mass Spectrometry, 3rd ed. Springer-Verlag, 2017 • J. Greaves, J. Roboz: Mass Spectrometry for the Novice, CRC Press, 2013 • Edmond de Hoffmann, Vincent Stroobant: Mass Spectrometry: Principles and Applications, 3rd Edition, John Wiley & Sons, 2007 Mass spectrometry of biomolecules 2018 1 Mass spectrometry of biomolecules 2018 2 1 2 Content I. Introduction 1 II. Ionization methods and sample introduction III. Mass analyzers IV. Biological applications of MS V. Example problems Introduction to Mass spectrometry. Brief History of MS. A Survey of Methods and Instrumentation. Basic Concepts in MS: Resolution, Sensitivity. Isotope patterns of organic molecules. Ionization Techniques and Sample Introductin. Electron Impact Mass spectrometry of biomolecules 2018 3 Ionization (EI). Chemical Ionization (CI) 3 4 I. Introduction Study Material • Information sources about mass spectrometry Lecture notes • Brief history of mass spectrometry, a survey of methods and Advice: please take notes, but do not copy the slides; the English slides will instrumentation be provided at the end of the semester. -
Article Is Available Ca
Geochronology, 2, 343–354, 2020 https://doi.org/10.5194/gchron-2-343-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Expanding the limits of laser-ablation U–Pb calcite geochronology Andrew R. C. Kylander-Clark Department of Earth Science, University of California, Santa Barbara, CA 93106, USA Correspondence: Andrew R. C. Kylander-Clark ([email protected]) Received: 30 May 2020 – Discussion started: 30 June 2020 Accepted: 20 September 2020 – Published: 23 November 2020 Abstract. U–Pb geochronology of calcite by laser-ablation 1 Introduction inductively coupled plasma mass spectrometry (LA-ICPMS) is an emerging field with potential to solve a vast array Calcite U–Pb geochronology by laser-ablation inductively of geologic problems. Because of low levels of U and Pb, coupled plasma mass spectrometry (LA-ICPMS) is a rela- measurement by more sensitive instruments, such as those tively new technique with untapped potential for solving nu- with multiple collectors (MCs), is advantageous. However, merous geochronologic problems from the timing of faulting whereas measurement of traditional geochronometers (e.g., (e.g., Roberts and Walker, 2016; Nuriel et al., 2017; Good- zircon) by MC-ICPMS has been limited by detection of the fellow et al., 2017) and the age of ore deposits (Burisch daughter isotope, U–Pb dating of calcite can be limited by et al., 2017) to paleoclimate, sedimentation, and diagene- detection of the parent isotope if measured on a Faraday sis (e.g., Mangenot et al., 2018; Rasbury et al., 1997; Hoff detector. The Nu P3D MC-ICPMS employs a new detec- et al., 1995; Winter and Johnson, 1995; Wang et al., 1998; tor array to measure all isotopes of interest on Daly detec- Rasbury et al., 1998). -
Joseph Ladislas Wiza, Microchannel Plate Detectors
Reprinted from Nuclear Instruments and Methods, Vol. 162, 1979, pages 587 to 601 MICROCHANNEL PLATE DETECTORS JOSEPH LADISLAS WIZA 1. Introduction only by the channel dimensions and spacings; 12 mm diameter channels with 15 mm center-to-center spacings are A microchannel plate (MCP) is an array of 104-107 typical. miniature electron multipliers oriented parallel to one Originally developed as an amplification element for another (fig. 1); typical channel diameters are in the range image intensification devices, MCPs have direct sensitivity 10-100 mm and have length to diameter ratios (a) between to charged particles and energetic photons which has 40 and 100. Channel axes are typically normal to, or biased extended their usefulness to such diverse fields as X-ray1) at a small angle (~8°) to the MCP input surface. The and E.U.V.2) astronomy, e-beam fusion studies3) and of channel matrix is usually fabricated from a lead glass, course, nuclear science, where to date most applications treated in such a way as to optimize the secondary emission have capitalized on the superior MCP time resolution characteristics of each channel and to render the channel characteristics4-6). walls semiconducting so as to allow charge replenishment The MCP is the result of a fortuitous convergence of from an external voltage source. Thus each channel can be technologies. The continuous dynode electron multiplier considered to be a continuous dynode structure which acts was suggested by Farnsworth7) in 1930. Actual as its own dynode resistor chain. Parallel electrical contact implementation, however, was delayed until the 1960s to each channel is provided by the deposition of a metallic when experimental work by Oschepkov et al.8) from the coating, usually Nichrome or Inconel, on the front and rear USSR, Goodrich and Wiley9) at the Bendix Research surfaces of the MCP, which then serve as input and output Laboratories in the USA, and Adams and Manley10-11) at electrodes, respectively. -
ELECTRON MULTIPLIERS General Technical Information the Specifications in This Booklet Are Subject to Change
ELECTRON MULTIPLIERS General Technical Information The specifications in this booklet are subject to change. Please contact ETP for the latest data sheets of any products. PRODUCT DATA 14DM467 500ps MagneTOF® Plus '0SV0DJQH72)£& £ MagneTOF detectorsprovideanexceptionalcombinationof performancecharacteristics.Theyeliminatethecompromises associatedwithotherTOFdetectortechnologies. Thehighperformanceversion,14DM467,typicallyachieves singleionpulsewidthsof<500psFWHM. Specialattentionhasbeengiventominimizingjittersothat pulsesfrommultipleioneventshavenearlythesamewidthas singleionevents. 6SHFLILFDWLRQV ModelNumber 14DM467Rev.H Mechanicalenvelopesize(nominal) 45X52X96mm(notincludingmountingtabs) Inputaperturesize(nominal) 15X33mm <0.55nsMeasuredatdetectoroutputwith3GHz Singleionpulsewidth(FWHM) oscilloscope Ringaftermainpulse(typical) 2%measuredatdetectoroutputwith3GHzoscilloscope Maximumsustainedlinearoutputcurrent 6μAfordispersedorspatiallyconcentratedionbeams Maximumlinearpulseheight 2.5Voltintoa50Ohmload Maximumdarkcounts@2600V <50perminute Recoverytimeafterlargepulse Negligible Maximumoperatingpressure 10Ͳ4Torr Protectfromdustinoriginalpackagingorinan Long/shorttermstoragerequirements appropriatedesiccator MaximumcurrentdrawfromHVpower 0.5mA supplyatthemaximumoperatingVoltage Ambienttemperaturerangefornormal 15to28°C(59to82°F) operation Ambienttemperaturerangeforoptimum 19to23°C(66to73°F) operation Typicalgainwhenmultiplierisnew 1E6@~1950V Operatingvoltagerange* ~Ͳ1800V(initial)toͲ3400Vmaximum(aged). *Note:OperatinganewdetectoratendͲofͲlife(maximum)voltagePD\UHVXOWindamageWRWKHGHWHFWRU