Kalenderblätter 1001 - 1111

Total Page:16

File Type:pdf, Size:1020Kb

Kalenderblätter 1001 - 1111 Kalenderblätter 1001 - 1111 Ich übergebe sie mit zweifelhaften Gefühlen der Öffentlichkeit. Daß es dieser Arbeit in ihrer Dürftigkeit und der Finsternis dieser Zeit beschieden sein sollte, Licht in ein oder das andere Gehirn zu werfen, ist nicht unmöglich; aber freilich nicht wahrscheinlich. [Ludwig Wittgenstein: Philosophische Untersuchungen] 1001 120301 Mathematik für die ersten Semester: Top 10 1002 120302 The devil's offer 1003 120303 Enderton: Formulierungen des Auswahlaxioms 1004 120304 Heuser, Antisthenes 1005 120305 Rucker 1006 120306 Cantors Weltbild (33): Fest und unerschütterlich 1007 120307 V und Ù 1008 120308 Konstruierbar und unkonstruierbar 1009 120309 Moore 1010 120310 Cantors Weltbild (34): Verallgemeinerung des Zahlbegriffs 1011 120311 Syllogismus auf Griechisch 1012 120312 Grattan 1013 120313 Dummett 1014 120314 7. Auflage der Geschichte des Unendlichen, 3 Exemplare zu verschenken 1015 120315 Engel und große Kardinalzahlen 1016 120316 Opinions on continuum hypothesis and inaccessible cardinals 1017 120317 Schröter über Fischer 1018 120318 Fischer 1019 120319 Fischer 1020 120320 Fischer 1021 120321 Hilbert, Slater 1022 120322 Voltaire 1023 120323 Tait 1024 120324 Moore 1025 120325 Nietzsche 1026 120326 Taschner 1027 120327 Boolos 1028 120328 Kant, Galletti 1029 120329 Cantors Weltbild (35): Racenantisemitismus 1030 120330 Nietzsche über das Christentum, Cantor 1031 120331 Ramsey über Formalismus 1032 120401 In Sachen Georg Cantor 1033 120402 Corazza 1034 120403 Cattabriga 1035 120404 Mengenfolgen und Supertasks (1) 1036 120405 Mengenfolgen und Supertasks (2) 1037 120406 Mengenfolgen und Supertasks (3) 1038 120407 Mengenfolgen und Supertasks (4) 1039 120408 Mengenfolgen und Supertasks (5) 1040 120409 Mengenfolgen und Supertasks (6) 1041 120410 Mengenfolgen und Supertasks (7) 1042 120411 Mengenfolgen und Supertasks (8) 1043 120412 Mengenfolgen und Supertasks (9) 1044 120413 Mengenfolgen und Supertasks (10) 1045 120414 Kant, Gladis, Rosenthal 1046 120415 Gödels Geist in Ruckers Mindscape 1047 120416 Problem mit dem Begriff der Abzählbarkeit 1048 120417 Pascal 1049 120418 Slater, Koskensilta 1050 120419 Ramsey, Priest 1051 120420 Laotse, Adams, Schinkensemmel-Assoziation 1052 120421 Cantors Weltbild (36): Vom Sein des Seins - Heidegger, Sartre 1053 120422 Anwendungen der Mengenlehre (1) 1054 120423 Anwendungen der Mengenlehre (2) 1055 120424 Anwendungen der Mengenlehre (3) 1056 120425 Anwendungen der Mengenlehre (4) 1057 120426 Anwendungen der Mengenlehre (5) 1058 120427 Anwendungen der Mengenlehre (6) 1059 120428 Anwendungen der Mengenlehre (7) 1060 120429 Anwendungen der Mengenlehre (8) 1061 120430 Hume 1062 120501 Descartes 1063 120502 Spinoza, Gottesbeweis aus der Mengenlehre 1064 120503 Locke, über ω hinweg 1065 120504 Potentiell versus aktual (1) 1066 120505 Potentiell versus aktual (2) 1067 120506 Potentiell versus aktual (3) 1068 120507 Potentiell versus aktual (4) 1069 120508 Potentiell versus aktual (5) 1070 120509 Potentiell versus aktual (6) 1071 120510 Potentiell versus aktual (7) 1072 120511 Potentiell versus aktual (8) 1073 120512 Potentiell versus aktual (9) 1074 120513 Potentiell versus aktual (10) 1075 120514 Potentiell versus aktual (11) 1076 120515 Cantors Weltbild (37): Die Realität der Mathematik 1077 120516 Cantors Weltbild (38): Die Realität transfiniter Zahlen 1078 120517 Novalis 1079 120518 Undefinierbare Definitionen können geordnet werden 1080 120519 Rucker: Gödel 1081 120520 Hegel 1082 120521 Hegel 1083 120522 Hilbert, Slater 1084 120523 Cantor: Axiome 1085 120524 Reeken, Robinson, Gödel 1086 120525 Cantors Weltbild (39): Giganten 1087 120526 Abian: Inaccessible cardinal numbers, Widerspruch in ZFC 1088 120527 Cantors Pfingstepistel 1089 120528 St. Thomas Aquinas: Von der Menge der Engel 1090 120529 Die Hierarchien der Engel und der Kardinalzahlen 1091 120530 Anti-Überabzählbarkeitsbeweis 1092 120531 Grenzwert geschlossener Intervalle, Grelling-Nelson Antinomie 1093 120601 Rückblick 1094 120602 Locke, Mill 1095 120603 Slater, Priest 1096 120604 Rucker 1097 120605 Sollten Zahlen definierbar sein? 1098 120606 Cantors Weltbild (40): Anglophilie 1099 120607 Are real numbers countable in constructive mathematics? 1100 120608 Ramsey Priest 1101 120609 Moore 1102 120610 Open letter 1103 120611 MatheRealismus (1) 1104 120612 MatheRealismus (2) 1105 120613 MatheRealismus (3) 1106 120614 MatheRealismus (4) 1107 120615 MatheRealismus (5) 1108 120616 MatheRealismus (6) 1109 120617 MatheRealismus (7) 1110 120618 MatheRealismus (8) 1111 120619 Valet! 1001 Das Kalenderblatt 120301 "Mathematik für die ersten Semester" http://www.hs-augsburg.de/einrichtung/presse/mitteilungen_2012/feb/2012_02_03/index.html eines der erfolgreichsten Mathematiklehrbücher http://issuu.com/oldenbourg/docs/owv_mint_verlagsvorschau_120109_web/42?mode=a_p ist in dritter Auflage erschienen: http://www.oldenbourg-verlag.de/wissenschaftsverlag/mathematik-ersten- semester/9783486708219 1002 Das Kalenderblatt 120302 Ms C dies and goes to hell, or to a place that seems like hell. The devil approaches and offers to play a game of chance. If she wins, she can go to heaven. If she loses, she will stay in hell forever; there is no second chance to play the game. If Ms C plays today, she has a 1/2 chance of winning. Tomorrow the probability will be 2/3. Then 3/4, 4/5, 5/6, etc., with no end to the series. Thus every passing day increases her chances of winning. At what point should she play the game? The answer is not obvious: after any given number of days spent waiting, it will still be possible to improve her chances by waiting yet another day. And any increase in the probability of winning a game with infinite stakes has an infinite utility. For example, if she waits a year, her probability of winning the game would be approximately .997268; if she waits one more day, the probability would increase to .997275, a difference of only .000007. Yet, even .000007 multiplied by infinity is infinite. On the other hand, it seems reasonable to suppose the cost of delaying for a day to be finite - a day's more suffering in hell. So the infinite expected benefit from a delay will always exceed the cost. This logic might suggest that Ms C should wait forever, but clearly such a strategy would be self defeating: why should she stay forever in a place in order to increase her chances of leaving it? So the question remains: what should Ms C do?' [E.J. Gracely: "Playing games with eternity: The devil's offer", Analysis 48.3 (1988) p. 113] http://www.balliol.ox.ac.uk/sites/default/files/Dudman-1988-Indicative-and-Subjunctive.pdf Die Sentenz zu ewiger Verdammnis - eine der wenigen praktischen Anwendungen der transfiniten Mengenlehre. 1003 Das Kalenderblatt 120303 The following statements are equivalent. (1) Axiom of choice, I. For any relation R there is a function F Œ R with domF = domR. (2) Axiom of choice, II; multiplicative axiom: The Cartesian product of nonempty sets is always nonempty. That is, if H is a function with domain I and if (" i œ I) H(i) ∫ «, then there is a function f with domain I such that (" i œ I) f(i) œ H(i). (3) Axiom of choice, III. For any set A there is a function F (a "choice function" for A) such that the domain of F is the set of nonempty subsets of A, and such that F(B) œ B for every B Œ A. (4) Axiom of choice, IV. Let A be a set such that (a) each member of A is a nonempty set, and (b) any two distinct members of A are disjoint. Then there exists a set C containing exactly one element from each member of A (i.e., for each B œ A the set C … B is a singleton {x} for some x). (5) Cardinal comparability. For any sets C and D, either C Ç D or D í C. For any two cardinal numbers κ and λ, either κ § λ or k ¥ λ. (6) Zorn's lemma. Let A be a set such that for every chain B Œ A, we have »B œ A. (B is called a chain iff for any C and D in B, either C Œ D or D Œ C.) Then A contains an element M (a "maximal" element) such that M is not a subset of any other set in A. (6) fl (1) The strategy behind this application (and others) of Zorn's lemma is to form a collection A of pieces of the desired object, and then to show that a maximal piece serves the intended purpose. In the present case, we are given a relation R and we choose to define A = {f Œ R | f is a function}. Before we can appeal to Zorn's lemma, we must check that A is closed under unions of chains. So consider any chain B Œ A. Since every member of B is a subset of R, »B is a subset of R. To see that »B is a function, we use the fact that B is a chain. lf ‚x, yÚ and ‚x, zÚ belong to »B, then ‚x, yÚ œ G œ B and ‚x, zÚ œ H œ B for some functions G and H in A. Either G Œ H or H Œ G; in either event both ‚x, yÚ and ‚x, zÚ belong to a single function, so y = z. Hence »B is in A. Now we can appeal to (6), which provides us wich a maximal Function F in A. We claim that domF = domR. For otherwise take any x œ domR \ domF. Since x œ domR, there is some y with xRy. Define F' = F » {‚x, yÚ}. Then F' œ A is contradicting the maximality of F. Hence domF = domR. We can give a plausibility argument for Zorn's lemma as follows. A cannot be empty, because « is a chain and so «= »« œ A. Probably « is not maximal, so we can choose a larger set. If that larger set is not maximal, we can choose a still larger one. After infinitely many steps, even if we have not found a maximal set we have at least formed a chain. So we can take its union and continue.
Recommended publications
  • The Development of Mathematical Logic from Russell to Tarski: 1900–1935
    The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives .
    [Show full text]
  • A Functional Hitchhiker's Guide to Hereditarily Finite Sets, Ackermann
    A Functional Hitchhiker’s Guide to Hereditarily Finite Sets, Ackermann Encodings and Pairing Functions – unpublished draft – Paul Tarau Department of Computer Science and Engineering University of North Texas [email protected] Abstract interest in various fields, from representing structured data The paper is organized as a self-contained literate Haskell in databases (Leontjev and Sazonov 2000) to reasoning with program that implements elements of an executable fi- sets and set constraints in a Logic Programming framework nite set theory with focus on combinatorial generation and (Dovier et al. 2000; Piazza and Policriti 2004; Dovier et al. arithmetic encodings. The code, tested under GHC 6.6.1, 2001). is available at http://logic.csci.unt.edu/tarau/ The Universe of Hereditarily Finite Sets is built from the research/2008/fSET.zip. empty set (or a set of Urelements) by successively applying We introduce ranking and unranking functions generaliz- powerset and set union operations. A surprising bijection, ing Ackermann’s encoding to the universe of Hereditarily Fi- discovered by Wilhelm Ackermann in 1937 (Ackermann nite Sets with Urelements. Then we build a lazy enumerator 1937; Abian and Lamacchia 1978; Kaye and Wong 2007) for Hereditarily Finite Sets with Urelements that matches the from Hereditarily Finite Sets to Natural Numbers, was the unranking function provided by the inverse of Ackermann’s original trigger for our work on building in a mathematically encoding and we describe functors between them resulting elegant programming language, a concise and executable in arithmetic encodings for powersets, hypergraphs, ordinals hereditarily finite set theory. The arbitrary size of the data and choice functions.
    [Show full text]
  • A Theory of Particular Sets, As It Uses Open Formulas Rather Than Sequents
    A Theory of Particular Sets Paul Blain Levy, University of Birmingham June 14, 2019 Abstract ZFC has sentences that quantify over all sets or all ordinals, without restriction. Some have argued that sen- tences of this kind lack a determinate meaning. We propose a set theory called TOPS, using Natural Deduction, that avoids this problem by speaking only about particular sets. 1 Introduction ZFC has long been established as a set-theoretic foundation of mathematics, but concerns about its meaningfulness have often been raised. Specifically, its use of unrestricted quantifiers seems to presuppose an absolute totality of sets. The purpose of this paper is to present a new set theory called TOPS that addresses this concern by speaking only about particular sets. Though weaker than ZFC, it is adequate for a large amount of mathematics. To explain the need for a new theory, we begin in Section 2 by surveying some basic mathematical beliefs and conceptions. Section 3 presents the language of TOPS, and Section 4 the theory itself, using Natural Deduction. Section 5 adapts the theory to allow theorems with free variables. Related work is discussed in Section 6. While TOPS is by no means the first set theory to use restricted quantifiers in order to avoid assuming a totality of sets, it is the first to do so using Natural Deduction, which turns out to be very helpful. This is apparent when TOPS is compared to a previously studied system [26] that proves essentially the same sentences but includes an inference rule that (we argue) cannot be considered truth-preserving.
    [Show full text]
  • Sets As Graphs
    Universita` degli Studi di Udine Dipartimento di Matematica e Informatica Dottorato di Ricerca in Informatica XXIV Ciclo - Anno Accademico 2011-2012 Ph.D. Thesis Sets as Graphs Candidate: Supervisors: Alexandru Ioan Tomescu Alberto Policriti Eugenio G. Omodeo December 2011 Tesi di dottorato di Alexandru Ioan Tomescu, discussa presso l'Universit`adegli Studi di Udine Author's e-mail: [email protected] Author's address: Dipartimento di Matematica e Informatica Universit`adegli Studi di Udine Via delle Scienze, 206 33100 Udine Italia Tesi di dottorato di Alexandru Ioan Tomescu, discussa presso l'Universit`adegli Studi di Udine To my parents Tesi di dottorato di Alexandru Ioan Tomescu, discussa presso l'Universit`adegli Studi di Udine Tesi di dottorato di Alexandru Ioan Tomescu, discussa presso l'Universit`adegli Studi di Udine Abstract In set theory and formal logic, a set is generally an object containing nothing but other sets as elements. Not only sets enable uniformity in the formalization of the whole of mathematics, but their ease-of-use and conciseness are employed to represent information in some computer languages. Given the intrinsic nesting property of sets, it is natural to represent them as directed graphs: vertices will stand for sets, while the arc relation will mimic the membership relation. This switch of perspective is important: from a computational point of view, this led to many decidability results, while from a logical point of view, this allowed for natural extensions of the concept of set, such as that of hyperset. Interpreting a set as a directed graph gives rise to many combinatorial, structural and computational questions, having as unifying goal that of a transfer of results and techniques across the two areas.
    [Show full text]
  • Download (15Mb)
    University of Warwick institutional repository: http://go.warwick.ac.uk/wrap A Thesis Submitted for the Degree of PhD at the University of Warwick http://go.warwick.ac.uk/wrap/46969 This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. Supporting the Migration from Construal to Program: Rethinking Software Development by Nicolas William Pope Thesis Submitted to the University of Warwick for the degree of Doctor of Philosophy Department of Computer Science August 2011 Contents List of Tables vii List of Figures viii Acknowledgments xvi Declarations xvii Abstract xviii Abbreviations xix Chapter 1 Introduction 1 1.1 Plastic Applications . .1 1.2 Plastic Software Environments . .4 1.3 A Lack of Plasticity . .6 1.4 Thesis Aims . .9 1.5 Thesis Outline . 10 Chapter 2 Background 13 2.1 End-User Development . 13 2.1.1 Principles . 14 2.1.2 Common Approaches . 17 ii 2.1.3 Existing Environments . 17 2.1.4 Guidelines . 24 2.2 Empirical Modelling . 26 2.2.1 What is Empirical Modelling? . 26 2.2.2 The Principles . 32 2.2.3 Current Tools . 35 2.2.4 An Example Model . 38 2.2.5 EM and Software Development . 41 2.3 Miscellaneous Technologies . 43 Chapter 3 Enabling Plastic Applications 45 3.1 Empirical Modelling and Plastic Applications . 45 3.2 Dimensions of Refinement . 48 3.3 Limitations of EM Tools and Concepts .
    [Show full text]
  • Literaturverzeichnis
    Literaturverzeichnis [1] Abian, A.: Nonstandard models for arithmetic and [14] Boole, G.; Corcoran, J.: The Laws of Thought analysis. In: Studia Logica 33 (1974), Nr. 1, S. 11–22 (Reprint). New York: Prometheus Books, 2003 [2] Ackermann, W.: Zum Hilbert’schen Aufbau der [15] Boolos, G.: A New Proof of the Gödel Incompleteness reellen Zahlen. In: Mathematische Annalen 99 (1928), Theorem. In: Notices of the American Mathematical S. 118–133 Society (1989), Nr. 36, S. 388–390 [3] Ackermann, W.: Zur Axiomatik der Mengenlehre. In: [16] Boolos, G. S.; Burgess, J. P.; Jeffrey, R. C.: Mathematische Annalen 131 (1956), August, Nr. 4, S. Computability and Logic. Cambridge: Cambridge 336–345 University Press, 2007 [4] Aliprand, J.: The Unicode Standard Version 5.0. [17] Boolos, G. S.; Jeffrey, R. C.: Computability and Boston, MA: Addison-Wesley, 2007 Logic. Cambridge: Cambridge University Press, 1989 [5] Amos, M.: Theoretical and Experimental DNA [18] The Busy Beaver Game and the Meaning of Life. Computation. Berlin, Heidelberg, New York: In: Brady, A. H.: The Universal Turing Machine: A Springer-Verlag, 2005 Half Century Survey. Oxford: Oxford University [6] Baez, J.: This Week’s Finds in Mathematical Physics. Press, 1991, S. 259–277 http://math.ucr.edu/home/baez/ [19] Brady, G.: From Peirce to Skolem: A Neglected week236.html Chapter in the History of Logic. Amsterdam: Elsevier [7] Bauer, Andrej: Portraitphoto von Dana Scott. Scienceg, 2000 (Studies in the History and Philosophy http://creativecommons.org/licenses/ of Mathematics) by-sa/2.5/. – Creative Commons License 2.5, [20] Burali-Forti, C.: Una questione sui numeri transfiniti.
    [Show full text]
  • An Anthology of Philosophical Studies Volume 9
    AN ANTHOLOGY OF PHILOSOPHICAL STUDIES VOLUME 9 Editor Patricia Hanna University of Utah USA Editorial Board Maria Adamos Georgia Southern University USA Gary Fuller Central Michigan University USA Donald Poochigian University of North Dakota USA Andrew Ward University of York UK Joe Naimo University of Notre Dame Australia Australia Board of Reviewers Daniel Considine Metropolitan State College in Denver, Colorado USA. Katherine Cooklin Slippery Rock University of Pennsylvania USA Chrysoula Gitsoulis City College of New York USA Keith Green East Tennessee State University USA Dimitria Electra Gratzia University of Akron USA Philip Matthews University of Notre Dame Australia Australia Michael Matthis Lamar University USA Mark McEvoy Hofstra University USA Chris Onof Birkbeck College UK John Thompson Christopher Newport University USA Kiriake Xerohemona Florida International University USA AN ANTHOLOGY OF PHILOSOPHICAL STUDIES VOLUME 9 Edited by Patricia Hanna Athens Institute for Education and Research 2015 AN ANTHOLOGY OF PHILOSOPHICAL STUDIES VOLUME 9 First Published in Athens, Greece by the Athens Institute for Education and Research. ISBN: 978-618-5065-95-9 All rights reserved. No part of this publication may be reproduced, stored, retrieved system, or transmitted, in any form or by any means, without the written permission of the publisher, nor ne otherwise circulated in any form of binding or cover. Printed and bound in Athens, Greece by ATINER 8 Valaoritou Street, Kolonaki 10671 Athens, Greece www.atiner.gr ©Copyright 2015 by the Athens Institute for Education and Research. The individual essays remain the intellectual properties of the contributors. Table of Contents 1. Introduction 1 Patricia Hanna 2. Epicurean Pleasure 3 Andrew Alwood 3.
    [Show full text]
  • Foundations of Applied Mathematics I
    Foundations of Applied Mathematics I Jeffrey Ketland University of Warsaw [email protected] Forthcoming in Synthese November 23, 2020 Abstract This paper aims to study the foundations of applied mathematics, using a for- malized base theory for applied mathematics: ZFCAσ (Zermelo-Fraenkel set theory (with Choice) with atoms, where the subscript used refers to a signature specific to the application. Examples are given, illustrating the following five features of applied mathematics: comprehension principles, application conditionals, represen- tation hypotheses, transfer principles and abstract equivalents. Contents 1 Mathematicized Theories2 2 How The Laws of Set Theory Apply8 3 A Base Theory for Applied Mathematics9 4 Comprehension and Set Abstracts 17 5 Abstract Counterparts: Equivalence Modulo Mathematics 20 6 Systems and Equivalences 21 7 Application Conditionals 30 8 Representation and Transfer 34 9 Summary 37 A Four-Sorted System 38 1 1 Mathematicized Theories Standard scientific theory supplies much of the information it supplies about physical entities only indirectly, by way of apparatus pertaining to supposed relationships of physical entities to supposed mathematical entities and sup- posed classifications of and relationships among the supposed mathematical entities themselves. As much of what science says about observable entities is “theory-laden”, so much of what science says about concrete entities (observable or theoretical) is “abstraction-laden”. (Burgess & Rosen(1997): 84) 1.1 The Logical Structure of Applied Mathematics This paper aims to study the foundations of applied mathematics. Perhaps contrary to current fashions, I treat applied mathematics as taking place within a certain formalized system: specifically, Zermelo-Fraenkel set theory (with Choice) with atoms, over an application signature σ.
    [Show full text]
  • Cantorian Abstraction: a Reconstruction and Defence
    Cantorian Abstraction: A Reconstruction and Defence In section 1 of his Beitragei, Cantor explains the notion of cardinal number: We will call by the name "power" or "cardinal number" of M the general concept which, by means of our active faculty of thought, arises from the aggregate M when we make abstraction of the nature of its various elements m and of the order in which they are given. We denote the result of this double act of abstraction, the cardinal number or power of M, by (3) M (double bar). Since every single element m, if we abstract from its nature, becomes a "unit", the cardinal number M (double bar) is a definite aggregate composed of units, and this number has existence in our mind as an intellectual image or projection of the given aggregate M. Later in section 7 of the same work, he gives an analogous account of order type: Every ordered aggregate M has a definite "order type", or more shortly a definite "type", which we will denote by (2) M (bar). By this we understand the general concept which results from M if we only abstract from the nature of the elements m, and retain the order of precedence among them. Thus the order type M(bar) is itself an ordered aggregate whose elements are units which have the same order of precedence amongst one another as the corresponding elements of M, from which they are derived by abstraction. Dedekind, in §73 of his Was sind und was sollen die Zahlenii, gives a somewhat similar account of number-series: If in the consideration of a simply infinite system N set in order by a transformation _ we entirely neglect the special character of the elements, simply retaining their distinguishability and taking into account only the relations to one another in which they are placed by the order-setting transformation _, then are these elements called natural numbers or ordinal numbers or simply numbers, and the base-element 1 is called the base-number of the number-series N.
    [Show full text]
  • Gsm008-Endmatter.Pdf
    http://dx.doi.org/10.1090/gsm/008 Other Titles in This Series 8 Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996 7 Gerald J. Janusz, Algebraic number fields, second edition, 1996 6 Jens Carsten Jantzen, Lectures on quantum groups, 1996 5 Rick Miranda, Algebraic curves and Riemann surfaces, 1995 4 Russell A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, 1994 3 William W. Adams and Philippe Loustaunau, An introduction to Grobner bases, 1994 2 Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, 1993 1 Ethan Akin, The general topology of dynamical systems, 1993 This page intentionally left blank Discovering Modern Set Theory. I The Basics This page intentionally left blank Graduate Studies in Mathematics Volume 8 Discovering Modern Set Theory. I The Basics Winfried Just Martin Weese Editorial Board James E. Humphreys Lance W. Small 2000 Mathematics Subject Classification. Primary 03Exx; Secondary 03E30, 03E25, 03E10, 03E05. ABSTRACT. This volume is an introduction to set theory for beginning graduate students. It covers the basics of set theory that are considered prerequisites for other areas of mathematics such as ordinals, cardinals, transfinite induction and recursion, and applications of Zorn's lemma. It also contains a description of how mathematics can be founded on axiomatic set theory, as well as a discussion of the nature of consistency results. Library of Congress Cataloging-in-Publication Data Just, W. (Winfried) Discovering modern set theory / Winfried Just, Martin Weese. p. cm. — (Graduate studies in mathematics, ISSN 1065-7339; v. 8) Includes bibliographical references and index. Contents: 1.
    [Show full text]
  • A Concise Introduction to Mathematical Logic
    Wolfgang Rautenberg A Concise Introduction to Mathematical Logic Textbook Third Edition Typeset and layout: The author Version from June 2009 corrections included Foreword by Lev Beklemishev, Moscow The field of mathematical logic—evolving around the notions of logical validity, provability, and computation—was created in the first half of the previous century by a cohort of brilliant mathematicians and philosophers such as Frege, Hilbert, Gödel, Turing, Tarski, Malcev, Gentzen, and some others. The development of this discipline is arguably among the highest achievements of science in the twentieth century: it expanded mathe- matics into a novel area of applications, subjected logical reasoning and computability to rigorous analysis, and eventually led to the creation of computers. The textbook by Professor Wolfgang Rautenberg is a well-written in- troduction to this beautiful and coherent subject. It contains classical material such as logical calculi, beginnings of model theory, and Gödel’s incompleteness theorems, as well as some topics motivated by applica- tions, such as a chapter on logic programming. The author has taken great care to make the exposition readable and concise; each section is accompanied by a good selection of exercises. A special word of praise is due for the author’s presentation of Gödel’s second incompleteness theorem, in which the author has succeeded in giving an accurate and simple proof of the derivability conditions and the provable Σ1-completeness, a technically difficult point that is usually omitted in textbooks of comparable level. This work can be recommended to all students who want to learn the foundations of mathematical logic. v Preface The third edition differs from the second mainly in that parts of the text have been elaborated upon in more detail.
    [Show full text]
  • Appendix 1 Five Letters on Set Theory
    Appendix 1 Five Letters on Set Theory These letters are our translation of Baire et alii 1905, printed here with the kind permission of the Societe Mathematique de France. They are dis­ cussed in 2.3. The original pagination is indicated in the margin and by two oblique lines in the text. I. Letter from Hadamard to Borel 261 I have read with interest the arguments that you put forward (second issue of volume LX of Mathematische Annalen) against Zermelo's proof, found in the previous volume. However, I do not share your opinion on this matter. I do not agree, first of all, with the comparison that you make between the fact which Zermelo uses as his starting point and an argument which would enumerate the elements of the set one after another transfinitely. Indeed, there is a fundamental difference between the two cases: The latter argument requires a sequence of successive choices, each of which depends on those made previously; this is the reason why it is inadmissible to apply it transfinitely. I do not see how any analogy can be drawn, from the point of view which concerns us, between the choices in question and those used by Zermelo, which are independent of each other. Moreover, you take exception to his procedure for a non-denumerable infinity of choices. But, for my part, I see no difference in this regard between the case of a non-denumerable infinity and that of a denumerable infinity. The difference//would be evident if the choices in question depended on 262 312 Appendix 1 each other in some way, because then it would be necessary to consider the order in which one made them.
    [Show full text]