Electrolytic Iron Production from Alkaline Suspensions of Solid Oxides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fortificants
GFF5.qxd 14/11/06 16:44 Page 93 PA RT I I I Fortificants: physical characteristics, selection and use with specific food vehicles GFF5.qxd 14/11/06 16:44 Page 94 GFF5.qxd 14/11/06 16:44 Page 95 Introduction By providing a critical review of the fortificants that are currently available for fortification purposes, Part III of these guidelines is intended to assist pro- gramme managers in their choice of firstly, a suitable food vehicle and secondly, a compatible fortificant. Having established – through the application of appro- priate criteria – that the nature of the public health risk posed by a micronutri- ent deficiency justifies intervention in the form of food fortification, the selection of a suitable combination of food vehicle and fortificant(s), or more specifically, the chemical form of the micronutrient(s) that will added to the chosen food vehicle, is fundamental to any food fortification programme. Subsequent chap- ters (Part IV) cover other important aspects of food fortification programme planning, including how to calculate how much fortificant to add to the chosen food vehicle in order to achieve a predetermined public health benefit (Chapter 7), monitoring and impact evaluation (Chapters 8 and 9), marketing (Chapter 10) and regulatory issues (Chapter 11). In practice, the selection of a food vehicle–fortificant combination is governed by range of factors, both technological and regulatory. Foods such as cereals, oils, dairy products, beverages and various condiments such as salt, sauces (e.g. soy sauce) and sugar are particularly well suited to mandatory mass fortifica- tion. These foods share some or all of the following characteristics: • They are consumed by a large proportion of the population, including (or especially) the population groups at greatest risk of deficiency. -
Positive PFS Results for Razorback High Grade Iron Ore Concentrate Project
ASX Announcement 5 July 2021 Positive PFS Results for Razorback High Grade Iron Ore Concentrate Project Highlights: • Pre Feasibility Study completed and scope defined for Definitive Feasibility Study • PFS supports declaration of a maiden ore reserve of 473mt based on a 12.8Mtpa plant throughput, backed by PFS level or AACE Class 4 capital cost estimates and/or third-party service proposals1 • Optimisation of the processing plant configuration with a nominal 15.5Mtpa feed plant utilising three grinding stages, three stage magnetic separation and flotation to generate a premium grade magnetite concentrate with 67.5 - 68.5% Fe content • Non-process infrastructure and transport studies confirm preferred scope for operating inputs and initial route selection to load annual production of between 2 and 3 Mtpa of high grade concentrate on to Cape size vessels • Initial capital investment of US$429-$506M (A$572-$675M) resulting in optimised case results of NPV of A$669M and 20% IRR for selected go-forward case at long run average prices (post tax, ungeared) • Preparation for a prompt commencement of Definitive Feasibility Study is well advanced with further drilling, testwork, metallurgical investigation and engineering workplans in progress Magnetite Mines Limited (Magnetite Mines or the Company) today announced the results of the Pre Feasibility Study (PFS) for development of its 100% owned Razorback High Grade Iron Ore Concentrate Project (the Project or Razorback) and is now proceeding with the Definitive Feasibility Study (DFS). The PFS has confirmed the opportunity for a high return, long life, initial development of the large scale Razorback resource which leverages the advantages of resource scale, low stripping ratio, available infrastructure, low cost sustainable power and leading product quality. -
Recovery of Magnetite-Hematite Concentrate from Iron Ore Tailings
E3S Web of Conferences 247, 01042 (2021) https://doi.org/10.1051/e3sconf/202124701042 ICEPP-2021 Recovery of magnetite-hematite concentrate from iron ore tailings Mikhail Khokhulya1,*, Alexander Fomin1, and Svetlana Alekseeva1 1Mining Institute of Kola Science Center of Russian Academy of Sciences, Apatity, 184209, Russia Abstract. The research is aimed at study of the probable recovery of iron from the tailings of the Olcon mining company located in the north-western Arctic zone of Russia. Material composition of a sample from a tailings dump was analysed. The authors have developed a separation production technology to recover magnetite-hematite concentrate from the tailings. A processing flowsheet includes magnetic separation, milling and gravity concentration methods. The separation technology provides for production of iron ore concentrate with total iron content of 65.9% and recovers 91.0% of magnetite and 80.5% of hematite from the tailings containing 20.4% of total iron. The proposed technology will increase production of the concentrate at a dressing plant and reduce environmental impact. 1 Introduction The mineral processing plant of the Olcon JSC, located at the Murmansk region, produces magnetite- At present, there is an important problem worldwide in hematite concentrate. The processing technology the disposal of waste generated during the mineral includes several magnetic separation stages to produce production and processing. Tailings dumps occupy huge magnetite concentrate and two jigging stages to produce areas and pollute the environment. However, waste hematite concentrate from a non-magnetic fraction of material contains some valuable components that can be magnetic separation [13]. used in various industries. In the initial period of plant operation (since 1955) In Russia, mining-induced waste occupies more than iron ore tailings were stored in the Southern Bay of 300 thousand hectares of lands. -
Treatment and Microscopy of Gold
TREATMENT AND MICROSCOPY OF GOLD AND BASE METAL ORES. (Script with Sketches & Tables) Short Course by R. W. Lehne April 2006 www.isogyre.com Geneva University, Department of Mineralogy CONTENTS (Script) page 1. Gold ores and their metallurgical treatment 2 1.1 Gravity processes 2 1.2 Amalgamation 2 1.3 Flotation and subsequent processes 2 1.4 Leaching processes 3 1.5 Gold extraction processes 4 1.6 Cyanide leaching vs. thio-compound leaching 5 2. Microscopy of gold ores and treatment products 5 2.1 Tasks and problems of microscopical investigations 5 2.2 Microscopy of selected gold ores and products 6 (practical exercises) 3. Base metal ores and their beneficiation 7 3.1 Flotation 7 3.2 Development of the flotation process 7 3.3 Principles and mechanisms of flotation 7 3.4 Column flotation 9 3.5 Hydrometallurgy 10 4. Microscopy of base metal ores and milling products 10 4.1 Specific tasks of microscopical investigations 11 4.2 Microscopy of selected base metal ores and milling products 13 (practical exercises) 5. Selected bibliography 14 (Sketches & Tables) Different ways of gold concentration 15 Gravity concentration of gold (Agricola) 16 Gravity concentration of gold (“Long Tom”) 17 Shaking table 18 Humphreys spiral concentrator 19 Amalgamating mills (Mexican “arrastra”, Chilean “trapiche”) 20 Pressure oxidation flowsheet 21 Chemical reactions of gold leaching and cementation 22 Cyanide solubilities of selected minerals 23 Heap leaching flowsheet 24 Carbon in pulp process 25 Complexing of gold by thio-compounds 26 Relation gold content / amount of particles in polished section 27 www.isogyre.com Economically important copper minerals 28 Common zinc minerals 29 Selection of flotation reagents 30 Design and function of a flotation cell 31 Column cell flotation 32 Flowsheet of a simple flotation process 33 Flowsheet of a selective Pb-Zn flotation 34 Locking textures 35 2 1. -
Standard Reference Materials Price and Availability List IMPORTANT NOTICE to PURCHASERS and USERS of NBS STANDARD REFERENCE MATERIALS
o A UNITED STATES NBS SPECIAL PUBLICATION DEPARTMENTucrnn 1 ivitii 1 urOF COMMERCE PUBLICATION 260 [ A SUPPLEMENT JANUARY, 1972 Standard Reference Materials Price and Availability List IMPORTANT NOTICE TO PURCHASERS AND USERS OF NBS STANDARD REFERENCE MATERIALS The Office of Standard Reference Materials no longer issues the Quarterly Insert Sheets to update the current issue of the SRM Catalog. Instead a Standard Reference Material Availability and Price List is issued semiannually. The format has been changed to improve readability and the List is organized as follows: Section I - A list of all classes of materials currently available arranged by Standard Reference Material (SRM), Research Material (RM), and General Material (GM) numbers, together with type, unit of issue, and current price. Section Ila — A list of all classes of materials that have been issued since the Catalog (July 1970) was published, arranged by SRM, RM, and GM numbers together with catalog category. Section lib — A short description, arranged by catalog category, of all SRM's issued since the Catalog (July 1970) was published and therefore not contained therein. For ease of reproduction, tables have been condensed and are, in general, not in the same format used in the catalog. (Please note that the values shown are nominal values. The actual values certified are given on the Certificate which accompanies the material.) The unit of issue and price are given after the description of each SRM. Section llla — A list, arranged by SRM numbers, of recently issued certificates (final or revised versions). Section Illb — A list, arranged by SRM, RM, and GM numbers, of all items that have gone out of stock since the effective date of the current catalog. -
Electrolytic Iron
ELECTROLYTIC IRON ; DEPOSITED BY T H E COMMI T T E E O N (Brafcmate StuMes. 1 x ACC. No DATE ELECTROLYTIC IRON.. A STUDY OF THE PRODUCTION OF IRON BY ELECTROLYSIS, WITH SPECIAL REFERENCE TO ITS RECOVERY FROM SULPHIDE ORES.. THESIS Submitted by WILLIAM RAYMOND MoCLELLAND As Part of the Requirements for the Degree of Master of Soienoe. MAY L925. MoOILL UNIVERSITY, MONTREAL, CANADA. ELECTROLYTIC IRON. A Study of the Production of Iron by Electrolysis, with Special: Reference to its Recovery from Sulphide Ores.- PART I. Introduction Historical Outline and Descriptive* Physical Properties of Electrolytic Iron. PART II Theoretioal Considerations. A. Leaohing. B. Electrolysis. PART III. Experimental Research. A. Ore Body and Treatment of Ore. B. Leaching. C. Electro-deposition. General Summary and Conclusion. PART IV. Appendix. References. Sample Calculations. Bibliography. (1) PART I. INTRODUCTION. Iron, is the oommonest, most widely used, and at the same time the most vitally important of all the base metals. In the growth and developementr of modern civilization it assumes a dominant position.. Iron was not unknown to the anoients,nor were they unaware of its uses. As early as 1500 B.C.. the inhabitants of India; fashioned swords and spear heads. They even recognized, its qualities: for purpose* of construotion. Wrought1: iron beams measuring twenty feet in length have been found in the temple of Kanaruk dating from 1250 B.C. The metallurgy of iron at this period was extremely primative and continued so for many hundreds of year.s. It v;as notr until the sixteenth century that the introduction of-the air blast into the furnaoff made the progress of iron manufacture comparatively rapid.From thi'a period on, tha production increase-d. -
Addressing the Information Gaps on Prices of Minerals Sold in an Intermediate Form
The Platform for Cooperation on Tax DISCUSSION DRAFT: Addressing the Information Gaps on Prices of Minerals Sold in an Intermediate Form Feedback Period 24 January 2017 – 21 February 2017 Organisation for Economic Co-operation and Development (OECD) World Bank Group (WBG) International Monetary Fund (IMF) United Nations (UN) 1 This discussion draft has been prepared in the framework of the Platform for Collaboration on Tax by the OECD, under the responsibility of the Secretariats and Staff of the four mandated organisations. The draft reflects a broad consensus among these staff, but should not be regarded as the officially endorsed views of those organisations or of their member countries. 1 Table of Contents Introduction................................................................................................................................................................ 6 Domestic Resource Mobilisation from Mining......................................................................................... 6 Report Structure ................................................................................................................................................... 9 Building An Understanding of the Mining Sector – A Methodology ................................................ 10 Introduction ........................................................................................................................................................ 10 Steps in the Methodology ........................................................................................................................... -
The Preparation of High-Purity Iron (99.987%) Employing a Process of Direct Reduction–Melting Separation–Slag Refining
materials Article The Preparation of High-Purity Iron (99.987%) Employing a Process of Direct Reduction–Melting Separation–Slag Refining Bin Li 1,2, Guanyong Sun 1,2, Shaoying Li 1,2, Hanjie Guo 1,2,* and Jing Guo 1,2 1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China; [email protected] (B.L.); [email protected] (G.S.); [email protected] (S.L.); [email protected] (J.G.) 2 Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, Beijing 100083, China * Correspondence: [email protected]; Tel.: +86-138-0136-9943 Received: 9 March 2020; Accepted: 9 April 2020; Published: 14 April 2020 Abstract: In this study, high-purity iron with purity of 99.987 wt.% was prepared employing a process of direct reduction–melting separation–slag refining. The iron ore after pelletizing and roasting was reduced by hydrogen to obtain direct reduced iron (DRI). Carbon and sulfur were removed in this step and other impurities such as silicon, manganese, titanium and aluminum were excluded from metallic iron. Dephosphorization was implemented simultaneously during the melting separation step by making use of the ferrous oxide (FeO) contained in DRI. The problem of deoxidization for pure iron was solved, and the oxygen content of pure iron was reduced to 10 ppm by refining with a high basicity slag. Compared with electrolytic iron, the pure iron prepared by this method has tremendous advantages in cost and scale and has more outstanding quality than technically pure iron, making it possible to produce high-purity iron in a short-flow, large-scale, low-cost and environmentally friendly way. -
An Issue Dedicated to Solutions for the Modern Mining Industry
Metso’s customer magazine » ISSUE 1/2017 Mining minds An issue dedicated to solutions for the modern mining industry More efficiency Six-fold reduction Longer wear life and with less energy in moisture content fewer liner changes 06 and water 18 at Olenegorsky GOK 28 reduce costs “Metso has gone beyond combining and re-releasing technology based on prior designs. Its solution is more efficient, lasts longer and reduces operating costs.” mining Results mining is PUBLISHED BY EDITOR-IN-CHIEF © Copyright 2017 PRINTING Metso’s customer magazine Metso Corporation Inka Törmä, Metso Corporation. Hämeen Kirjapaino Oy, showcasing our work and [email protected] All rights reserved. February 2017 Töölönlahdenkatu 2, the success of our customers. P.O. Box 1220, DESIGN AND LAYOUT Reproduction permitted ISSN SUBSCRIPTIONS FI-00101 Helsinki, Brandkind, brandkind.fi quoting “Results mining” 2343-3590 To receive your personal Finland as source. ENGLISH LANGUAGE ADDRESSES 4041 0209 copy, please contact your Printed matter tel. +358 20 484 100 Kathleen Kuosmanen All product names used Metso customer data nearest Metso office or HÄMEEN KIRJAPAINO OY www.metso.com are trademarks of their the e-mail provided. respective owners. This magazine, including all claims regarding operational performance, is intended for sharing information on successful customer cases. Metso makes no warranty or representation whatsoever, either express or implied, that similar or any performance levels or improvements are achievable for all sites or for any particular site. Metso assumes no legal liability for any use of information contained in this presentation. If requested, Metso can execute a site specific survey to provide an estimate of performance or performance improvement for a specific site and operation. -
Charge Calculations in Pyrometallurgical Processes
Charge Calculations in Pyrometallurgical Processes Smelting It is a unit process similar to roasting, to heat a mixture of ore concentrate above the melting point The objective is to separate the gangue mineral from liquid metal or matte The state of the gangue mineral in case of smelting is liquid which is the main difference between roasting and smelting Inputs – Ore, flux, fuel, air Output – Metal or Matte, slag, off-gas When metal is separated as sulphide from smelting of ore, it is called Matte smelting e.g. Cu2S and FeS When metal is separated as liquid, it is called reduction smelting e.g. Ironmaking Density of liquid metal or matte is around 5-5.5 g/cm3 Density of slag is around 2.8-3 g/cm3 The additives and fluxes serve to convert the waste or gangue materials in the charge into a low melting point slag which also dissolves the coke ash and removes sulphur Matte Smelting Advantages of matte smelting • Low melting point of matte so that less amount of thermal energy is required by converting the metal of the ore in the form of sulphide and then extracting the metal e.g. melting point of Cu2S and FeS is around 1000 degrees Celsius • Cu2S which is contained in the matte, does not require any reducing agent It is converted to oxide by blowing oxygen • Matte smelting is beneficial for extraction of metal from sulphide ore, particularly when sulphide ore is associated with iron sulphide which forms eutectic point with Cu and Ni The grade of the matte is defined as the copper grade of matte A matte of 40 percent means, it has 40% copper, so matte is always given in terms of copper, because it is used to produce copper not iron Slag in matte smelting is mixture of oxides e.g. -
India's Contribution to the Mining, Extraction and Refining of Gold: Some Observations Related to the Pre-Christian Era
0 2001 NML Jamshedpur 831 007, India; Metallurgy in India: A Retrospective; (ISBN: 81-87053-56-7); Eds: P. Ramachandra Rao and N.G. Goswami; pp.163-181. 8 India's Contribution to the Mining, Extraction and Refining of Gold: Some Observations Related to the Pre-Christian Era ' R.K. Dube. • Department of Materials & Metallurgical Engineering, Indian Institute of Technology, Kanptir .208 016, India. ABSTRACT India has a very old and fascinating history of gold. Various aspects of the mining and metallurgy of gold were known to the Indians since time immemorial. In this paper, different types of the gold ore deposits', and the technique used in the extraction and refining of gold in ancient India as obtained from the literary sources 'composed in the pre-Christian era and some archaeological findings are discussed. The recovery of a novel variety of high purity gold powder, known as Pipilaka Gold, from the auriferous soil of ant-hills, as stated in the Maheibharata, has also been discussed. Key, words : Alluvial placer gold, Vein gold, Liquid ore of gold, Panning, Deep mining, Cupellation, Solid state refining of gold, Anks'r gold. INTRODUCTION Man and metal have an age-old relationship. Out of all metals known to man in ancient times, p-6i-haps gold was the first with which man became acquainted. Indians had, and still continue to have, great fascination for gold. Its special attributes, such as pleasing and untarnishing colour, excellent corrosion and . oxidation resistance, ease of forming, and limited availability made it an ideal metal for ornaments, decoration, currency, and store of wealth in ancient India. -
Preparation of Pure Iron and Iron-Carbon Alloys
. PREPARATION OF PURE IRON AND IRON-CARBON ALLOYS By J. R. Cain, E. Schramm, and H. E. Cleaves CONTENTS Page I. Introduction 2 II. Making the electrolytic iron 4 III. Melting the electrolytic iron 7 1. Ftimaces 8 (a) Electric furnaces 8 (6) Gas furnaces 11 2. Crucibles 13 IV. Procedure in making alloys 16 V. Discussion of the sources of contamination 19 1. Silicon 19 2. Sulphur 20 3 Manganese and phosphorus 20 4. Copper 21 5 Nickel and cobalt 21 6. Magnesium 21 7. Oxygen 21 VI. Spectroscopic examination 22 VII. Methods of chemical analysis 22 1. Carbon 23 2. Sulphtir 23 3. Silicon 23 4. Phosphorus 24 5. Manganese 24 6. Copper 24 7. Magnesium 24 8. Nickel and cobalt 25 VIII. Summary '. 25 Bibliography 26 I 2 Bulletin of the Bureau of Standards [Voi 13 I. INTRODUCTION The fundamental importance of the iron-carbon thermal equi- librium diagram in the scientific metallurgy of iron and steel and its utility to practical workers have long been realized, and accord- ingly this subject has received attention from many points of view and from many investigators during the past two decades. In view of this fact, it might seem superfluous to add to the existing literature except for the following considerations : Earlier workers have for the most part confined their attention to special portions of the diagram or to disputed questions of theory. Their thermal studies have not been carried out with the degree of accuracy now attainable. They have practically without ex- ception employed commercial materials of varying degrees of purity.