Prudent Practices in the Laboratory

Total Page:16

File Type:pdf, Size:1020Kb

Prudent Practices in the Laboratory Prudent Practices in the Laboratory Taken from NATIONAL ACADEMY PRESS, Washington, D.C.1995 A selection of useful sections TABLE 3.9 Partial List of Incompatible Chemicals (Reactive Hazards) ................................................. 2 TABLE 6.1 Summary of Magnetic Field Effects .................................................................................... 3 5.C.11.8 Handling Spills of Elemental Mercury ................................................................................... 3 5.G.6 Reactive or Explosive Materials Requiring Special Attention .................................................... 4 PEROXIDES ........................................................................................................................................... 7 Other Oxidizers .................................................................................................................................... 8 Dusts .................................................................................................................................................... 8 The "Dirty Dozen" : top suspects for laboratory accidents ................................................................. 8 1 TABLE 3.9 Partial List of Incompatible Chemicals (Reactive Hazards) Substances in the left hand column should be stored and handled so that they cannot accidentally contact corresponding substances in the right hand column under uncontrolled conditions.) Acetic acid Chromic acid, nitric acid, peroxides, permanganates Acetic anhydride Hydroxyl-containing compounds such as ethylene glycol, perchloric acid Acetone Concentrated nitric and sulfuric acid mixtures, hydrogen peroxide Acetylene Chlorine, bromine, copper, silver, fluorine, mercury Alkali and alkaline earth Carbon dioxide, carbon tetrachloride, other chlorinated hydrocarbons (also metals, powdered prohibit the use of water, foam, and dry chemical extinguishers on fires aluminum involving these metals -dry sand should be employed) Ammonia (anhydrous) Mercury, chlorine, calcium hypochlorite, iodine, bromine, hydrogen fluoride Acids, metal powders, flammable liquids, chlorates, nitrites, sulfur, finely Ammonium nitrate divided organics, combustibles Aniline Nitric acid, hydrogen peroxide Ammonia, acetylene, butadiene, butane, other petroleum gases, sodium Bromine carbide, turpentine, benzene, finely divided metals Calcium oxide Water Carbon, activated Calcium hypochlorite, other oxidants Ammonium salts, acids, metal powders, sulfur, finely divided organics, Chlorates combustibles Ammonia, acetylene, butadiene, butane, other petroleum gases, hydrogen, Chlorine sodium carbide, turpentine, benzene, finely divided metals Chlorine dioxide Ammonia, methane, phosphine, hydrogen sulfide Chromic acid, chromium Acetic acid, naphthalene, camphor, glycerol, turpentine, alcohol, other trioxide flammable liquids Acetylene, hydrogen peroxide, flammable liquids, flammable gases, Copper nitratable substances Fluorine Isolate from everything Hydrazine Hydrogen peroxide, nitric acid, any other oxidant Hydrocarbons (benzene, Fluorine, chlorine, bromine, chromic acid, peroxides butane, turpentine,…) Hydrocyanic acid Nitric acid, alkalis Hydrofluoric acid Ammonia (aqueous or anhydrous) Hydrogen fluoride (anhydrous) Copper, chromium, iron, most metals or their salts, any flammable liquid, Hydrogen peroxide combustible materials, aniline, nitromethane Hydrogen sulfide Fuming nitric acid,a oxidizing gases Iodine Acetylene, ammonia (anhydrous or aqueous) Acetylene, fulminic acid (Produced in nitric acid-ethanol mixtures), Mercury ammonia Acetic acid, acetone, alcohol, aniline, chromic acid, hydrocyanic acid, Nitric acid (concentrated) hydrogen sulfide, Nitroparaffins Inorganic bases, amines Oxalic acid Silver and mercury and their salts Oxygen Oils, grease, hydrogen, flammable liquids, solids, gases Acetic anhydride, bismuth and its alloys, alcohol, paper, wood, grease, oils Perchloric acid (all organics) 2 Peroxides, organic Acids (organic or mineral), (also avoid friction, store cold) Phosphorus (white) Air, oxygen Phosphorus pentoxide Alcohols, strong bases, water Potassium chlorate Acids (see also chlorates) Potassium perchlorate Acids (see also perchloric acid) Potassium permanganate Glycerol, ethylene glycol, benzaldehyde, sulfuric acid Acetylene, oxalic acid, tartaric acid, fulminic acid (Produced in nitric acid- Silver and silver salts ethanol mixtures), ammonium compounds Sodium nitrite Ammonium nitrate and other ammonium salts Any oxidizable substance, such as ethanol, methanol, glacial acetic acid, Sodium peroxide acetic anhydride, benzaldehyde, carbon disulfide, glycerol, ethylene glycol, ethyl acetate, methyl acetate, furfural Sulfuric acid Chlorates, perchlorates, permanganates Hazards in the Chemical Laboratory, 4th edition, L. Bretherick, Ed. (1986). TABLE 6.1 Summary of Magnetic Field Effects Level at Which Effects Occur (gauss) Effects on electron microscopes 1 Disturbance of color computer displays 1-3 Disturbance of monochrome computer displays 3-5 Erasure of credit card and bank card coding 10 Effects on watches and micromechanical devices 10 Lowest known field effect on pacemakers 17 Saturation of transformers and amplifiers 50 Erasure of floppy disks 350 Site Planning Guide for Superconducting NMR Systems, Bruker Instruments (1992). 5.C.11.8 Handling Spills of Elemental Mercury Mercury spills can be avoided by using supplies and equipment that do not contain mercury. However, most mercury spills do not pose a high risk. The initial response to a spill of elemental mercury should be to isolate the spill area and begin the cleanup procedure. Those doing the cleanup should wear protective gloves. The cleanup should begin with collecting the droplets. The large droplets can be consolidated by using a scraper or a piece of cardboard, and the pool of mercury removed with a pump or other appropriate equipment. A standard vacuum cleaner should never be used to pick up mercury. If a house vacuum system is used, it can be protected from the mercury by a charcoal filter in a trap. For cleaning up small mercury droplets, a special vacuum pump may be used, or the mercury may be picked up on wet toweling, which consolidates the small droplets to larger pieces, or picked up with a piece of adhesive tape. Commercial mercury spill cleanup sponges and spill control kits are available. The common practice of using sulfur should be discontinued because the practice is ineffective and the resulting waste creates a disposal problem. The mercury should be placed in a thick-wall high-density polyethylene bottle and transferred to a central depository for reclamation. After a mercury spill the exposed work surfaces and floors should be decontaminated by using an appropriate decontamination kit. 3 5.G.6 Reactive or Explosive Materials Requiring Special Attention An explosive is any chemical compound or mechanical mixture that, when subjected to heat, impact, friction, detonation, or other suitable initiation, undergoes rapid chemical change, evolving large volumes of highly heated gases that exert pressure on the surrounding medium. The term applies to materials that either detonate or deflagrate. Heat, light, mechanical shock, and certain catalysts initiate explosive reactions. Hydrogen and chlorine react explosively in the presence of light. Acids, bases, and other substances catalyze the explosive polymerization of acrolein, and many metal ions can catalyze the violent decomposition of hydrogen peroxide. Shock-sensitive materials include acetylides, azides, nitrogen triiodide, organic nitrates, nitro compounds, perchlorate salts (especially those of heavy metals such as ruthenium and osmium), many organic peroxides, and compounds containing diazo, halamine, nitroso, and ozonide functional groups. Even a small sample may be dangerous. Furthermore, the hazard is associated not with the total energy released, but rather with the remarkably high rate of a detonation reaction. A high-order explosion of even milligram quantities can drive small fragments of glass or other matter deep into the body. It is important to use minimum amounts of these hazardous materials with adequate shielding and personal protection. A compound is apt to be explosive if its heat of formation is more than about 100 calories per gram (cal/g) less than the sum of the heats of formation of its products. In making this calculation, a reasonable reaction should be used in order to yield the most exothermic products. Scaling up reactions can introduce several hazards. Another situation that can lead to problems is a reaction susceptible to an induction period; particular care must be given to the rate of reagent addition versus its rate of consumption. Finally, the hazards of exothermic reactions or unstable or reactive chemicals are exacerbated under extreme conditions, such as high temperature or high pressure used for hydrogenations, oxygenations, or work with supercritical fluids. The following list is not intended to be all-inclusive. Further guidance on reactive and explosive materials should be sought. Acetylenic compounds can be explosive in mixtures of 2.5 to 80% with air. At pressures of 2 or more atmospheres, acetylene (C2H2) subjected to an electrical discharge or high temperature decomposes with explosive violence. Dry acetylides detonate on receiving the slightest shock. Acetylene must be handled in acetone solution and never stored alone in a cylinder. Aluminum chloride (AlCl3) should be considered a potentially dangerous
Recommended publications
  • Ni33nh3+3Nhi
    Pure & Appi. Chem., Vol. 49, pp.67—73. Pergamon Press, 1977. Printed in Great Britain. NON-AQJEOUS SOLVENTS FOR PREPARATION AND REACTIONS OF NITROGEN HALOGEN COMPOUNDS Jochen Jander Department of Chemistry, University of Heidelberg, D 69 Heidelberg, Germany Abstract -Theimportance of non—aqueous solvents for the chemistry of haloamines is shown in more recent reaction examples. The solvents must be low-melting because of the general temperature sensitivity of the haloamines. They may take part in the reaction (formation of CH NI •CH NH (CH )2NI, NI-,.5 NH-, and NH0I.NH-)ormay e ner (ormation of I .quinuiilidin, 2 NI •1 trithylenediamine, [I(qunuclidine),] salts pure NBr, and compounds of the type R1R2NC103 with R1 and R2 =orgnicgroup or hydrogen). INTRODUCTION Non-aqueous solvents play an important role in preparation and reactions of nitrogen halogen compounds. Due to the fact, that all haloamines are derivatives of ammonia or amines, liquid ammonia or liquid organic amines are used as solvents very often. Liquid ammonia and the lower organic amines reveal, in addition, the advantage of low melting points (liquid ammonia -78, liquid monomethylamine -93.5, liquid dimethylamine -92, liquid tn-. methylamine -12k°C); these meet the general temperature sensitivity of the nitrogen halogen compounds, especially of the pure .lorganic ones. Ammonia and amines are very seldom inert solvents; they mostly take part in the reaction planned for synthesis or conversion of the haloamine. In case a reaction of the solvent is to be avoided, one has to look for a low melting inert solvent, for example methylene chloride (m.p.
    [Show full text]
  • Theoretical Study on the Molecular and Crystal Structures of Nitrogen Trifluoride and It’S Adduct with BF3
    J. Chem. Sci. Vol. 127, No. 8, August 2015, pp. 1491–1496. c Indian Academy of Sciences. DOI 10.1007/s12039-015-0857-3 Theoretical study on the molecular and crystal structures of nitrogen trifluoride and it’s adduct with BF3 HONGCHEN DUa,b,c aSchool of Science, Zhejiang A & F University, Linan, 311300, China bZhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin’an, 311300, China cPresent address: Weifang University of Science and Technology, Jinguang Street 1299, Shouguang, 262700, China e-mail: [email protected]; [email protected] MS received 30 April 2014; revised 30 October 2014; accepted 27 January 2015 Abstract. The molecular and crystal structure of the adduct NF3·BF3 was studied computationally using density functional theory. It shows that the adduct exists in the form of a complex but is not ionic. The heats of formation in the gas and the condensed phase of the adduct are −1266.09 and −1276.37 kJ·mol−1, respectively, which indicates that it is stable under atmospheric conditions. The crystal form belongs to P 21/c space group. The calculated large band gap (Eg) of the crystal proves that it is stable. The conduction band (LUCO) is mainly contributed by the p orbital of N atom and the valence band (HOCO) from the p orbital of F atom. Keywords. Molecular; crystal; structure; property; theoretical study. 1. Introduction investigation even though there is limited information on the structure–property relationship, especially on the Molecular complexes containing boron trifluoride as a crystal structure of NF3 with BF3.
    [Show full text]
  • Naming Compounds Practice Problems KEY Naming Simple Ionic Compounds
    Chemistry HS/Science Unit: 05 Lesson: 01 Naming Compounds Practice Problems KEY Naming Simple Ionic Compounds Name the following compounds: 1) KCl potassium chloride 2) MgI2 magnesium iodide 3) FeO iron (II) oxide 4) Fe2O3 iron (III) oxide 5) Cu3P copper (I) phosphide 6) SnSe2 tin (IV) selenide 7) TiBr3 titanium (III) bromide 8) GaAs gallium arsenide 9) BeF2 beryllium fluoride 10) Cs3N cesium nitride Write the formulas for the following compounds: 1) lithium iodide LiI 2) cobalt (III) oxide Co2O3 3) calcium fluoride CaF2 4) silver bromide AgBr 5) sodium hydride NaH 6) vanadium (V) sulfide V2S5 7) lead (II) nitride Pb3N2 8) titanium (II) selenide TiSe 9) manganese (VII) arsenide Mn3As7 10) gallium chloride GaCl3 ©2013, TESCCC 06/17/13 page 1 of 4 Chemistry HS/Science Unit: 05 Lesson: 01 Naming Compounds Practice Problems Naming Complex (polyatomic) Ionic Compounds Name the following compounds: 1) NH4Cl ammonium chloride 2) Fe(NO3)3 iron (III) nitrate 3) Pb(SO4)2 lead (IV) sulfate 4) Ag3PO4 silver phosphate 5) Be(HCO3)2 beryllium hydrogen carbonate 6) Al(CN)3 aluminum cyanide 7) Mn2(SO3)3 manganese (III) sulfite 8) Sr(C2H3O2)2 strontium acetate 9) Ti(CN)4 titanium (IV) cyanide 10) YClO3 yttrium chlorate Write the formulas for the following compounds: 1) lead (IV) sulfate Pb(SO4)2 2) silver cyanide AgCN 3) copper (II) chlorate Cu(ClO3)2 4) chromium (IV) phosphate Cr3(PO4)4 5) vanadium (IV) carbonate V(CO3)2 6) ammonium oxide (NH4)2O 7) tin (II) nitrite Sn(NO2)2 8) chromium (III) hydroxide Cr(OH)3 9) titanium (II) acetate Ti(C2H3O2)2 10)
    [Show full text]
  • Potentially Explosive Chemicals*
    Potentially Explosive Chemicals* Chemical Name CAS # Not 1,1’-Diazoaminonaphthalene Assigned 1,1-Dinitroethane 000600-40-8 1,2,4-Butanetriol trinitrate 006659-60-5 1,2-Diazidoethane 000629-13-0 1,3,5-trimethyl-2,4,6-trinitrobenzene 000602-96-0 1,3-Diazopropane 005239-06-5 Not 1,3-Dinitro-4,5-dinitrosobenzene Assigned Not 1,3-dinitro-5,5-dimethyl hydantoin Assigned Not 1,4-Dinitro-1,1,4,4-tetramethylolbutanetetranitrate Assigned Not 1,7-Octadiene-3,5-Diyne-1,8-Dimethoxy-9-Octadecynoic acid Assigned 1,8 –dihydroxy 2,4,5,7-tetranitroanthraquinone 000517-92-0 Not 1,9-Dinitroxy pentamethylene-2,4,6,8-tetramine Assigned 1-Bromo-3-nitrobenzene 000585-79-5 Not 2,2',4,4',6,6'-Hexanitro-3,3'-dihydroxyazobenzene Assigned 2,2-di-(4,4,-di-tert-butylperoxycyclohexyl)propane 001705-60-8 2,2-Dinitrostilbene 006275-02-1 2,3,4,6- tetranitrophenol 000641-16-7 Not 2,3,4,6-tetranitrophenyl methyl nitramine Assigned Not 2,3,4,6-tetranitrophenyl nitramine Assigned Not 2,3,5,6- tetranitroso nitrobenzene Assigned Not 2,3,5,6- tetranitroso-1,4-dinitrobenzene Assigned 2,4,6-Trinitro-1,3,5-triazo benzene 029306-57-8 Not 2,4,6-trinitro-1,3-diazabenzene Assigned Not 2,4,6-Trinitrophenyl trimethylol methyl nitramine trinitrate Assigned Not 2,4,6-Trinitroso-3-methyl nitraminoanisole Assigned 2,4-Dinitro-1,3,5-trimethyl-benzene 000608-50-4 2,4-Dinitrophenylhydrazine 000119-26-6 2,4-Dinitroresorcinol 000519-44-8 2,5-dimethyl-2,5-diydroperoxy hexane 2-Nitro-2-methylpropanol nitrate 024884-69-3 3,5-Dinitrosalicylic acid 000609-99-4 Not 3-Azido-1,2-propylene glycol dinitrate
    [Show full text]
  • A NARROW- BEAM X - RAY ATTENUATION of PHOTONS 0.05 - 0.5 Mev in CHEMICAL EXPLOSIVES
    The Sixth International Conference "Modern Problems of Nuclear Physics", September 19-22,2006 _ _ _ INP-SO A NARROW- BEAM X - RAY ATTENUATION OF PHOTONS 0.05 - 0.5 MeV IN CHEMICAL EXPLOSIVES Cherkasov A.S. National University, Kharkov, Ukraine UZ0603199 Basic explosives [1] are - Tetryl (CeHsNsOg); Hexamethylenetetramine (urotropin) (HMT- C6Hi2N4); 2,4,6 - Trinitrotoluene (TNT - C7H5N3O3); 1,3 - Dinitrobenzene (DNB - C6H4N2O4); Picric acid (2,4,6 - trinitrophenol - C6H3N3O7); TATP (C9Hig06); Hexogen (RDX - C3H6N6O6); Pentaeritronitrate-Nitropenta (PETN - C5H8N4O12); Octogen (HMX - C^NgOg). RDX and/or PETN are usually used in plastic explosives. Examples include C-4, Detasheet, and Semtex). HMX (Octogen) is a very powerful and expensive military explosive, which has been employed in solid-fuel rocket propellants and in military high performance warheads. Currently used military explosives are mostly a combination of TNT, RDX, PETN, HMX, with a number of organic compounds (waxes (e.g. nitroparaffine - C10H8N2O4), plasticizers, stabliers, oil, etc.); example Composition B (RDX, TNT), Composition C-4 (or PE-4) (RDX), Detasheet (PETN), Octol (HMX, TNT), Semtex-H (RDX, PETN), etc. Nitroglycerin (NG - C3H5N3O9)5 Nitrocellulose (QKWMONCfefc. C6H803(ON02)2, C6H9O4(ONO2)) and Ammonium Nitrate (AN - H4N2C>3) are used as a basis of other families of explosives: a) dynamites in case of NG with nitroglycol (C4H8N2O2), powders of Al or Mg, with TNT and ammonal (TNT with Al-powder), wood flour, etc.; b) white(smokeless) gunpowders(guncotton-nitrocotton - collodion cotton, pyroxylinies (e.g. tetranitrate of pulp - colodion wool - C^HigOeONTC^), cordites, ballistites with ammonium perclorate (NH4CIO4) as oxidizer. Dynamites are typically used as a high explosive for industrial applications and in solid rocket propellants.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Chemical Hygiene Plan
    Chemical Hygiene Plan Prepared by Lori Jennis, CIH of ECOS Inc. under direction of: Stephen D. Kucera, Ph.D. Chemical Hygiene & Biological Safety Officer The University of Tampa 401 W. Kennedy Blvd Tampa, FL 33606-1490 January 2021 Edition Version 1.3 Chemical Hygiene Plan for The University of Tampa Effective January 2021 TABLE OF CONTENTS 1.0 Introduction ............................................................................................................. 1 1.1. Purpose ................................................................................................................ 1 1.2. Intent .................................................................................................................... 1 1.3. Organization ........................................................................................................ 1 1.4. Location ............................................................................................................... 2 1.5. Chemical Safety Website .................................................................................... 2 2.0 Responsibilities ........................................................................................................ 2 2.1. President of the University .................................................................................. 2 2.2. Chemical Hygiene & Biological Safety Officer .................................................. 3 2.3. Principal Investigator..........................................................................................
    [Show full text]
  • Nitrogen Triiodide
    Nitrogen Triiodide Method #1: This is a very powerful and shock sensitive explosive. Never store it and be careful for air movements, and other tiny things could set it off. Materials: 2-3g Iodine 15ml Conc. Ammonia 8 Sheets of filter paper 50ml Beaker Feather on a 10ft pole Ear plugs Tape Spatula Stirring rod Add iodine to ammonia in the beaker. Stir, let stand for 5 minutes. Do the following within 5 minutes!! Retain the solid, and pour off the liquid. Scrape the brown solid onto a stack of four sheets of filter paper. Divide solid into four parts, putting each on a sheet of dry filter paper. Tape in position. Leave to dry undisturbed for at least 30 minutes. To detonate, touch with the feather. Wear the ear plugs while doing this...it is very loud! Method #2: AMMONIUM TRIIODIDE CRYSTALS Ammonium triiodide crystals are foul-smelling purple colored crystals that decompose under the slightest amount of heat, friction, or shock, if they are made with the purest ammonia (ammonium hydroxide) and iodine. Such crystals are said to detonate when a fly lands on them, or when an ant walks across them. Household ammonia, however, has enough impurities, such as soaps and abrasive agents, so that the crystals will detonate when thrown,crushed, or heated. Upon detonation, a loud report is heard, and a cloud of purple iodine gas appears about the detonation site. Whatever the unfortunate surface that the crystal was detonated upon will usually be ruined, as some of the iodine in the crystal is thrown about in a solid form, and iodine is corrosive.
    [Show full text]
  • Life and Death with Nitrogen
    in your element Life and death with nitrogen Although first known among chemists for its noxious or lifeless character, nitrogen was later revealed to be involved in many life, and death, processes. Michael Tarselli ponders on this unforeseen characteristic. oticing that nitrogen gas (N2) supported of N2 with H2) was developed around the neither combustion nor life, many First World War; before then, explosives were Nscientific luminaries of the eighteenth produced from concentrated nitrates found in century — Scheele, Priestley, Lavoisier… guano (bird droppings). Nitrogen’s penchant — referred to nitrogen as ‘noxious air’, or for explosion extends to TNT, ammonium even ‘lifeless’. Yet element 7 has boasted an nitrate, nitroglycerin and nitrogen triiodide unparalleled career in the ensuing 300 years, — which decomposes at a feather’s touch, participating in organic catalysis, bombs, making for a thrilling demonstration tool. power generation, food contamination, and Despite knowing that compounds with high the elucidation of DNA’s structure. nitrogen-to-carbon ratios, like azides and Nitrogen heads up Group 15, the tetrazoles, are potentially explosive, chemists appropriately named pnictides (from the cannot resist. Recently, Klapötke and co- Greek pnigein, ‘to choke’), which includes workers synthesized a compound with a other life-and-death players: arsenic, a 10-nitrogen-atom chain, which was barely poison also found in drugs, and phosphorus, stable enough to allow analysis and shattered toxic yet present in the backbone of DNA. several pieces of lab glassware5. These elements have three unpaired electrons The life-or-death duality is observed in their p valence shell, and may also bond © ALEX WING throughout medical and pharmaceutical through their s electrons, so they ideally want history.
    [Show full text]
  • Potentially Explosive and Explosive Compounds*
    Standard Operating Procedure POTENTIALLY EXPLOSIVE AND EXPLOSIVE COMPOUNDS* This standard operating procedure (SOP) is intended to provide general guidance on how to safely work with compounds which are explosive or potentially explosive. This SOP is generic in nature and only addresses safety issues specific to these materials. In some instances, several general use SOPs may be applicable for a specific chemical. An explosive is any chemical compound or mechanical mixture that, when subjected to heat, impact, friction, detonation, or other suitable initiation, undergoes rapid chemical change, evolving large volumes of gases that exert pressure on the surrounding medium. The term applies to materials that either detonate or deflagrate. Heat, light, mechanical shock and certain catalysts initiate explosive reactions. Examples of potentially explosive and explosive compounds include: Potentially Explosive Compounds (PEC) Acetyl peroxide Acetylene Ammonium nitrate Ammonium perchlorate Ammonium picrate Barium azide Benzoyl peroxide Bromopropyne Butanone peroxide Cumene peroxide Diazodinitrophenol Dinitrophenol Dinitrophenylhydrazine Dinitroresorcinol Dipicryl amine Dipicryl sulphide Dodecanoyl peroxide Ethylene oxide Heavy metal azides Lauric peroxide Lead azide Lithium azide Methyl ethyl ketone peroxide Mercury azide Mercury fulminate Nitrocellulose Nitrogen trifluoride Nitrogen triiodide Nitroglycerine Nitroguanidine Nitromethane Nitrourea Organic azides Picramide Picric acid Picryl chloride Picryl sulphonic acid Potassium azide Propargyl
    [Show full text]
  • Safety Data Sheet
    Safety Data Sheet Revision date: 05.2015 Version: 1.1 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Trade name/designation: Perchloric acid, BDH Aristar® Plus Perchloric acid, BDH Aristar® Ultra Product No.: 87003-265, 87003-267 87003-230 Other means of identification: EU Index # 017-006-00-4 1.2. Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses: For laboratory use only. Not for drug, food, or household use. 1.3. Details of the supplier of the safety data sheet Manufactured for VWR International, LLC VWR International Co Radnor Corporate Center 2360 Argentia Road 100 Matsonford Road Mississauga, ON L5N 5Z7 Radnor, PA 19087-8660 CANADA Telephone 610.386.1700 800.932.5000 1.4. Emergency Telephone number CHEMTREC 800.424.9300 CANUTEC 613.996.6666 SECTION 2: Hazards identification 2.1. Classification of the substance or mixture GHS Classification in accordance with 29 CFR 1910 (OSHA HCS) and WHMIS HPR For the full text of the H-Statement(s) and P-Statement(s) mentioned in this Section, see Section 16. Hazard classes and hazard categories Hazard statements Oxidizing liquid, category 1 H271 Skin corrosion, category 1A H314 Corrosive to metals, category 1 H290 2.2. GHS Label elements, including precautionary statements Pictograms: Signal word: Danger Product Number: 87003-265, 87003-267, 87003-230 Page 1 of 11 Safety Data Sheet Hazard statements H271 May cause fire or explosion; strong oxidizer. H314 Causes severe skin burns and eye damage. Precautionary statements P280 Wear protective gloves/protective clothing/eye protection/face protection.
    [Show full text]
  • Working with Highly Reactive Or Explosive Chemicals
    P:NAU:CHM:21 Date: 11/19/2008 Supersedes: 6/3/2008 WORKING WITH HIGHLY REACTIVE OR EXPLOSIVE CHEMICALS Occasionally, it is necessary to handle materials that are known to be explosive or that may contain explosive impurities such as peroxides. Since explosive chemicals might be detonated by mechanical shock, elevated temperature, or chemical action with forces that release large volumes of gases, heat, and often toxic vapors, they must be treated with special care. The proper handling of highly energetic substances without injury demands attention to the most minute detail. The unusual nature of work involving such substances requires special safety measures and handling techniques that must be understood thoroughly and followed by all persons involved. 1. Personal Protective Apparel - When explosive materials are handled, the following items of personal protective apparel are needed: a. Safety glasses that have solid side shields or goggles should be worn by all personnel, including visitors, in the laboratory. b. Full-length shields that fully protect the face and throat should be worn whenever the worker is in a hazardous or exposed position. Special care is required when operating or manipulating synthesis systems that may contain explosives (e.g., diazomethane), when bench shields are moved aside, and when handling or transporting such systems. In view of the special hazard to life that results from severing the jugular vein, extra shielding around the throat is recommended. c. Heavy leather gloves should be worn if it is necessary to reach behind a shielded area while a hazardous experiment is in progress or when handling reactive compounds or gaseous reactants.
    [Show full text]