Questionnaire
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review and Updated Checklist of Freshwater Fishes of Iran: Taxonomy, Distribution and Conservation Status
Iran. J. Ichthyol. (March 2017), 4(Suppl. 1): 1–114 Received: October 18, 2016 © 2017 Iranian Society of Ichthyology Accepted: February 30, 2017 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.7508/iji.2017 http://www.ijichthyol.org Review and updated checklist of freshwater fishes of Iran: Taxonomy, distribution and conservation status Hamid Reza ESMAEILI1*, Hamidreza MEHRABAN1, Keivan ABBASI2, Yazdan KEIVANY3, Brian W. COAD4 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran 2Inland Waters Aquaculture Research Center. Iranian Fisheries Sciences Research Institute. Agricultural Research, Education and Extension Organization, Bandar Anzali, Iran 3Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan 84156-83111, Iran 4Canadian Museum of Nature, Ottawa, Ontario, K1P 6P4 Canada *Email: [email protected] Abstract: This checklist aims to reviews and summarize the results of the systematic and zoogeographical research on the Iranian inland ichthyofauna that has been carried out for more than 200 years. Since the work of J.J. Heckel (1846-1849), the number of valid species has increased significantly and the systematic status of many of the species has changed, and reorganization and updating of the published information has become essential. Here we take the opportunity to provide a new and updated checklist of freshwater fishes of Iran based on literature and taxon occurrence data obtained from natural history and new fish collections. This article lists 288 species in 107 genera, 28 families, 22 orders and 3 classes reported from different Iranian basins. However, presence of 23 reported species in Iranian waters needs confirmation by specimens. -
LCSH Section K
K., Rupert (Fictitious character) Motion of K stars in line of sight Ka-đai language USE Rupert (Fictitious character : Laporte) Radial velocity of K stars USE Kadai languages K-4 PRR 1361 (Steam locomotive) — Orbits Ka’do Herdé language USE 1361 K4 (Steam locomotive) UF Galactic orbits of K stars USE Herdé language K-9 (Fictitious character) (Not Subd Geog) K stars—Galactic orbits Ka’do Pévé language UF K-Nine (Fictitious character) BT Orbits USE Pévé language K9 (Fictitious character) — Radial velocity Ka Dwo (Asian people) K 37 (Military aircraft) USE K stars—Motion in line of sight USE Kadu (Asian people) USE Junkers K 37 (Military aircraft) — Spectra Ka-Ga-Nga script (May Subd Geog) K 98 k (Rifle) K Street (Sacramento, Calif.) UF Script, Ka-Ga-Nga USE Mauser K98k rifle This heading is not valid for use as a geographic BT Inscriptions, Malayan K.A.L. Flight 007 Incident, 1983 subdivision. Ka-houk (Wash.) USE Korean Air Lines Incident, 1983 BT Streets—California USE Ozette Lake (Wash.) K.A. Lind Honorary Award K-T boundary Ka Iwi National Scenic Shoreline (Hawaii) USE Moderna museets vänners skulpturpris USE Cretaceous-Paleogene boundary UF Ka Iwi Scenic Shoreline Park (Hawaii) K.A. Linds hederspris K-T Extinction Ka Iwi Shoreline (Hawaii) USE Moderna museets vänners skulpturpris USE Cretaceous-Paleogene Extinction BT National parks and reserves—Hawaii K-ABC (Intelligence test) K-T Mass Extinction Ka Iwi Scenic Shoreline Park (Hawaii) USE Kaufman Assessment Battery for Children USE Cretaceous-Paleogene Extinction USE Ka Iwi National Scenic Shoreline (Hawaii) K-B Bridge (Palau) K-TEA (Achievement test) Ka Iwi Shoreline (Hawaii) USE Koro-Babeldaod Bridge (Palau) USE Kaufman Test of Educational Achievement USE Ka Iwi National Scenic Shoreline (Hawaii) K-BIT (Intelligence test) K-theory Ka-ju-ken-bo USE Kaufman Brief Intelligence Test [QA612.33] USE Kajukenbo K. -
Possibilities of Restoring the Iraqi Marshes Known As the Garden of Eden
Water and Climate Change in the MENA-Region Adaptation, Mitigation,and Best Practices International Conference April 28-29, 2011 in Berlin, Germany POSSIBILITIES OF RESTORING THE IRAQI MARSHES KNOWN AS THE GARDEN OF EDEN N. Al-Ansari and S. Knutsson Dept. Civil, Mining and Environmental Engineering, Lulea University, Sweden Abstract The Iraqi marsh lands, which are known as the Garden of Eden, cover an area about 15000- 20000 sq. km in the lower part of the Mesopotamian basin where the Tigris and Euphrates Rivers flow. The marshes lie on a gently sloping plan which causes the two rivers to meander and split in branches forming the marshes and lakes. The marshes had developed after series of transgression and regression of the Gulf sea water. The marshes lie on the thick fluvial sediments carried by the rivers in the area. The area had played a prominent part in the history of man kind and was inhabited since the dawn of civilization by the Summarian more than 6000 BP. The area was considered among the largest wetlands in the world and the greatest in west Asia where it supports a diverse range of flora and fauna and human population of more than 500000 persons and is a major stopping point for migratory birds. The area was inhabited since the dawn of civilization by the Sumerians about 6000 years BP. It had been estimated that 60% of the fish consumed in Iraq comes from the marshes. In addition oil reserves had been discovered in and near the marshlands. The climate of the area is considered continental to subtropical. -
Mathematical Model for Evaluating of Sediment Transport (Case Study: Karkheh River in Iran)
ISSN (Print) : 0974-6846 Indian Journal of Science and Technology, Vol 8(23), DOI: 10.17485/ijst/2015/v8i23/75246, September 2015 ISSN (Online) : 0974-5645 Mathematical Model for Evaluating of Sediment Transport (Case Study: Karkheh River in Iran) Farhang Azarang1*, Abdol Rasoul Telvari2, Hossein Sedghi1 and Mahmoud Shafai Bajestan3 1Department of Water Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran - 1477893855, Iran; [email protected], [email protected] 2Department of Civil Engineering, Faculty of Engineering, Islamic Azad University, Ahwaz, Iran; [email protected] 3Department of Water Science and Engineering, Shahid Chamran University, Ahwaz, Iran; [email protected] Abstract Reservoir dams are the most important hydraulic structures built on rivers and have a great impact on the river conditions. In this study, MIKE 11 mathematical model in Karkheh river is used in Iran. Karkheh River is one of the most important rivers of Iran on which Karkheh Reservoir Dam is built. MIKE 11 Model is used for simulation of flow and sediment in rivers. The studied Kriavrekr hfelohw R idvoerw annsdtr ceoammp ouft aKtiaornkahle rhe sRueltsse wrveorier cDoammp aarnedd eancdo emvaplausasteesd gweiotmh oebtrsiecr, vhaytdiornaual idc aatan.d C rsoesdsim seecnttios nianlf ogremomateiotrnic oafl cKhaarnkghesh oRfi vKearr kinh Aehb dRoivlkehr aunp asntrde aHmam (Aidbidyeohlk hhyadnr hoymdertormic esttraitci osntast. iMona)n wnienrge’ sc raolcuuglhanteeds sa cnode tfhfiec ibeenst t0 w.0a2y5s wtoa sp rceodniscitd cehreadn gfoesr shape. Longitudinal bed level changes of Karkheh River was estimated from upstream to downstream. Elevation changes of Kwaerrkeh ienhtr roidvuerc ebde. dE nwgaesl uonbdta-Hinaends eant tahned h Aycdkreorms-eWtrhicit est eaqtiuoantsio onfs A obffdeorlekdh abne t(tuerp sptrreedaimct)i oannsd o Hf cahmaindgiehs i(nd othwen Kstarrekahmeh) uRsivinegr MIKE 11 Model. -
Evaluation of Precipitation and River Discharge Variations Over Southwestern Iran During Recent Decades
Evaluation of precipitation and river discharge variations over southwestern Iran during recent decades Azadeh Arbabi Sabzevari1,∗, Mohammad Zarenistanak2, Hossein Tabari3 and Shokat Moghimi4 1Department of Geography, Islamshahr Branch, Islamic Azad University, Tehran, Iran. 2Research Institute of Shakes Pajouh, Isfahan, Iran. 3Hydraulics Division, Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, BE-3001 Leuven, Belgium. 4Department of Geography, Central Tehran Branch, Islamic Azad University, Tehran, Iran. ∗Corresponding author. e-mail: [email protected] This study investigates trend and change point in the annual and monthly precipitation and river dis- charge time series for a 56-year period (1956/57–2011/12). The analyses were carried out for 17 rain gauge stations and 13 hydrometric stations located in the southwest regions of Iran. Five statistical tests of Mann–Kendall, Spearman, Sequential Mann–Kendall, Pettitt and Sen’s slope estimator were utilized for the analysis. The relationships between the precipitation and river discharge series were also exam- ined by the Pearson correlation test. The results obtained for the precipitation time series indicated that most of the stations were characterized by insignificant trends for both the annual and monthly series. The analysis of discharge trends revealed a significant increase during both the annual and October through April series. The magnitude of significant increasing trends in annual river discharge ranged between 6.65 and 20.49 m3/s per decade. The highest number of significant trends in the monthly river discharge series was observed in January and February, accounting for seven and four trends respectively. Furthermore, most of the annual and monthly river discharge series showed significant change points in the 1970s. -
CHAPTER 3 HYDROLOGICAL MODELING 3.1 Introduction 3.2
The Study on Flood and Debris Flow Supporting Report I (Master Plan) Paper IV in the Caspian Coastal Area Meteo-Hydrology focusing on the Flood-hit Region in Golestan Province CHAPTER 3 HYDROLOGICAL MODELING 3.1 Introduction An integrated and distributed MIKE SHE hydrological model is used to evaluate rainfall-runoff process in the Madarsoo River basin. The model is able to analyze impacts of watershed management practices, land use, soil types, topographic features, flow regulation structures, etc. over the basin on river flows. For this, MIKE SHE model was coupled with MIKE 11 river modeling system to simulate flows in the river system. Inflows and hydrodynamic processes in rivers are taken into consideration for model development. The model computes river flows taking account of overland flow, interflow and base-flow. An integrated and distributed hydrological model MIKE SHE was set up for the Madarsoo River basin for the following reasons: (1) To generate probable or design discharges precisely in the river system to assist on flood control master plan development, (2) To analyze the impacts of watershed management practices and biological measures of flood mitigation by quantifying river flows under these circumstances, and (3) To analyze the impact of incorporation of flood regulation structures like dam in the river system to reduce peak flows. 3.2 MIKE SHE MIKE SHE is an integrated hydrological model because all components of hydrological cycle (precipitation, evapotranspiration, surface flow, infiltration, groundwater flow, etc.) are incorporated into the model. Similarly, and it is also a distributed model because the model can handle spatial and temporal distributions of parameters. -
See the Document
IN THE NAME OF GOD IRAN NAMA RAILWAY TOURISM GUIDE OF IRAN List of Content Preamble ....................................................................... 6 History ............................................................................. 7 Tehran Station ................................................................ 8 Tehran - Mashhad Route .............................................. 12 IRAN NRAILWAYAMA TOURISM GUIDE OF IRAN Tehran - Jolfa Route ..................................................... 32 Collection and Edition: Public Relations (RAI) Tourism Content Collection: Abdollah Abbaszadeh Design and Graphics: Reza Hozzar Moghaddam Photos: Siamak Iman Pour, Benyamin Tehran - Bandarabbas Route 48 Khodadadi, Hatef Homaei, Saeed Mahmoodi Aznaveh, javad Najaf ...................................... Alizadeh, Caspian Makak, Ocean Zakarian, Davood Vakilzadeh, Arash Simaei, Abbas Jafari, Mohammadreza Baharnaz, Homayoun Amir yeganeh, Kianush Jafari Producer: Public Relations (RAI) Tehran - Goragn Route 64 Translation: Seyed Ebrahim Fazli Zenooz - ................................................ International Affairs Bureau (RAI) Address: Public Relations, Central Building of Railways, Africa Blvd., Argentina Sq., Tehran- Iran. www.rai.ir Tehran - Shiraz Route................................................... 80 First Edition January 2016 All rights reserved. Tehran - Khorramshahr Route .................................... 96 Tehran - Kerman Route .............................................114 Islamic Republic of Iran The Railways -
Water Management in Iran: What Is Causing the Looming Crisis
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/264936452 Water management in Iran: What is causing the looming crisis Article in Journal of Environmental Studies and Sciences · December 2014 DOI: 10.1007/s13412-014-0182-z CITATIONS READS 81 1,742 1 author: Kaveh Madani Imperial College London 163 PUBLICATIONS 2,275 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: System of Systems Analysis of Electricity Technologies in the European Union View project CHANSE: Coupled Human And Natural Systems Environment for water management under uncertainty in the Indo-Gangetic Plain View project All content following this page was uploaded by Kaveh Madani on 22 August 2014. The user has requested enhancement of the downloaded file. J Environ Stud Sci DOI 10.1007/s13412-014-0182-z Water management in Iran: what is causing the looming crisis? Kaveh Madani # AESS 2014 Abstract Despite having a more advanced water manage- Introduction ment system than most Middle Eastern countries, similar to the other countries in the region, Iran is experiencing a serious Located in West Asia, bordering the Caspian Sea in the north, water crisis. The government blames the current crisis on the and the Persian Gulf and Sea of Oman in the south, Iran is the changing climate, frequent droughts, and international sanc- second largest country in the Middle East (after Saudi Arabia) tions, believing that water shortages are periodic. However, and the 18th largest country in the world with an area of the dramatic water security issues of Iran are rooted in decades 1,648,195 km2. -
Powpa Action-Plan-Republic of Iraq
Action Plan for Implementing the Programme of Work on Protected Areas of the Convention on Biological Diversity Iraq Submitted to the Secretariat of the Convention on Biological Diversity [20 May 2012] Protected area information: PoWPA Focal Point Dr. Ali Al-Lami, Ph.D.(Ecologist) Minister Advisor; Ministry of Environment of Iraq Email: [email protected] Lead implementing agency : Ministry of Environment of Iraq Multi-stakeholder committee : In Iraq there are several national Committees that were established to support the Government in developing policies, planning and reporting on different environmental fields. As for Protected areas, two national committees are relevant: - The National Committee for Protected Areas - Iraq National Marshes and Wetlands Committee National Committee for Protected Areas A National Committee for Protected Areas was established in 2008 for planning and management of a network of Protected Areas in Iraq. This national inter-ministerial Committee is lead by the Ministry of Environment and is formed by the representatives of the following institutions: • Ministry of Environment (Leader) • Ministry of Higher Education & Scientific Research • Ministry of Water Resources • Ministry of Science & Technology • Ministry of Municipalities & Public Works • Ministry of State for Tourism & Antiquities • Ministry of Agriculture • Ministry of Education • NGO representative Nature Iraq Organization Iraq National Marshes and Wetlands Committee (RAMSAR Convention) The Ramsar Convention on Wetlands was ratified by Iraq in October -
Fuzzy Clustering and Distributed Model for Streamflow Estimation In
www.nature.com/scientificreports OPEN Fuzzy clustering and distributed model for streamfow estimation in ungauged watersheds Amirhosein Mosavi1,2, Mohammad Golshan3, Bahram Choubin4*, Alan D. Ziegler5, Shahram Khalighi Sigaroodi6, Fan Zhang7 & Adrienn A. Dineva8,9* This paper proposes a regionalization method for streamfow prediction in ungauged watersheds in the 7461 km2 area above the Gharehsoo Hydrometry Station in the Ardabil Province, in the north of Iran. First, the Fuzzy c-means clustering method (FCM) was used to divide 46 gauged (19) and ungauged (27) watersheds into homogenous groups based on a variety of topographical and climatic factors. After identifying the homogenous watersheds, the Soil and Water Assessment Tool (SWAT) was calibrated and validated using data from the gauged watersheds in each group. The calibrated parameters were then tested in another gauged watershed that we considered as a pseudo ungauged watershed in each group. Values of R-Squared and Nash–Sutclife efciency (NSE) were both ≥ 0.70 during the calibration and validation phases; and ≥ 0.80 and ≥ 0.74, respectively, during the testing in the pseudo ungauged watersheds. Based on these metrics, the validated regional models demonstrated a satisfactory result for predicting streamfow in the ungauged watersheds within each group. These models are important for managing stream quantity and quality in the intensive agriculture study area. Ungauged watersheds are prevalent throughout the world1, particularly in small watersheds where a strong understanding of local stream response to rainfall inputs is critical to specifc management issues 2. While a prediction of streamfow and value of output in a specifc time is essential for engineering practices and having sustainable watershed management. -
BASRA : ITS HISTORY, CULTURE and HERITAGE Basra Its History, Culture and Heritage
BASRA : ITS HISTORY, CULTURE AND HERITAGE CULTURE : ITS HISTORY, BASRA ITS HISTORY, CULTURE AND HERITAGE PROCEEDINGS OF THE CONFERENCE CELEBRATING THE OPENING OF THE BASRAH MUSEUM, SEPTEMBER 28–29, 2016 Edited by Paul Collins Edited by Paul Collins BASRA ITS HISTORY, CULTURE AND HERITAGE PROCEEDINGS OF THE CONFERENCE CELEBRATING THE OPENING OF THE BASRAH MUSEUM, SEPTEMBER 28–29, 2016 Edited by Paul Collins © BRITISH INSTITUTE FOR THE STUDY OF IRAQ 2019 ISBN 978-0-903472-36-4 Typeset and printed in the United Kingdom by Henry Ling Limited, at the Dorset Press, Dorchester, DT1 1HD CONTENTS Figures...................................................................................................................................v Contributors ........................................................................................................................vii Introduction ELEANOR ROBSON .......................................................................................................1 The Mesopotamian Marshlands (Al-Ahwār) in the Past and Today FRANCO D’AGOSTINO AND LICIA ROMANO ...................................................................7 From Basra to Cambridge and Back NAWRAST SABAH AND KELCY DAVENPORT ..................................................................13 A Reserve of Freedom: Remarks on the Time Visualisation for the Historical Maps ALEXEI JANKOWSKI ...................................................................................................19 The Pallakottas Canal, the Sealand, and Alexander STEPHANIE -
Ecocide and Renewal in Iraq's Marshlands
Ending the Silence BY TOVA FLEMING & DR. MICHELLE ST EVEN S Photo of wild hogs in foreground and reed dwellings in the distance by Nik Wheeler Photo of wild hogs in foreground and reed dwellings the distance by Nik Ecocide and Renewal in Iraq’s Mashlands oisy fans carve paths of relief through the hot dominate the majority of images, women in black wail thick midsummer air of a classroom at the in grief, men scream into cameras, and children stare University of Barcelona. Small paper make- with eyes that appear much older than their years. shift fans flutter like migrating butterflies The intellectual blackout imposed by the Baathist re- Nacross the rows of tables as thirteen Iraqi scientists from gime, in combination with the Western media’s portray- the Basra Marine Science Center, University of Basra, al of the Middle East, obscures a vibrant and passionate Iraq, prepare to present their research on the Mesopota- people with a rich cultural and ecological history as well mian Marshes, Shatt al Arab River, and Gulf to a group as an ecological crisis of tragic proportions occurring of international peers who have convened at the World throughout the Tigris and Euphrates watersheds. The Congress for Middle Eastern Studies, July, 2010. media distortion also conceals the people trying to save This is the first time these scientists have had a chance the Tigris, Euphrates, and Mesopotamian Marshes. to present their research to an international audience. Surrounded by desert to the west and south, the Tigris “Scientists in Iraq have been living in a blackout for thir- and Euphrates Rivers bring life to the Mesopotamian re- ty years because of the gion, and an abundance dictatorship.