Insect and Mite Pests
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Treatments for the Protection of Stored Southern-Grown Corn from Rice Weevil Attack — Exploratory Tests ~
Historic, archived document Do not assume content reflects current scientific l<nowledge, policies, or practices. C~1 ^^ i -»T f-W-t-^-m-—, y>/^ .'3 L i B R •:i;RPEin SERIAL KLUu.^. Marketing Research Report No.272 L- nr.T2 7lS58 '.' S. uEFARTMENT OF AGRICULTURE Treatments for the Protection of Stored Southern-Grown Corn from Rice Weevil Attack — Exploratory Tests ~ Marketing Research Division Agricultural Marketing Service U.S. DEPARTMENT OF AGRICULTURE WARNING No tolerances have been established for the use of lindane, methoxychlor, or ryania as insecticidal applications to the entire bulk of stored grain for the prevention of insect infestation. The tests reported herein were exploratory studies to develop information that could be used in considering the establishment of tolerances. Until such tolerances are announced, lindane, methoxychlor, or ryania protective treatments should not be used. A tolerance of 2 p. p.m. for methoxychlor in grain permits the spraying of bin walls and some surface applications, but is not high enough to cover protective treat- ments in the sense considered here. CONTENTS Page Summary 1 Introduction 2 Techniques 2 Tests with lindane 4 Tests with malathion 6 Tests with methoxychlor 8 Tests with synergized pyrethrum 12 Tests with ryania 16 Findings 19 Washington, D. C. September 1958 sale For by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 15 cents TREATMENTS FOR THE PROTECTION OF STORED SOUTHERN-GROWN CORN FROM RICE WEEVIL ATTACK—EXPLORATORY TESTS By D. W. La Hue, Herbert Womack, and B. W. Clements, Jr. Stored-Product Insects Laboratory- Georgia Coastal Plain Experiment Station Tifton, Ga.-"- SUMMARY Exploratory studies were made at Tifton, Ga. -
New Brunswick Drug Plans Formulary
New Brunswick Drug Plans Formulary August 2019 Administered by Medavie Blue Cross on Behalf of the Government of New Brunswick TABLE OF CONTENTS Page Introduction.............................................................................................................................................I New Brunswick Drug Plans....................................................................................................................II Exclusions............................................................................................................................................IV Legend..................................................................................................................................................V Anatomical Therapeutic Chemical (ATC) Classification of Drugs A Alimentary Tract and Metabolism 1 B Blood and Blood Forming Organs 23 C Cardiovascular System 31 D Dermatologicals 81 G Genito Urinary System and Sex Hormones 89 H Systemic Hormonal Preparations excluding Sex Hormones 100 J Antiinfectives for Systemic Use 107 L Antineoplastic and Immunomodulating Agents 129 M Musculo-Skeletal System 147 N Nervous System 156 P Antiparasitic Products, Insecticides and Repellants 223 R Respiratory System 225 S Sensory Organs 234 V Various 240 Appendices I-A Abbreviations of Dosage forms.....................................................................A - 1 I-B Abbreviations of Routes................................................................................A - 4 I-C Abbreviations of Units...................................................................................A -
Mitochondrial Toxicity of Triclosan on Mammalian Cells
Toxicology Reports 2 (2015) 624–637 Contents lists available at ScienceDirect Toxicology Reports j ournal homepage: www.elsevier.com/locate/toxrep Mitochondrial toxicity of triclosan on mammalian cells a,∗,1 a,1 b,1 c Charmaine Ajao , Maria A. Andersson , Vera V. Teplova , Szabolcs Nagy , d e f g Carl G. Gahmberg , Leif C. Andersson , Maria Hautaniemi , Balazs Kakasi , h a Merja Roivainen , Mirja Salkinoja-Salonen a Department of Food and Environmental Sciences, Haartman Institute, University of Helsinki, POB 56, FI-00014, Finland b Institute of Theoretical and Experimental Biophysics, RAS, Puschino, Moscow Region, Russia c Department of Animal Science and Animal Husbandry, University of Pannonia, Georgikon Faculty, Deak F. u.,16, H8360 Keszthely, Hungary d Dept. of Bio- and Environmental Sciences, Haartman Institute, University of Helsinki, FI-00014, Finland e Dept. of Pathology, Haartman Institute, University of Helsinki, FI-00014, Finland f Finnish Food Safety Authority (EVIRA), Research and Laboratory Department, Veterinary Virology Research Unit, Mustialankatu 3, FI 00790 Helsinki, Finland g Institute of Environmental Sciences, University of Pannonia, Egyetem u. 10, H-8200 Veszprem, Hungary h National Institute for Health and Welfare, Department of Virology, Mannerheimintie 166, 00300 Helsinki, Finland a r t a b i c s t l r e i n f o a c t Article history: Effects of triclosan (5-chloro-2 -(2,4-dichlorophenoxy)phenol) on mammalian cells were Received 28 January 2015 investigated using human peripheral blood mono nuclear cells (PBMC), keratinocytes Received in revised form 29 March 2015 (HaCaT), porcine spermatozoa and kidney tubular epithelial cells (PK-15), murine pan- Accepted 30 March 2015 creatic islets (MIN-6) and neuroblastoma cells (MNA) as targets. -
Home Vegetable Garden Insect Pest Control
Oklahoma Cooperative Extension Service EPP-7313 Home Vegetable Garden Insect Pest Control Jonathan Edelson Entomology Specialist Oklahoma Cooperative Extension Fact Sheets are also available on our website at: Brenda Simons http://osufacts.okstate.edu Assistant Extension Specialist -Horticulture David Hillock Assistant Extension Specialist -Horticulture and ‘suck’ liquids from the plants. Examples include squash bugs, aphids, stink bugs, thrips and mites. Many of the insects that feed in this manner defecate a sticky liquid (honeydew) that often builds up on leaves or fruit, leaving a shiny residue What is an Insect Pest? that may support the growth of a black or gray sooty mold. For purposes of this Fact Sheet, we classify insects and Damaged foliage often will turn yellow and eventually brown mites as pests based on their ability to damage vegetable in color or become malformed in shape. plants and reduce your harvest from the home garden. Many insects, and all spiders, found in home vegetable gardens are beneficial and control of these insects is not recommended. Key Pests Those pests that feed directly on the harvested portion of the plant are the most destructive, since they compete directly Monitoring Pest Insects in the Home with you for the food you are trying to grow. You will have little Garden tolerance for the key pests. We recommend controlling key Insects and mites can move into your garden and then pests when found in the garden. Examples include the corn rapidly increase in numbers. You should examine plants in earworm and the tomato fruitworm. and around the garden throughout the season at least twice Many insects and mites feed on leaves or on parts of the weekly. -
Managing Insect and Mite Pests in Vegetable Gardens
Managing Insect and Mite Pests in Vegetable Gardens egetable gardening is an enjoyable pastime. the surface of a leaf when feeding, while the same The result of your labors is fresh, home- caterpillar may eat great chunks of leaves when Vgrown produce. Frequently, growing your mature. own vegetables is even less expensive than buying An insectÕs mouthparts can be a key to under- not-so-fresh produce from the market. standing the type of damage caused by a pest. However, producing your own vegetables can be Insects with sucking mouthparts feed by piercing challenging. One of the greatest challenges is to suc- leaves or fruit. Damage appears as pock marks or cessfully control insect pests. Fortunately, there are mottled leaves. Insects with chewing mouthparts numerous management alternatives that vegetable chew holes in plants. If you can recognize the type gardeners may consider when dealing with insects of feeding, you can select the proper insecticides and other pests. These include cultural, biological, (i.e., stomach poisons for chewing insects). and management controls and, last but not least, chemical controls. Plan ahead Understanding insects When planning a vegetable garden, anticipate the pests that may occur during the year. Consider all There are approximately 30,000 insect species in management practices that will help deal with the Texas. Fortunately, fewer than 100 species are rou- pests before they become problems. Then, develop a tine pests in vegetable gardens. Most insects found management plan and put it into use before prob- in gardens are either incidental or beneficial, con- lems occur. Use your past experience as a guide in tributing to pollination, the balance of nature, or anticipating pests for the upcoming season. -
Evaluation of Biorational and Natural Products for Vegetable Crop Management in Commercial Market Gardens and Home Gardens
Report to the Ohio IPM Program on a Vegetable Team Project funded by the Ohio IPM Block Grant Program, 2005 Title: Evaluation of biorational and natural products for vegetable crop management in commercial market gardens and home gardens Investigators: Celeste Welty (entomologist), Sally Miller (plant pathologist), Doug Doohan (weed scientist); Mark Bennett, Matt Kleinhenz, Bob Precheur (horticulturists). Background: The insect pests and diseases that affect vegetable crops are the same whether grown on large farms for commercial production or on small diversified farms or home gardens, but the management tactics preferred by growers are often different for the different scale operations. Many market gardeners prefer to avoid using conventional pesticides because of concern about human safety and environmental contamination. During the past few years, many biorational crop protection products have become available. While it is known that biorational products are safer to humans than conventional pesticides, it is not known whether they are effective in controlling the target pests that they claim to control. In addition to products for insect and disease control, there are many products that promote plant growth, such as microbial soil inoculants. There is little to no unbiased data available on efficacy of these products. This deficit is a limiting factor in formulating up-to-date extension recommendations for market gardens and home gardens. This project was an important first step in the development of a set of recommended garden IPM tactics that will include cultural controls to prevent or delay pest problems, along with biological controls and selective chemical controls. Objective: To evaluate efficacy of biorational products that are available for vegetable crop management, in comparison with standard conventional materials. -
Effect of Triclosan on the Functioning of Liver Mitochondria And
The Journal of Membrane Biology https://doi.org/10.1007/s00232-019-00099-w Efect of Triclosan on the Functioning of Liver Mitochondria and Permeability of Erythrocyte Membranes of Marsh Frog (Pelophylax ridibundus (Pallas, 1771)) Mikhail V. Dubinin1 · Kirill S. Tenkov1 · Anton O. Svinin1 · Victor N. Samartsev1 · Konstantin N. Belosludtsev1,2 Received: 28 June 2019 / Accepted: 24 September 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract The paper examines the efects of the antimicrobial agent triclosan on the functioning of the liver mitochondria of marsh frog (Pelophylax ridibundus (Pallas, 1771)). It was established that triclosan inhibits DNP-stimulated respiration of mito- chondria and decreases respiratory control ratio. In addition, triclosan causes the collapse of the mitochondrial membrane potential on both types of substrates. Such an action of triclosan can be mediated by both a protonophore efect and suppres- sion of the activity of complex II and combined activity of complexes II + III (and, to a lesser degree, the combined activity of complexes I + III) of the mitochondrial respiratory chain. It is shown that high concentrations of triclosan enhance the production of hydrogen peroxide during the oxidation of substrates of the complex I by mitochondria, and decrease it in the case of succinate oxidation. It is found that triclosan is able to induce nonspecifc permeability of the liver mitochondria of these amphibians, as well as the plasma membrane of erythrocytes. The possible mechanisms of triclosan efect on marsh frog liver mitochondria and red blood cells are discussed. Graphic Abstract Keywords Triclosan · Toxicology · Mitochondria · Pelophylax ridibundus · Erythrocytes · Membrane permeability Abbreviations TCS Triclosan CsA Cyclosporine * Mikhail V. -
Gas-Phase Chemical Reduction (GPCR)
Gas-Phase Chemical Reduction (GPCR) Name of Process: Status: Gas-Phase Chemical Reduction (GPCR) A Commercial system operated in Australia for more than 5 years, treating Vendor: more than 2,500 tons of PCB’s, DDT and other POPs. In 1999 a full-scale test ELI Eco Logic International Inc. on HCB was conducted using the commercial plant. Web site: http://www.ecologic.ca Eco Logic’s partners in Japan have recently built a semi-mobile GPCR plant for Applicable Pesticides and related the treatment of PCB wastes, which will be operational in 2003. POPs wastes: Pesticides such as Hexachlorobenzene, In combination with Foster Wheeler and Kvaerner the company is DDT, Aldrin, Dieldrin, HCB’s, DDT, PCB’s, participating at present in the ACWA (Army Chemical Weapons Assessment) dioxins and furans and other POPs. Program for the destruction of chemical warfare agents. Eco Logic has partnered with Torftech Inc. for the treatment of soils and sediments at rates of up to 20 tons per hour. Eco Logic has also been selected by UNIDO for a pilot project for treatment of 1000 tons of PCB wastes in Slovakia. Additional approvals received: -for PCB and dioxin waste in Japan -for PCB’s TSCA permit in USA -for PCB’s and other toxic compounds in the Province of Ontario (Canada) Technology description: Eco Logic’s GPCR technology involves the gas-phase chemical reduction of organic compounds by hydrogen at a temperature of 850°C or higher. Chlorinated hydrocarbons, such as HCB, polychlorinated dibenzo-p-dioxins (dioxins) and other POPs, are chemically reduced to methane and hydrogen chloride (HCl). -
Thing Natural?
Pyrethrum – Pyrethrins, Pyrethroid – Permethrin: Let’s Call the Whole Thing Natural? By Mike Catangui, Ph.D., Entomologist Manager, MWI Animal Health Technical Services Terminology This might be the reason why, despite being used for Pyrethrum: Liquid extract or dry preparation from hundreds of years, natural pyrethrins are still very effective the flowers of the pyrethrum plant (Chrysanthemum against many insect pests. Insects have not yet developed cinerariifolium). widespread resistance to natural pyrethrins despite being used for centuries. In comparison, many insect species, Pyrethrins: Collective name of the six naturally-occurring such as the house fly, can develop resistance against much insecticidal active ingredients (esters) found in pyrethrum. simpler man-made or laboratory-synthesized insecticides Pyrethroid: A manmade or laboratory-synthesized like permethrin (a synthetic pyrethroid) if used continuously insecticide patterned after one of the pyrethrins. for three to four years without employing resistance Permethrin: A pyrethroid. management strategies. Through the course of civilization, perhaps through keen observation and happenstance, humans have figured out that extracts from certain chrysanthemum flowers (Scientific Name: Chrysanthemum cinerariifolium; Common Names: pyrethrum plant, Dalmatian chrysanthemum, insect flowers) [Fig. 1] have insecticidal properties. Legend has it that a person picked certain chrysanthemum flowers as beautiful adornment—and then noticed dead insects around the flowers once they had dried and withered several days later. It is possible that pyrethrum extracts have been used for hundreds of years as insecticides in the Middle East. Persian Fig 1. Flowers of the pyrethrum plant (Chrysanthemum cinerariifolium). (Photo: Botanical Resources Australia http://botanicalra.com.au) pellitory, Persian powder and Zacherlin were names used by early Europeans to refer to preparations from pyrethrum extracts originating from the Middle East and the Balkans. -
Nobel Lecture, December 11, 1948
P AUL H. MÜLLE R Dichloro-diphenyl-trichloroethane and newer insecticides Nobel Lecture, December 11, 1948 Ladies and Gentlemen. Since Perkin synthesized the first dyestuff in 1856, about 90 years have elapsed. During this period the synthesis of artificial dyestuffs has gone through enormous development. The discovery of fuchsines by Emanuel Verguin in 1859, unlocked the tri- phenylmethane dyestuffs for the dyestuffs chemist. The very important discovery of the diazo compounds by Peter Griess, in 1858, certainly brought about the most significant reaction in the chemistry of dyestuffs, a quite unique impetus to the development of this field of organic chemistry. The most important milestones in this development are: the preparation of Bismarck brown by C. Martius in 1863, of Chrysoidine by O. N. Witt in 1876, and Congo Red, the first dyestuff capable of direct application to cotton, by P. Böttiger in 1884. This large-scale development and the vast mass of experimental material available have called for a variety of attempted explanations. The relation- ships between composition and colour on the one hand, and fastness on the other, were the subjects of several attempts at theoretical explanation. Particularly fruitful in this respect was the theory of O. N. Witt on chro- mophores and auxochromes, and the theory - valid only in special cases - of E. Schirm, J. Prakt. Chem., 144 (1936) 69, concerning the connexion between composition and affinity to cellulose fibre. Thanks to these results the dyestuffs chemist today, after about 90 years of untiring detailed study, is in the fortunate position to possess certain points of reference enabling him to set up his programme of work in bold outlines. -
Efficacy of Soil and Foliar-Applied Azadirachtin in Combination with and in Comparison to Soil-Applied Imidacloprid and Foliar-A
is indicative of a trend that will spread Efficacy of Soil and Foliar-applied Azadirachtin to the pyrethroids, there will be a in Combination with and in Comparison to strong need to look for alternatives to broad-spectrum foliar-applied pes- Soil-applied Imidacloprid and Foliar-applied ticides. Studies that evaluate the abil- ity of pesticides to reduce damage Carbaryl Against Japanese Beetles on Roses on flowers and leaves could provide simultaneous estimates of efficacy on 1,2,3 1 highly preferred and somewhat less Justin M. Vitullo and Clifford S. Sadof preferred plant substrates. Imidacloprid is one of the most ADDITIONAL INDEX WORDS. Popillia japonica, Rosa, systemic insecticide commonly used materials in land- scapes because of its activity against SUMMARY. This study evaluated azadirachtin and imidacloprid for their ability to leaf beetles (Chrysomelidae) and reduce injury by Japanese beetles [Popillia japonica (Coleoptera: Scarabaeidae)] on floribunda-type roses (Rosa sp. ‘Acadia Sunrise’), either applied to foliage or as a soil its long residual toxicity (Sclar and drench. Roses were arranged in field plots and exposed to resident adult beetle Cranshaw, 1996; Webb et al., 2003). A populations. Insecticides were evaluated in field and laboratory trials. Laboratory single systemic application of imid- assays of leaves collected from plants 14 days after soil applications of azadirachtin acloprid reduced adelgid (Adelgidae) were less preferred by adult beetles than those collected from untreated controls. populations to zero on healthy east- Plants in field trials that received soil treatments of either imidacloprid or ern hemlock trees (Tsuga canadensis) azadirachtin had defoliation levels that were <8% throughout the entire season, up to 816 d after the application whereas untreated control plants were 20% defoliated. -
OHA 8964 Technical Report: Marijuana Contaminant Testing
TECHNICAL REPORT: OREGON HEALTH AUTHORITY’S PROCESS TO DETERMINE WHICH TYPES OF CONTAMINANTS TO TEST FOR IN CANNABIS PRODUCTS, AND LEVELS FOR ACTION Author David G. Farrer, Ph.D. Public Health Toxicologist PUBLIC HEALTH DIVISION Technical Report: Oregon Health Authority’s Process to Determine Which Types of Contaminants to Test for in Cannabis Products, and Levels for Action* Author: David G. Farrer, Ph.D., Public Health Toxicologist Acknowledgments OHA would like to thank the following individuals and organizations for their valuable contributions to the development of cannabis testing Oregon Administrative Rules (OAR 333-7-0010 through 333-7-0100 and OAR 333-7-0400 and 333-7-0410 Exhibit A) and this report: Brian Boling Rose Kachadoorian Laboratory Program Manager Oregon Department of Agriculture Oregon Department of Environmental Quality Jeremy L. Sackett Cascadia Labs, Cannabis Safety Theodore R. Bunch, Jr. Institute, and Oregon Cannabis Pesticide Analytical and Response Association Center Coordination Leader Oregon Department of Agriculture Bethany Sherman Oregon Growers Analytical and Keith Crosby Cannabis Safety Institute Technical Director Synergistic Pesticide Lab Shannon Swantek Oregon Environmental Laboratory Ric Cuchetto Accreditation Program, Public The Cannabis Chemist Health Division, Oregon Health Authority Camille Holladay Lab Director Rodger B. Voelker, Ph.D. Synergistic Pesticide Lab Lab Director Oregon Growers Analytical Mowgli Holmes, Ph.D. Phylos Bioscience and Cannabis Safety Institute For information on this report, contact David Farrer at [email protected]. * Please cite this publication as follows: Farrer DG. Technical report: Oregon Health Authority’s process to decide which types of contaminants to test for in cannabis. Oregon Health Authority.