Synthetic Pyrethroids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Restricted Use Product Summary Report
Page 1 of 17 Restricted Use Product Summary Report (January 19, 2016) Percent Active Registration # Name Company # Company Name Active Ingredient(s) Ingredient 4‐152 BONIDE ORCHARD MOUSE BAIT 4 BONIDE PRODUCTS, INC. 2 Zinc phosphide (Zn3P2) 70‐223 RIGO EXOTHERM TERMIL 70 VALUE GARDENS SUPPLY, LLC 20 Chlorothalonil 100‐497 AATREX 4L HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 42.6 Atrazine 100‐585 AATREX NINE‐O HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 88.2 Atrazine 100‐669 CURACRON 8E INSECTICIDE‐MITICIDE 100 SYNGENTA CROP PROTECTION, LLC 73 Profenofos 100‐817 BICEP II MAGNUM HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 33; 26.1 Atrazine; S‐Metolachlor 100‐827 BICEP LITE II MAGNUM HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 28.1; 35.8 Atrazine; S‐Metolachlor 100‐886 BICEP MAGNUM 100 SYNGENTA CROP PROTECTION, LLC 33.7; 26.1 Atrazine; S‐Metolachlor 100‐898 AGRI‐MEK 0.15 EC MITICIDE/INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 2 Abamectin 100‐903 DENIM INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 2.15 Emamectin benzoate 100‐904 PROCLAIM INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 5 Emamectin benzoate 100‐998 KARATE 1EC 100 SYNGENTA CROP PROTECTION, LLC 13.1 lambda‐Cyhalothrin 100‐1075 FORCE 3G INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 3 Tefluthrin Acetochlor; Carbamothioic acid, dipropyl‐ 100‐1083 DOUBLEPLAY SELECTIVE HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 16.9; 67.8 , S‐ethyl ester 100‐1086 KARATE EC‐W INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 13.1 lambda‐Cyhalothrin 100‐1088 SCIMITAR GC INSECTICIDE 100 SYNGENTA CROP PROTECTION, -
Cypermethrin
International Environmental Health Criteria 82 Cypermethrin Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization WORLD HEALTH ORGANIZATION GENEVA 1989 Other titles available in the ENVIRONMENTAL HEALTH CRITERIA series include: 1. Mercury 2. Polychlorinated Biphenyls and Terphenyls 3. Lead 4. Oxides of Nitrogen 5. Nitrates, Nitrites, and N-Nitroso Compounds 6. Principles and Methods for Evaluating the Toxicity of Chemicals, Part 1 7. Photochemical Oxidants 8. Sulfur Oxides and Suspended Particulate Matter 9. DDT and its Derivatives 10. Carbon Disulfide 11. Mycotoxins 12. Noise 13. Carbon Monoxide 14. Ultraviolet Radiation 15. Tin and Organotin Compounds 16. Radiofrequency and Microwaves 17. Manganese 18. Arsenic 19. Hydrogen Sulfide 20. Selected Petroleum Products 21. Chlorine and Hydrogen Chloride 22. Ultrasound 23. Lasers and Optical Radiation 24. Titanium 25. Selected Radionuclides 26. Styrene 27. Guidelines on Studies in Environmental Epidemiology 28. Acrylonitrile 29. 2,4-Dichlorophenoxyacetic Acid (2,4-D) 30. Principles for Evaluating Health Risks to Progeny Associated with Exposure to Chemicals during Pregnancy 31. Tetrachloroethylene 32. Methylene Chloride 33. Epichlorohydrin 34. Chlordane 35. Extremely Low Frequency (ELF) Fields 36. Fluorine and Fluorides 37. Aquatic (Marine and Freshwater) Biotoxins 38. Heptachlor 39. Paraquat and Diquat 40. Endosulfan 41. Quintozene 42. Tecnazene 43. Chlordecone 44. Mirex continued on p. 156 -
Treatments for the Protection of Stored Southern-Grown Corn from Rice Weevil Attack — Exploratory Tests ~
Historic, archived document Do not assume content reflects current scientific l<nowledge, policies, or practices. C~1 ^^ i -»T f-W-t-^-m-—, y>/^ .'3 L i B R •:i;RPEin SERIAL KLUu.^. Marketing Research Report No.272 L- nr.T2 7lS58 '.' S. uEFARTMENT OF AGRICULTURE Treatments for the Protection of Stored Southern-Grown Corn from Rice Weevil Attack — Exploratory Tests ~ Marketing Research Division Agricultural Marketing Service U.S. DEPARTMENT OF AGRICULTURE WARNING No tolerances have been established for the use of lindane, methoxychlor, or ryania as insecticidal applications to the entire bulk of stored grain for the prevention of insect infestation. The tests reported herein were exploratory studies to develop information that could be used in considering the establishment of tolerances. Until such tolerances are announced, lindane, methoxychlor, or ryania protective treatments should not be used. A tolerance of 2 p. p.m. for methoxychlor in grain permits the spraying of bin walls and some surface applications, but is not high enough to cover protective treat- ments in the sense considered here. CONTENTS Page Summary 1 Introduction 2 Techniques 2 Tests with lindane 4 Tests with malathion 6 Tests with methoxychlor 8 Tests with synergized pyrethrum 12 Tests with ryania 16 Findings 19 Washington, D. C. September 1958 sale For by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 15 cents TREATMENTS FOR THE PROTECTION OF STORED SOUTHERN-GROWN CORN FROM RICE WEEVIL ATTACK—EXPLORATORY TESTS By D. W. La Hue, Herbert Womack, and B. W. Clements, Jr. Stored-Product Insects Laboratory- Georgia Coastal Plain Experiment Station Tifton, Ga.-"- SUMMARY Exploratory studies were made at Tifton, Ga. -
Characterization of Residential Pest Control Products Used in Inner City Communities in New York City
Journal of Exposure Science and Environmental Epidemiology (2010), 1–11 r 2010 Nature America, Inc. All rights reserved 1559-0631/10 www.nature.com/jes Characterization of residential pest control products used in inner city communities in New York City MEGAN K. HORTONa, J. BRYAN JACOBSONb, WENDY MCKELVEYb, DARRELL HOLMESa, BETTY FINCHERc, AUDREY QUANTANOc, BEINVENDIDA PAEZ DIAZc, FAYE SHABBAZZc, PEGGY SHEPARDc, ANDREW RUNDLEa AND ROBIN M. WHYATTa aColumbia Center for Children’s Environmental Health, Mailman School of Public Health, Columbia University, New York, New York, USA bNew York City Department of Health and Mental Hygiene, New York, New York, USA cWest Harlem Environmental Action, New York, New York, USA The Columbia Center for Children’s Environmental Health (CCCEH) previously reported widespread residential insecticide use in urban communities in New York City. Research suggests that pyrethroids are replacing organophosphates (OPs) in response to 2000–2001 US EPA pesticide regulations restricting OP use. A systematic assessment of active ingredients used for residential pest control is lacking. We queried a database of pesticide applications reported by licensed applicators between 1999 and 2005 and surveyed pest control products available in 145 stores within 29 zip codes in the CCCEH catchment area including Northern Manhattan and the South Bronx. Pyrethroids, pyrethrins, piperonyl butoxide, and hydramethylnon were the most common insecticide active ingredients reported as used by licensed pesticide applicators within the 29 zip codes of the CCCEH catchment area between 1999 and 2005. Use of certain pyrethroids and some non-spray insecticides such as fipronil and boric acid increased significantly by year (logistic regression, OR41.0, Po0.05), whereas use of OPs, including chlorpyrifos and diazinon decreased significantly by year (logistic regression, ORo1.0, Po0.05). -
Carpenter Ants and Control in Homes Page 1 of 6
Carpenter Ants and Control in Homes Page 1 of 6 Carpenter Ants and Control in Homes Fact Sheet No. 31 Revised May 2000 Dr. Jay B Karren, Extension Entomologist Alan H. Roe, Insect Diagnostician Introduction Carpenter ants are members of the insect order Hymenoptera, which includes bees, wasps, sawflies, and other ants. Carpenter ants can be occasional pests in the home and are noted particularly for the damage they can cause when nesting in wood. In Utah they are more of a nuisance rather than a major structural pest. Carpenter ants, along with a number of other ant species, utilize cavities in wood, particularly stumps and logs in decayed condition, as nesting sites. They are most abundant in forests and can be easily found under loose bark of dead trees, stumps, or fallen logs. Homeowners may bring them into their homes when they transport infested logs from forests to use as firewood. Description Carpenter ants include species that are among the largest ants found in the United States. They are social insects with a complex and well-defined caste system. The worker ants are sterile females and may occur in different sizes (majors and minors). Members of the reproductive caste (fertile males and females) are usually winged prior to mating. All ants develop from eggs deposited by a fertilized female (queen). The eggs hatch into grub-like larvae (immatures) which are fed and cared for by the workers. When fully grown, the larvae spin a cocoon and enter the pupal stage. The pupal stage is a period of transformation from the larva to adult. -
Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries
Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries. Peter Jentsch Extension Associate Department of Entomology Cornell University's Hudson Valley Lab 3357 Rt. 9W; PO box 727 Highland, NY 12528 email: [email protected] Phone 845-691-7151 Mobile: 845-417-7465 http://www.nysaes.cornell.edu/ent/faculty/jentsch/ 2 Historical Perspectives on Fruit Production: Fruit Tree Pest Management, Regulation and New Chemistries. by Peter Jentsch I. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 Synthetic Pesticide Development and Use II. Influences Changing the Pest Management Profile in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent Regulation Developments Changing Pest Management Food Quality Protection Act of 1996 The Science Behind The Methodology Pesticide Revisions – Requirements For New Registrations III. Resistance of Insect Pests to Insecticides Resistance Pest Management Strategies IV. Reduced Risk Chemistries: New Modes of Action and the Insecticide Treadmill Fermentation Microbial Products Bt’s, Abamectins, Spinosads Juvenile Hormone Analogs Formamidines, Juvenile Hormone Analogs And Mimics Insect Growth Regulators Azadirachtin, Thiadiazine Neonicotinyls Major Reduced Risk Materials: Carboxamides, Carboxylic Acid Esters, Granulosis Viruses, Diphenyloxazolines, Insecticidal Soaps, Benzoyl Urea Growth Regulators, Tetronic Acids, Oxadiazenes , Particle Films, Phenoxypyrazoles, Pyridazinones, Spinosads, Tetrazines , Organotins, Quinolines. 3 I Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 The apple has a rather ominous origin. Its inception is framed in the biblical text regarding the genesis of mankind. The backdrop appears to be the turbulent setting of what many scholars believe to be present day Iraq. -
Follow-Up Studies After Withdrawal of Deltamethrin Spraying Against Anopheles Culicifacies and Malaria Incidence
Journal of the American Mosquito contror Association, 2o(4):424-42g,2004 Copyright @ 2OO4 by the American Mosquito Control Association, Inc. FOLLOW-UP STUDIES AFTER WITHDRAWAL OF DELTAMETHRIN SPRAYING AGAINST ANOPHELES CULICIFACIES AND MALARIA INCIDENCE MUSHARRAF ALI ANSARI eNo RAMA KRISHNA RAZDAN Malaria Research Centre (ICMR), 2}-Madhuban, Delhi_ll0 092, India ABSTRACT. Follow-up studies were carried out from 1989 to 1998 after withdrawal of deltamethrin indoor spraying to evaluate the-recovery rate of a population of Anopheles culicifacies resistant to dichlorodiphenyltri- chloroethane (DDT) and hexachlorocyclohexane (HCH) in selected villages in Uttar pradesh State, I;dia. The study revealed 82.4-96.5Ea reduction in adult density of An. culicifacies and 72.7-967o reduction in malaria incidence in the area sprayed with deltamethrin at 20 mg/m, as compared to a control area sprayed with HCH, for 5 successive years even after withdrawal of deltamethrin spray. The impact was very clear when the annual falciparum incidence was compared with that of the control area. The vector population gradually started re- covering after 5 years. However, the slide falciparum rate remained below 4 even after 10 years of withdrawal of spraying. The study revealed that indoor residual spraying of deltamethrin would be cost-effective, at least in areas where malaria is transmitted by An. culicifacies, which is primarily a zoophilic species and associated with malaria epidemics. In view of this, a review of the insecticide policy and strategy of vector control is urgently needed because of the possible risks associated with the presence of nonbiodegradable insecticide in the environment, as well as to minimize the costs of operation and to enhance the useful life of insecticides. -
New Brunswick Drug Plans Formulary
New Brunswick Drug Plans Formulary August 2019 Administered by Medavie Blue Cross on Behalf of the Government of New Brunswick TABLE OF CONTENTS Page Introduction.............................................................................................................................................I New Brunswick Drug Plans....................................................................................................................II Exclusions............................................................................................................................................IV Legend..................................................................................................................................................V Anatomical Therapeutic Chemical (ATC) Classification of Drugs A Alimentary Tract and Metabolism 1 B Blood and Blood Forming Organs 23 C Cardiovascular System 31 D Dermatologicals 81 G Genito Urinary System and Sex Hormones 89 H Systemic Hormonal Preparations excluding Sex Hormones 100 J Antiinfectives for Systemic Use 107 L Antineoplastic and Immunomodulating Agents 129 M Musculo-Skeletal System 147 N Nervous System 156 P Antiparasitic Products, Insecticides and Repellants 223 R Respiratory System 225 S Sensory Organs 234 V Various 240 Appendices I-A Abbreviations of Dosage forms.....................................................................A - 1 I-B Abbreviations of Routes................................................................................A - 4 I-C Abbreviations of Units...................................................................................A -
STRUCTURAL PEST CONTROL APPLICATOR: GUIDANCE DOCUMENT Label Changes for Pyrethroid Non-Agricultural Outdoor Products
Structural Pest Section 19 Martin Luther King, Jr. Dr. Atlanta, Georgia 30334-4201 Phone: (404) 656-3641 STRUCTURAL PEST CONTROL APPLICATOR: GUIDANCE DOCUMENT Label Changes for Pyrethroid Non-agricultural Outdoor Products Why are these labels being changed? Recently, pesticide products containing insecticides in the chemical class known as pyrethroids have undergone a series of label changes. These changes are in response to water quality monitoring studies that found significant amounts of pyrethroid insecticides in sediments of urban creeks. Pyrethroids are highly toxic to aquatic organisms, accumulate in sediments and thus produce an increased risk of causing harm to invertebrates and other creatures living within sediments. What is currently happening? The Environmental Protection Agency (EPA) is requiring revised “Environmental Hazard Statements” and general “Directions for Use” for pyrethroid pesticide products used in non-agricultural outdoor settings. These label changes are intended to reduce pyrethroid movement into non-target areas through runoff or spray drift that may occur during applications. Pyrethroid products containing the new label language are now in the marketplace. Both consumer products and those designed for use by pest management professionals (PMPs) are affected by these changes. These new requirements will result in changing use patterns for the prevention and control of general household pests, lawn and ornamental pests as well as termites and other wood-destroying organisms. New language will be found on pyrethroid products formulated as liquid concentrates, broadcast granules, dusts and ready-to-use liquid mixtures. Older products that do not have new label restrictions can continue to be used according to the attached label. Broadcast applications to large surfaces such as exterior walls of buildings, patios, or concrete walkways will no longer be allowed. -
US EPA, Pesticide Product Label, EVERCIDE ESFENVALERATE 6.4
II UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION DEC 1 6 2011 Mr. Thomas A. Lennan McLaughlin Gormley King Company 8810 Tenth Avenue North Minneapolis, MN 55427-4319 Subject: Notification per PRN 98-10 EPA Registration No.: 1021 -1815 Evercide® Esfenvalerate 6.4% CS Date of Submission: November 14, 2011 Dear Mr. Lennan: The Agency is in receipt of your Application for Pesticide Notification under Pesticide Registration Notice (PRN) 98-10 for the abovementioned product. The Registration Division (RD) has conducted a review of this request and finds that the action(s) requested fall within the scope of PRN 98-10. The label submitted with the application has been stamped "Notification" and will be placed in our records. If you have any questions regarding this action, please contact Olga Odiott at (703)308-9369. Sincerely, Mark Stfarez Product Manager 13 Insecticide Branch Registration Division (7505P) f Please read instructions before completing form Form /ed. OMB No. 2070-0060. Approval expires 05-31-98 United States Reregistration OPP Identifier Number Environmental Protection Agency Amendment Washington, DC 20460 Other Application for Pesticide Reregistration - Section I 1. Company/Product Number 2. EPA Product Manager 3. Proposed Classification 1021-1815 Richard Gebken 4. Company/Product (Name) PM# I None D Restricted EVERCIDE® Esfenvalerate 6.4% CS 10 5. Name and Address of Applicant (Include Zip Code) 6. Expedited Review. In accordance with FIFRA Section 3(c)(3)(b)(i), my MCLAUGHLIN GORMLEY KING COMPANY product is similar or identical in composition and labeling to: 8810 TENTH AVENUE NORTH MINNEAPOLIS, MN 55427 EPA Reg. -
Guide No. 1 – October 2020 2/12 the CONCEPT and IMPLEMENTATION of CPA GUIDANCE RESIDUE LEVELS
Cooperation Centre for Scientific Research Relative to Tobacco CORESTA GUIDE N° 1 The Concept and Implementation of CPA Guidance Residue Levels October 2020 Agro-Chemical Advisory Committee CORESTA TECHNICAL GUIDE N° 1 Title: The Concept and Implementation of CPA Guidance Residue Levels Status: Valid Note: This document will be periodically reviewed by CORESTA Document history: Date of review Information July 2003 Version 1 GRL for Pyrethrins () and Terbufos corrected. December 2003 CPA terminology corrected. June 2008 Version 2 – GRLs revised and residue definitions added Provisional GRL of 2.00 ppm for Cyfluthrin to replace previous June 2010 GRL of 0.50 ppm July 2013 Version 3 – GRLs revised October 2013 Note for Maleic Hydrazide revised Version 4 – GRLs revised + clarification that scope of GRLs July 2016 applies predominantly to the production of traditional cigarette tobaccos and GAP associated with their cultivation. June 2018 Fluopyram GRL of 5 ppm added to GRL list Version 5 – Nine new CPAs with GRL added to list. November 2019 Revision of GRLs for Chlorantraniliprole and Indoxacarb. Updated web links. October 2020 Version 6 – Flupyradifurone GRL of 21 ppm added to GRL list. CORESTA Guide No. 1 – October 2020 2/12 THE CONCEPT AND IMPLEMENTATION OF CPA GUIDANCE RESIDUE LEVELS Executive Summary • Guidance Residue Levels (GRLs) are in the remit of the Agro-Chemical Advisory Committee (ACAC) of CORESTA. Their development is a joint activity of all ACAC members, who represent the leaf production, processing and manufacturing sectors of the Tobacco Industry. The concept of GRLs and their implementation are described in this guide. • GRLs provide guidance to tobacco growers and assist with interpretation and evaluation of results from analyses of residues of Crop Protection Agents (CPAs*). -
RR Program's RCL Spreadsheet Update
RR Program’s RCL Spreadsheet Update March 2017 RR Program RCL Spreadsheet Update DNR-RR-052e The Wisconsin DNR Remediation and Redevelopment Program (RR) has updated the numerical soil standards in the August 2015 DNR-RR- 052b RR spreadsheet of residual contaminant levels (RCLs). The RCLs were determined using the U.S. EPA RSL web- calculator by accepting EPA exposure defaults, with the exception of using Chicago, IL, for the climatic zone. This documentThe U.S. provides EPA updateda summary its Regionalof changes Screening to the direct-contact Level (RSL) RCLs website (DC-RCLs) in June that2015. are To now reflect in the that March 2017 spreadsheet.update, the The Wisconsin last page ofDNR this updated document the has numerical the EPA exposuresoil standards, parameter or residual values usedcontaminant in the RCL levels calculations. (RCLs), in the Remediation and Redevelopment program’s spreadsheet of RCLs. This document The providesU.S. EPA a RSL summary web-calculator of the updates has been incorporated recently updated in the Julyso that 2015 the spreadsheet.most up-to-date There toxicity were values no changes for chemi - cals madewere certainlyto the groundwater used in the RCLs,RCL calculations. but there are However, many changes it is important in the industrial to note that and the non-industrial web-calculator direct is only a subpartcontact of the (DC) full RCLsEPA RSL worksheets. webpage, Tables and that 1 andthe other 2 of thissubparts document that will summarize have important the DC-RCL explanatory changes text, generic tablesfrom and the references previous have spreadsheet yet to be (Januaryupdated.