Using Liver Mirna Profiles to Predict Chemical Hepatocarcinogenesis”

Total Page:16

File Type:pdf, Size:1020Kb

Using Liver Mirna Profiles to Predict Chemical Hepatocarcinogenesis” “Using liver miRNA profiles to predict chemical hepatocarcinogenesis” By Costas Koufaris A thesis submitted to Imperial College London for the degree of Doctor of Philosophy Department of Surgery and Cancer Biomolecular Medicine Imperial College London April- 12011 - ABSTRACT Industrial, agricultural, and pharmaceutical requirements drive the development of a plethora of new chemical entities each year, many of which -for example drugs, pesticides, and food additives- have to be assessed for potential human health hazard. The current benchmark for risk assessement is the lifetime rodent bioassay which is expensive, time-consuming, laborious, requires the sacrifice of numerous animals, and is often irrelevant to humans. Hence alternative strategies to the rodent lifetime bioassay for prediction of chemical carcinogens are being pursued, especially for the liver which is an organ frequently affected by exogenous chemicals due to its detoxifying and metabolic roles. Numerous studies in recent years support the important role of microRNAs in cancer development, including hepatocellular carcinoma. The principal hypothesis of this project was that hepatic microRNA signatures can contribute to the earlier prediction of chemical hepatocarcinogens. Examination of livers from male Fischer rats treated with six chemical hepatocarcinogens, with diverse mode of actions for 90 days revealed that all the tested hepatocarcinogens affected the liver miRNAome from that early stage. Interestingly, a small set of microRNAs were identified whose expression was frequently deregulated by the hepatocarcinogens. Bioinformatic analysis indicates that these microRNAs can regulate pathways which are important in hepatocellular carcinoma. A more detailed investigation of one of those hepatocarcinogens, phenobarbital, showed that its effects on liver microRNAs were both dose and time dependent, with a progressive induction of specific microRNA clusters.Thus this study was the first to investigate in depth the effects of chemical hepatocarcinogens on the liver miRNAome and supports the potential usefulness of hepatic microRNA signatures in risk assessment. - 2 - Statement of Originality I affirm that all the work presented in this thesis is my own original work, unless otherwise stated. Where the work of others has been used, it has been dully acknowledged. Costas Koufaris April 2011 - 3 - “Σα βγεις ζηον πηγαιμό για ηην Ιθάκη, να εύχεζαι νάναι μακρύς ο δρόμος, γεμάηος περιπέηειες, γεμάηος γνώζεις…” ”As you set out on the way to Ithaca, wish that the road is a long one, full of adventures, full of knowledge...” Constantine P. Cavafy - 4 - Dedication To my parents Acknowledgments Like Odysseus’s voyage to Ithaca, the road to completing a PhD can be a long one, but also full of adventures and knowledge. First I would like to express my gratitude to my supervisor, Professor Nigel J. Gooderham, without whom I may never have set out on this journey. Throughout the last three and a half years he has always been available to offer his advice and guidance. I would particularly want to thank him for instilling in me the confidence that is required for pursuing a PhD. I have thoroughly enjoyed and I am proud to have been his student and a member of his lab. I would also like to acknowledge Dr. Jayne Wright and Dr.Richard A. Currie for their great effort, assistance, and encouragement. This project would have been much weaker without their help. I am also thankful to the BBSRC for funding my PhD. I have also greatly appreciated all the assistance, advice, encouragement, and companionship that I have received from the various members of my lab during my PhD: Mihalis Papaioannou, Corrinne Segal, Reshat Reshat, Qianxin Wu, Nurul Huda Abd Karim, Kuan-wei Chen, Dr. William Edmands, Dr. Rhiannon David, and Dr. Nor Aini Saidin. Also my gratitude to R.F. for being a source of inspiration. I sincerely wish them all the best in the future. I also appreciate the numerous other people (staff and students) who have aided me in various circumstances. Last but not least, I am grateful to Vicky for being my safe harbour, my guiding star, and a gentle breeze driving me on during this journey. - 5 - Contents List of Figures……………………………………………..……..…12 List of Tables……………………………………………………..…16 List of abbreviations……………………………………………... 19 Chapter 1- Introduction……………………………………..23 1.1 Mechanisms of carcinogenesis……………………………….…….23 1.1.1 Carcinogenesis is a multi-step, progressive process………….…..…...24 1.1.2 Genetic and epigenetic mechanisms of gene disruption in cancer…….30 1.1.3 Mechanisms of carcinogenesis by exogenous chemicals…………...…34 1.2 MicroRNAs have important roles in cancer…………………….......42 1.2.1 Non-coding RNAs are conserved in eukaryotes…………………….....42 1.2.2 Biogenesis and function of mature miRNAs…….…………………….43 1.2.3 MicroRNAs in cancer: small but deadly………………………………49 1.3. Liver is a frequent target of chemical carcinogens ……………..….53 1.3.1. Liver architecture and function…………………………………..……53 1.3.2. Aetiology, types, and frequencies of liver cancers……………………57 1.3.3 Phenobarbital is a prototype of non-genotoxic hepatocarcinogens…....61 1.3.4 Involvement of miRNAs in hepatocellular carcinomas ……...…….….68 1.4. Cancer risk assessment strategies…………………………………..70 1.4.1. Rodent lifetime bioassays are the benchmark for risk assessment…....70 - 6 - 1.4.2 Alternative strategies to the rodent lifetime bioassays……………......73 1.5 Justification, hypothesis, and objectives………………….........……75 Chapter 2- Materials and Methods……………...........…..…78 2.1 Chemicals and reagents used………………………...…………..….79 2.2 Animal studies……………………………………………...…...…..80 2.2.1 Tested compounds ……………………………………………....….…80 2.2.2 Design of animal studies………………………………………….....…81 2.3 MicroRNA microarrays……………………………………….…….84 2.3.1 RNA extraction…………………………………………………….…..84 2.3.2 Assessment of RNA quantity, purity and integrity……………….……85 2.3.3 RNA labelling, hybridisation, and scanning………………..........…….86 2.3.4 Pre-processing and normalisation of miRNA microarray data….......…89 2.4 Polymerase chain reaction (PCR)……………………………...........91 2.4.1 Real-time Quantitative PCR (qPCR)……… …………….................…91 2.4.2 Semi-quantitative PCR………………………………………………...93 2.5 Immunoblotting……………………………………………….…….95 2.5.1 Protein extraction from liver samples .......................………….........…95 2.5.2 Protein detection and quantification………………………...….…..….96 2.6 Methylation analysis……………………………………...….…..….97 2.6.1 DNA extraction and quantification………………….......................…..97 2.6.2 Global DNA methylation analysis………………….............…..…..….98 - 7 - 2.7 RLM-RACE...............................................................................….98 2.8 In silico analysis……………… .................................…………..100 2.9 Clustering and classification of samples……………..………….101 2.9.1 Hierarchical clustering………………………….....................…….101 2.9.2 Sample classification……………………………………….............102 2.10 Statistical analysis…………………………………………....…102 Chapter 3-Effects of 90 day treatment with various............103 hepatocarcinogenic and non-hepatocarcinogenic compounds on the liver microRNAome 3.1. Introduction...……………………….………........………………104 3.2. Effects of chemical treatments on animals..………….......………107 3.3. Evaluation of quality and processing of microarray data...............110 3.3.1 PCA and Quality Control metrics of samples......................................110 3.3.2 Filtering of miRNA data.......................................................................114 3.3.3. Comparison of microarray technical replicates...................................117 3.4 Deregulation of hepatic miRNAs by hepatocarcinogens.................119 3.4.1 MiRNA profiles are distinct for carcinogen-treated livers...................119 3.4.2 Identification of possible miRNA biomarkers of carcinogenicity.......124 3.4.3 MiRNA profiles are associated with the MOA of chemicals...............133 3.4.4 Comparison of chemical effects on mRNAs and miRNAs.................134 - 8 - 3.4.5 Correlation of “biomarker” miRNAs with hepatic parameters............136 3.5 Chemical-specific miRNA profiles..................................................137 3.5.1 PB-type compounds have characteristic miRNA profiles....................137 3.5.2. Effects of genotoxic 2-AAF on microRNAs.......................................140 3.5.3 DEHP shows some similarities to PB-type compounds......................143 3.5.4. MiRNA profiles of MP HCL, MON, and Chl.Ac...............................145 3.6 qPCR validation of miRNA changes...............................................146 3.7 Discussion........................................................................................147 Chapter 4- Hepatic microRNA profiling of rats........................152 treated with dietary phenobarbital 4.1 Introduction......................................................................................153 4.2 Effects of chemical treatments on animals...................................... 155 4.3 Quality control of microarray data...................................................158 4.4 Clustering Analysis of samples........................................................164 4.5 Identifying differentially expressed miRNAs..................................171 4.5.1 MiRNAs deregulated by mitogenic PB doses.....................................171 4.5.2 MiRNAs deregulated by carcinogenic 1000 ppm PB dose.................174 4.5.3 Progressive induction of miR-200b and miR-96 from 14 to
Recommended publications
  • Cypermethrin
    International Environmental Health Criteria 82 Cypermethrin Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization WORLD HEALTH ORGANIZATION GENEVA 1989 Other titles available in the ENVIRONMENTAL HEALTH CRITERIA series include: 1. Mercury 2. Polychlorinated Biphenyls and Terphenyls 3. Lead 4. Oxides of Nitrogen 5. Nitrates, Nitrites, and N-Nitroso Compounds 6. Principles and Methods for Evaluating the Toxicity of Chemicals, Part 1 7. Photochemical Oxidants 8. Sulfur Oxides and Suspended Particulate Matter 9. DDT and its Derivatives 10. Carbon Disulfide 11. Mycotoxins 12. Noise 13. Carbon Monoxide 14. Ultraviolet Radiation 15. Tin and Organotin Compounds 16. Radiofrequency and Microwaves 17. Manganese 18. Arsenic 19. Hydrogen Sulfide 20. Selected Petroleum Products 21. Chlorine and Hydrogen Chloride 22. Ultrasound 23. Lasers and Optical Radiation 24. Titanium 25. Selected Radionuclides 26. Styrene 27. Guidelines on Studies in Environmental Epidemiology 28. Acrylonitrile 29. 2,4-Dichlorophenoxyacetic Acid (2,4-D) 30. Principles for Evaluating Health Risks to Progeny Associated with Exposure to Chemicals during Pregnancy 31. Tetrachloroethylene 32. Methylene Chloride 33. Epichlorohydrin 34. Chlordane 35. Extremely Low Frequency (ELF) Fields 36. Fluorine and Fluorides 37. Aquatic (Marine and Freshwater) Biotoxins 38. Heptachlor 39. Paraquat and Diquat 40. Endosulfan 41. Quintozene 42. Tecnazene 43. Chlordecone 44. Mirex continued on p. 156
    [Show full text]
  • Characterization of Residential Pest Control Products Used in Inner City Communities in New York City
    Journal of Exposure Science and Environmental Epidemiology (2010), 1–11 r 2010 Nature America, Inc. All rights reserved 1559-0631/10 www.nature.com/jes Characterization of residential pest control products used in inner city communities in New York City MEGAN K. HORTONa, J. BRYAN JACOBSONb, WENDY MCKELVEYb, DARRELL HOLMESa, BETTY FINCHERc, AUDREY QUANTANOc, BEINVENDIDA PAEZ DIAZc, FAYE SHABBAZZc, PEGGY SHEPARDc, ANDREW RUNDLEa AND ROBIN M. WHYATTa aColumbia Center for Children’s Environmental Health, Mailman School of Public Health, Columbia University, New York, New York, USA bNew York City Department of Health and Mental Hygiene, New York, New York, USA cWest Harlem Environmental Action, New York, New York, USA The Columbia Center for Children’s Environmental Health (CCCEH) previously reported widespread residential insecticide use in urban communities in New York City. Research suggests that pyrethroids are replacing organophosphates (OPs) in response to 2000–2001 US EPA pesticide regulations restricting OP use. A systematic assessment of active ingredients used for residential pest control is lacking. We queried a database of pesticide applications reported by licensed applicators between 1999 and 2005 and surveyed pest control products available in 145 stores within 29 zip codes in the CCCEH catchment area including Northern Manhattan and the South Bronx. Pyrethroids, pyrethrins, piperonyl butoxide, and hydramethylnon were the most common insecticide active ingredients reported as used by licensed pesticide applicators within the 29 zip codes of the CCCEH catchment area between 1999 and 2005. Use of certain pyrethroids and some non-spray insecticides such as fipronil and boric acid increased significantly by year (logistic regression, OR41.0, Po0.05), whereas use of OPs, including chlorpyrifos and diazinon decreased significantly by year (logistic regression, ORo1.0, Po0.05).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • STRUCTURAL PEST CONTROL APPLICATOR: GUIDANCE DOCUMENT Label Changes for Pyrethroid Non-Agricultural Outdoor Products
    Structural Pest Section 19 Martin Luther King, Jr. Dr. Atlanta, Georgia 30334-4201 Phone: (404) 656-3641 STRUCTURAL PEST CONTROL APPLICATOR: GUIDANCE DOCUMENT Label Changes for Pyrethroid Non-agricultural Outdoor Products Why are these labels being changed? Recently, pesticide products containing insecticides in the chemical class known as pyrethroids have undergone a series of label changes. These changes are in response to water quality monitoring studies that found significant amounts of pyrethroid insecticides in sediments of urban creeks. Pyrethroids are highly toxic to aquatic organisms, accumulate in sediments and thus produce an increased risk of causing harm to invertebrates and other creatures living within sediments. What is currently happening? The Environmental Protection Agency (EPA) is requiring revised “Environmental Hazard Statements” and general “Directions for Use” for pyrethroid pesticide products used in non-agricultural outdoor settings. These label changes are intended to reduce pyrethroid movement into non-target areas through runoff or spray drift that may occur during applications. Pyrethroid products containing the new label language are now in the marketplace. Both consumer products and those designed for use by pest management professionals (PMPs) are affected by these changes. These new requirements will result in changing use patterns for the prevention and control of general household pests, lawn and ornamental pests as well as termites and other wood-destroying organisms. New language will be found on pyrethroid products formulated as liquid concentrates, broadcast granules, dusts and ready-to-use liquid mixtures. Older products that do not have new label restrictions can continue to be used according to the attached label. Broadcast applications to large surfaces such as exterior walls of buildings, patios, or concrete walkways will no longer be allowed.
    [Show full text]
  • Thrips on Seedling Cotton: Related Problems and Control E Burris
    Louisiana State University LSU Digital Commons LSU Agricultural Experiment Station Reports LSU AgCenter 1989 Thrips on seedling cotton: related problems and control E Burris Follow this and additional works at: http://digitalcommons.lsu.edu/agexp Recommended Citation Burris, E, "Thrips on seedling cotton: related problems and control" (1989). LSU Agricultural Experiment Station Reports. 881. http://digitalcommons.lsu.edu/agexp/881 This Article is brought to you for free and open access by the LSU AgCenter at LSU Digital Commons. It has been accepted for inclusion in LSU Agricultural Experiment Station Reports by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. L. l NOV 011989 RA. Contents Page Introduction . 3 Materials and Methods . 6 General Experimental Design.. .. ... .... ........ .................... 6 Seed Treatments . 7 Soil Treatments . 7 Foliar Treatments . 7 Thrips Population Monitoring . 7 Measurements of Cotton Growth and Yield . 8 Results and Discussion ... .. ........ ... .... .. ..... ..... ... .............. .. 8 Potential [mpact of Thrips on Plant Height and Seed Cotton Yield . 9 Efficacy of Selected Insecticide . 9 Interactions of Insecticides U ed for Thrip Control with Other Pe ts and Pe ticide . 13 Summary and Conclusions ..... ..... ................... .. ....... ........ 16 Information on Chemicals U ed in Te t. .. .... .. ..................... 18 Literature Cited ........................... ... .. .. .. .... ........ .. ........ 19 The mention of a pesticide in thi publication i intended only as a report of research and does not constitute a guarantee or warranty by the Louisiana Agricultural Experiment Station nor an endor ement over other product of a similar nature not mentioned. Some uses of pesticide di cus ed here have not nece arily been registered. All consumer uses of pe ticides must be registered by appropriate late and federal agencie .
    [Show full text]
  • Genome-Scale Identification of Transcription Factors That Mediate An
    ARTICLE DOI: 10.1038/s41467-018-04406-2 OPEN Genome-scale identification of transcription factors that mediate an inflammatory network during breast cellular transformation Zhe Ji 1,2,4, Lizhi He1, Asaf Rotem1,2,5, Andreas Janzer1,6, Christine S. Cheng2,7, Aviv Regev2,3 & Kevin Struhl 1 Transient activation of Src oncoprotein in non-transformed, breast epithelial cells can initiate an epigenetic switch to the stably transformed state via a positive feedback loop that involves 1234567890():,; the inflammatory transcription factors STAT3 and NF-κB. Here, we develop an experimental and computational pipeline that includes 1) a Bayesian network model (AccessTF) that accurately predicts protein-bound DNA sequence motifs based on chromatin accessibility, and 2) a scoring system (TFScore) that rank-orders transcription factors as candidates for being important for a biological process. Genetic experiments validate TFScore and suggest that more than 40 transcription factors contribute to the oncogenic state in this model. Interestingly, individual depletion of several of these factors results in similar transcriptional profiles, indicating that a complex and interconnected transcriptional network promotes a stable oncogenic state. The combined experimental and computational pipeline represents a general approach to comprehensively identify transcriptional regulators important for a biological process. 1 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. 2 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. 3 Department of Biology, Howard Hughes Medical Institute and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 20140, USA. 4Present address: Department of Pharmacology and Biomedical Engineering, Northwestern University, Evanston 60611 IL, USA.
    [Show full text]
  • FOXK Transcription Factors Regulation and Critical Role in Cancer
    Cancer Letters 458 (2019) 1–12 Contents lists available at ScienceDirect Cancer Letters journal homepage: www.elsevier.com/locate/canlet Mini-review FOXK transcription factors: Regulation and critical role in cancer T Ying Liua, Wei Dingb,HuGea,d, Murugavel Ponnusamya, Qiong Wangd, Xiaodan Haoa, Wei Wua, ∗∗ ∗ Yuan Zhanga, Wanpeng Yua, Xiang Aoa, , Jianxun Wanga,c, a Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China b Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao 266003, China c School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China d Molecular Informatics Department, Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China ARTICLE INFO ABSTRACT Keywords: Growing evidence suggests that alterations of gene expression including expression and activities of transcription FOXK1 factors are closely associated with carcinogenesis. Forkhead Box Class K (FOXK) proteins, FOXK1 and FOXK2, FOXK2 are a family of evolutionarily conserved transcriptional factors, which have recently been recognized as key ncRNAs transcriptional regulators involved in many types of cancer. Members of the FOXK family mediate a wide Biomarker spectrum of biological processes, including cell proliferation, differentiation, apoptosis, autophagy, cell cycle Therapeutic target progression, DNA damage and tumorigenesis. Therefore, the deregulation of FOXKs can affect the cell fate and they promote tumorigenesis as well as cancer progression. The mechanisms of FOXKs regulation including post- translational modifications (PTMs), microRNAs (miRNAs) and protein–protein interactions are well demon- strated. However, the detailed mechanisms of FOXKs activation and deregulation in cancer progression are still inconclusive. In this review, we summarize the regulatory mechanisms of FOXKs expression and activity, and their role in the development and progression of cancer.
    [Show full text]
  • Pyrethroid and DDT Resistance and Organophosphate Susceptibility Among Anopheles Spp
    DISPATCHES Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya Christine L. Wanjala, Jernard P. Mbugi, western Kenya (Figure 1). Malaria vector dynamics and Edna Ototo, Maxwell Gesuge, Yaw A. Afrane, parasite prevalence have been studied in 3 sites (9), and Harrysone E. Atieli, Guofa Zhou, ITN coverage was generally >80% (10). Bungoma, Emu- Andrew K. Githeko, Guiyun Yan tete, Iguhu, and Emakakha are in the highland-fringe ma- laria epidemic area; Chulaimbo, Ahero, and Kisian are in We conducted standard insecticide susceptibility testing the malaria-endemic basin region of Lake Victoria (low- across western Kenya and found that the Anopheles gam- land). All sample sites were in rural or suburban areas. biae mosquito has acquired high resistance to pyrethroids Agricultural and public health use of insecticides in and DDT, patchy resistance to carbamates, but no resis- tance to organophosphates. Use of non–pyrethroid-based each study site was surveyed by using questionnaire sur- vector control tools may be preferable for malaria preven- veys in 30 randomly selected households per site. Mos- tion in this region. quito larvae were collected from each study site, fed with TetraMin fish food (Spectrum Brands, Inc., Blacksburg, VA, USA), and raised to adults in the insectary at the Ke- uring the past decade, a massive scale-up of insecticide- nya Medical Research Institute in Kisumu. The insectary Dtreated nets (ITNs) and indoor residual spraying (IRS) was not regulated for temperature and humidity; ambient of insecticides in malaria-endemic areas worldwide have led temperature (average ≈24°C) and humidity (≈75% rela- to a substantial reduction in mosquitoes and, paired with the tive humidity) were used for the study.
    [Show full text]
  • 2NCOMMS-18-06274-A Revise Supplementary Figure
    Supplementary Information FoxK1 and FoxK2 are Components in Insulin Regulation of Cellular and Mitochondrial Metabolism Sakaguchi et al a ProteomicsProteomics screening screening of IR/IGF1Rof IR/IGF1R binding binding proteins proteinsin the in insulinthe insulin dependent DepenDent manner manner Total: 1469proteins 5 quantified peptide: 707 proteins (Including IRS1 and IRS2) (IR+/IR-1.5, IGF1R+/IGF1R-1.5, IR/IGF1R+/ IR/IGF1R-1.5 ) IGF1R/IR+/ IGf1R/IR-1.5 ) Total 11 proteins IR +/- 2 1.5 3 IGF1R +/-1.5 11 Common proteins →protein 5 FoxK1 (Forkhead box protein K1) 3 IR/IGF1R +/- 1.5 IGF1R/IR +/-1.5 b 5000 4000 3000 2000 1000 FoxK1 Expression FoxK1 … 0 … TA SCF EDL PGF liver Skin Lung Heart RETF BATF Testis Uterus Spleen Soleus Kidney Bladder Stomach Pancreas Cerebellum Quadriceps Epidydimus Gall bladder Hippocampus Adrenal gland Hypothalamus Small intestine Raphe nucleus Gastrocnemius Nucleus tractus Substantia nigra Prefrontal cortex Caudate putamen Ventral tegmental c Nucleus accumbens 3000 2000 Expression 1000 FoxK2 FoxK2 … … 0 … TA SCF EDL PGF liver Skin Lung Heart RETF BATF Testis Uterus Spleen Soleus Kidney Bladder Nucleus Stomach Pancreas Cerebellum Quadriceps Epidydimus Gall bladder Hippocampus Adrenal gland Hypothalamus Small intestine Raphe nucleus Gastrocnemius Nucleus tractus Substantia nigra Prefrontal cortex Caudate putamen Ventral tegmental Sakaguchi et al., Supplementary Figure 1 d DifferentiateD brown adipocytes e Astrocytes Cytoplasm Nucleus Cytoplasm Nucleus Insulin 0 5 10 30 0 5 10 30 min Insulin 0 5 10 30 0 5 10 30 min FoxK1 FoxK1 75 75 75 FoxO1 75 FoxO1 75 75 LaminA/C LaminA/C 37 37 GAPDH GAPDH Supplementary Figure 1.
    [Show full text]
  • Non-Commercial Use Only
    Journal of Xenobiotics 2014; volume 4:2240 Biochemical and histopatholog- toxic chemicals have detrimental impacts on the environment, affect biological systems Correspondence: Hassina Khaldoun Oularbi, ical changes in the kidney and and are harmful to human health.1,2 Department of Biology, Faculty of Agro-Veterinary adrenal gland of rats following Pyrethroids are synthetic analogues of Sciences, University Blida 1, Algeria. repeated exposure pyrethrins I, naturally occurring insecticides E-mail: [email protected] extracted from the dried flowers of to lambda-cyhalothrin 3,4 Key words: lambda-cyhalothrin, biochemical, Chrysanthemum cinerariaefolium. histopathology, adrenal gland, kidney. Synthetic pyrethroids are used in agriculture, Hassina Khaldoun Oularbi forestry, horticulture and public health;4,5 they Acknowledgements: the author thanks F. Research Laboratory of Animal Biology are a unique group of insecticides that com- Benddine of the Algerian Ministry of Agriculture and Physiology, E.N.S, Kouba, Algiers; prise over 30% of all insecticides used global- and Rural Development (Direction de la Department of Biology, Faculty ly.6 Their action on voltage sensitive sodium Protection des Végétaux et des Contrôles of Agro-Veterinary Sciences, University channels, voltage sensitive calcium channels, Techniques, DPVCT) for providing the lambda- cyhalothrin standard. I also thank Professor A. voltage sensitive chloride channels, GABA Blida 1, Algeria A Baz of the Animal Biology and Physiology receptors and modulation in the release of Research Laboratory (E.N.S, Kouba, Algiers, neurotransmitters especially acetylcholine, Algeria) and Professor M. Lhermitte and D. dopamine and serotonin have been suggested Patrick (Laboratoire de Toxicologie, CHRU de Abstract in their neurotoxicity.3,7-11 These persistent Lille, France) for plasma lambda-cyhalothrin con- organic pollutants are categorized as type I centration determination and technical assis- tance in the setting up of GC-MS/MS conditions.
    [Show full text]
  • FOXK2 Downregulation Suppresses EMT in Hepatocellular Carcinoma
    Open Medicine 2020; 15: 702–708 Research Article Jian Kong#, Qingyun Zhang#, Xuefeng Liang, Wenbing Sun* FOXK2 downregulation suppresses EMT in hepatocellular carcinoma https://doi.org/10.1515/med-2020-0129 Keywords: hepatocellular carcinoma, FOXK2, epithe- received December 22, 2019; accepted March 31, 2020 lial–mesenchymal transition, Akt Abstract: Forkhead box K2 (FOXK2) was first identified as an NFAT-like interleukin-binding factor. FOXK2 has been reported to act as either oncogene or tumor suppressor. However, functional and regulating mechan- 1 Introduction isms of FOXK2 in epithelial–mesenchymal transition ( ) (EMT) in hepatocellular carcinoma (HCC) remain un- Hepatocellular carcinoma HCC is listed as the sixth clear. An FOXK2-specific siRNA was employed to most common neoplasm and the third leading cause of decrease the endogenous expression of FOXK2. MTT cancer death, which has been recognized as a major [ ] assay, colony formation and transwell assay were used cause of death among cirrhotic patients 1 . Surgical to evaluate proliferation, migration and invasion of resection, liver transplantation and radiofrequency [ ] Hep3B and HCCLM3 cells, respectively. The protein ablation are considered potentially curative for HCC 2 . expression associated with EMT and Akt signaling However, most HCC patients are diagnosed at advanced pathways was evaluated using western blot. FOXK2 stages when surgical treatments are unsuitable. Only downregulation could inhibit cell proliferation and sorafenib and regorafenib are proven to prolong survival [ – ] colony formation and suppress migration and invasion in HCC 3 8 . Therefore, development of new targeted in Hep3B and HCCLM3 cells. The expression of E- therapy for HCC treatment is urgent. ( ) cadherin was significantly upregulated, and the expres- The structure of Forkhead box FOX proteins contains fi sion of snail and p-Akt was significantly downregulated conserved DNA binding domain, which is de ned as the - - in siFOXK2-transfected cells compared with control cells.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,703,064 Yokoi Et Al
    US005703064A United States Patent (19) 11 Patent Number: 5,703,064 Yokoi et al. 45) Date of Patent: Dec. 30, 1997 54 PESTICIDAL COMBINATIONS FOREIGN PATENT DOCUMENTS 75 Inventors: Shinji Yokoi; Akira Nishida, both of 0 196524 10/1986 European Pat. Of.. Shiga-ken; Tokio Obata; Kouichi Golka, both of Ube, all of Japan OTHER PUBLICATIONS 73) Assignees: Sankyo Company, Limited, Tokyo; Worthing et al, The Pesticide Manual, 9th Ed. (1991), pp. Ube industries Ltd., Ube, both of 747 and 748. Japan L.C. Gaughan et al., "Pesticide interactions: effects of orga nophosphorus pesticides on the metabolism, toxicity, and 21 Appl. No.: 405,795 persistence of selected pyrethroid insecticides". Chemical Abstracts, vol. 94, No. 9, 1981, No. 59740k of Pestic. 22 Filed: Mar 16, 1995 Biochem. Physio., vol. 14, No. 1, 1980, pp. 81-85. 30 Foreign Application Priority Data I. Ishaaya et al., "Cypermethrin synergism by pyrethroid esterase inhibitors in adults of the whitefly Bemisia tabaci". Mar 16, 1994 JP Japan ............................ HE6045.405 Chemical Abstracts, vol. 107, No. 9, 1987, No. 72818y of (51) Int. Cl................. A01N 43/54; A01N 57/00 Pestic Biochem. Physiol., vol. 28, No. 2, 1987, pp. 155-162. 52 U.S. C. ......................................... 51480; 514/256 (58) Field of Search ..................................... 514/80, 256 Primary Examiner Allen J. Robinson Attorney, Agent, or Firm-Frishauf, Holtz, Goodman, 56 References Cited Langer & Chick, P.C. U.S. PATENT DOCUMENTS 57 ABSTRACT 4,374,833 2/1983 Badmin et al. ...................... 424/225 Combinations of the known compound pyrimidifen with 4,845,097 7/1989 Matsumoto et al... 514/234.2 phosphorus-containing pesticides have a synergistic pesti 4,935,516 6/1990 Ataka et al.
    [Show full text]