Wood Anatomy of Staphyleaceae: Ecology, Statistical Correlations, and Systematics
Total Page:16
File Type:pdf, Size:1020Kb
Flora (1985) 177: 195—216 Wood Anatomy of Staphyleaceae: Ecology, Statistical Correlations, and Systematics SHERwIN CARLQuIsT and DAVID A. H0EKMAN Rancho Santa Ann Botanic Garden and Pomona. College, USA Summary Wood of Staphyleaceo.e is characterized by vessels which are mostly solitary; vessel elements are long with scalariform perforation plates (mostly more than 20 bars per plate) and with scalari. form, opposite, or alternate lateral wall pitting. imperforate tracheary elements range from fiber t-racheids with fully bordered pits somewhat less dense than those of tracheids (Euscophis, Sta phylea, Turpinio.) to fiber-tracheids with reduced borders on pits (Huertea) to libriform fibers (Tapiscia). Axial parenchyma is mostly abaxial, with tendencies towards vasicentric scanty and ray-adjacent cells and only a few diffuse cells. Rays are both inultiseriate and uniseriate. Hetero geneous Type hA. The multiseriate portion of multiseriate rays is often not sheathed with upright cells and consists of procumbent cells which often have bordered pits on radial walls. Rhomboidal crystals, tyloses, and dark-staining amorphous deposits are found in some but not all species. Quantitative features show wood of Stephyleo. to be less markedly mesomorphic than that of the other genera, a fact perhaps related to winter cold. The Mesomorphy index is held to be more useful in analysis of dicotyledon woods and in predicting relationship with ecology than a conduc tivity formula, because it runs parallel to ecological gradients, takes into account vessel element length (apparently related to embolism localization), and represents degrees of relinquishment of safety as woods become more mesomorphic. Statistical correlation among wood features of Sta phyleaceue show vessel element length related to imperforate tracheary element length and to ray height because all of those are linked to fusiform cambial initial length. Correlation between vessel -diameter and vessel element length is slightly weaker, as is inverse correlation between vessel diameter and vessel density (where packing constraints tend to enforce a correlation). The genera of Staphyleaceae can be easily characterized by wood anatomy features such as growth ring pre sence or absence, perforation plate bar number, presence of helical sculpture within vessels, type of imperforate tracheary element, presence of septa in fibers (in which case axial parenehyma is absent), ray dimensions, tylosis occurrence, and crystal presence. Wood of Staphyleaceae most closely resembles that of some Cunoniales (Saxifragales), and resembles that of Sapindales some what less. Introduction Wood anatomy of Staphyleaceae has been little studied, although descriptions of a few species may be found in various works (GREGuSS 1959; JANSS0NIus 1911; KRAUSE 1960; REcoRD & HEss 1943; S0LEREDER 1892); the summaries of SoLE REDER (1908) and METcALFE & CHALK (1950) are useful. Wood of Staphyleaceae is of potential interest because it is relatively primitive compared with that of niost dicotyledons. However, wood of Staphyleaceae proves to be more diverse than hitherto noted. Primitive woods tend to be confined to highly mesic situations. Does this correla tion (CARLQuIST 1975) hold true in Staphyleaceae? If so, what diversity in ecology occurs within the family and how is it related to wood anatomy? Other questions relative to wood anatomy of Staphyleaceae include those of phyto geography and phylogeny. Staphylea occurs in the Northern Hemisphere in eastern and western North America as well as in Europe and Asia. Euscaphis ranges from Korea and Japan to Taiwan and China. Huertea is found in Peru and the West Indies. Table 1. Vvood characteristics of Staphyleaceae 8 9 10 11 12 13 14 15 Species Collection 1 2 3 4 5 6 7 552 A, D, R 1,300 3.6 Euscuphjs jupoeica Cariqitist 15683 68 57 1,100 1.00 2.0 28 26 1,930 5.0 990 89 2,280 4.5 1,070 65 430 A, V 2,310 7.6 PAX FPAw-DFP-13256 72 35 1,130 1.24 2.0 40 26 A, D 2,410 11.6 MADw-5055 84 42 1,210 1.00 1.5 31 25 2,180 3.0 1,080 83 527 629 A, D, R 1,920 9.2 PRFw-14690 82 49 1,150 1.04 2.0 34 26 2,150 5.0 1,340 82 80 681 A, R 759 1.8 P. staph’iieon1e SJRw-21955 61 78 972 1.08 1.5 22 23 1,980 3.5 903 . & z. 30 394 0 1,440 12.8 Huertea eubensis MADw-5376 90 51 818 1.34 2.0 13 27 1,270 2.5 493 Ga’s nis. 4 36 470 0 5,750 149.0 H. glandniosa SJRw-43415 141 27 1,080 1.28 2.5 14 23 1,690 3.5 631 R. & P. 2.0 15 33 1,480 4.0 526 37 394 0 2,240 24.6 11. granadinn MA 1)w-35776 103 46 997 1.40 2,070 5.0 867 39 389 0 7,060 156.0 CUATREcASAS S.JRw-44481 140 25 1,240 1.51 2.5 15 33 232 A, D, V 201 0.8 Stophleu bolanderi Evertt 7269 (RSA) 47 137 476 1.14 2.0 13 20 843 4.5 545 47 896 4.5 540 23 228 4, 1), V 283 1.0 GRAy F1’Aw-DFP-32998 59 123 589 1.04 2.0 13 19 287 A, D, V 163 0.4 MADw-3067 57 139 490 1.15 2.0 16 19 1,110 4.5 545 54 1,150 4.5 605 40 316 A 111 0.1 S. bun’ilda DC. Carlquist 15654 39 269 772 1.16 2.0 26 23 405 235 3.1 Carlquist 15700 47 161 803 1.20 1.5 31 18 1,280 3.5 824 44 A 1.1 634 1.12 2.0 27 21 1,340 4.5 647 50 300 A 368 MADw-8195 57 98 > 1,400 4.0 787 44 401 A, D, V 535 1.5 z S. colcinca Srv. Carlquist 15660 61 91 802 1.07 1.5 24 21 A, R, V 467 1.2 Cariquist 15661 59 102 812 1.14 2.0 21 21 1,130 4.0 942 46 593 1260 4.0 1120 39 723 A, V 349 0.7 S. x elegans ZABEL Car1quit 15663 53 124 810 1.22 2.0 25 19 4.0 535 57 262 A, [1 150 0.2 S. holocarpa HEMsL. Carlquist 15655 42 169 599 1.11 1.5 17 21 891 937 5.5 566 35 322 A 161 0.2 S. pnnOta L. Carlquist 15665 46 189 658 1.04 2.0 17 22 298 A, 1, V 430 0.8 FPAw-DFP-29096 52 90 748 1.00 2.0 24 21 1,280 5.0 464 27 317 A, 215 0.2 RSAw-ETHIMH 41 113 597 1.16 2.0 22 23 930 4.5 549 49 1,480 4.0 770 36 403 A, D 273 0.2 S. trifolia L. MADw-8707 43 144 909 1.04 1.5 24 19 397 A. 1) 207 0.3 MADw-23753 49 184 772 1.09 2.0 24 23 1,280 5.5 830 44 A, R 147 0.2 SJRw-37221 45 207 682 1.28 1.5 24 20 993 5.5 787 27 364 Tupiscuo sinensis SJRw-21767 59 86 698 1.40 2.0 7 25 1,240 2.5 321 36 276 0 478 1.4 liLly. Tuipiiiiu brechy- FPAw-DFP-30078 133 40 2,140 1.00 2.0 50 37 3,570 7.0 2,450 87 1,750 A, D, R 7,120 78.2 petuie LINDEN V 1’. ccernosa PRUUE SJRw-28643 101 10 887 1.48 3.0 27 32 1,650 4.5 1,180 51 888 A, D, H, 5,600 65.0 V T. heterophylle MADw-16548 84 41 1,100 1.12 2.0 29 29 2,200 3.0 1,050 64 578 A, V 2,270 12.0 (H. & P.) TOL, HSAw-MER-X8 113 20 1,480 1.40 2.0 31 40 2,270 3.5 1,140 47 610 A, V 8,450 82.3 XJRw.43279 88 54 1,200 1.56 2.0 31 26 2,070 4.0 1,030 29 574 A, V 1,940 11.0 2’. aepalensis WAI.I,. FPAw-DFP-12147 89 56 1,060 1.00 2.5 39 39 1,850 6.0 1,540 103 752 A, V 1,680 11.1 SJHw- 3881 81 58 1,180 1.08 3.)) 45 30 2,130 5.0 891 77 868 A, V 1,640 7.3 2’. nudifloru L. MADw-35779 96 33 1,310 1.00 3.0 30 20 2,350 6.0 1,730 82 709 A, V 3.770 25.3 2’. occidentalj MADw-23981 99 41 1,220 1.32 3.5 28 40 1,890 4.5 1,030 36 776 A, D, V 2,920 23.3 (Sw.) G. 1)ON MADw-24191 8<) 12 1,180 1.90 2.0 30 29 1,920 3.5 1,060 52 612 A, V 7,860 34.0 .JRw-54585 97 14 1,36)) 1.00 2.)) 41 14 1,980 3.)) 758 48 525 A, D, H, 9,420 63.2 V 2’. ova jolio Ean. FPAw-DFP-31887 99 5)1 1,430 1.20 2.0 42 38 2,740 4.0 1,070 56 912 A. B, V 2,520 17.2 MADw-18424 113 44 1,04)) 1.00 2.1) 45 41) 2,590 5.5 1,661) 113 998 A, V 4,180 36.8 RSAw-PFR1-518 112 35 1,430 1.04 2.5 42 38 2,790 5.0 1,355 8)) 700 A, V 4,550 44.7 2’.