Section 12: Evaluation and Management of Patients with Acute

Total Page:16

File Type:pdf, Size:1020Kb

Section 12: Evaluation and Management of Patients with Acute Journal of Cardiac Failure Vol. 16 No. 6 2010 Section 12: Evaluation and Management of Diagnosis Patients with Acute Decompensated Heart Failure Recommendation Overview 12.1 The diagnosis of acute decompensated HF should be based primarily on signs and symptoms. Acute decompensated heart failure (ADHF) has emerged (Strength of Evidence 5 C) as a major public health problem over the past 2 decades.1,2 Heart failure (HF) is the leading cause of hospitalization in When the diagnosis is uncertain, determination of patients older than 65 years of age. In-hospital mortality is plasma B-type natriuretic peptide (BNP) or N- excessive and readmission is disturbingly common, despite terminal pro-B-type natriuretic peptide (NT- advances in pharmacotherapy and device therapy for HF.3,4 proBNP) concentration is recommended in patients The large direct costs associated with caring for the 5 mil- being evaluated for dyspnea who have signs and lion Americans who have chronic HF are largely attribut- symptoms compatible with HF. (Strength of Evi- able to hospitalization.5 dence 5 A) Data from several studies have refined our understanding The natriuretic peptide concentration should not of the clinical characteristics of patients hospitalized with be interpreted in isolation, but in the context of 2,4e6 worsening HF. These studies demonstrate that the ma- all available clinical data bearing on the diagnosis jority of patients hospitalized with HF have evidence of of HF, and with the knowledge of cardiac and non- systemic hypertension on admission and commonly have cardiac factors that can raise or lower natriuretic preserved left ventricular ejection fraction (LVEF). Most peptide levels. hospitalized patients have significant volume overload, and congestive symptoms predominate. Patients with se- Background verely impaired systolic function, reduced blood pressure, Signs and Symptoms. The major symptoms of ADHF, and symptoms from poor end-organ perfusion are in the shortness of breath, congestion, and fatigue, are not specific distinct minority. Natural history studies have shown that for cardiac and circulatory failure.8 They may be caused by ADHF represents a period of high risk for patients, during other conditions which mimic HF, complicating the identi- which their likelihood of death and rehospitalization is sig- fication of patients with this syndrome. Various forms of nificantly greater than for a comparable period of chronic, pulmonary disease, including pneumonia, reactive airway but stable HF.6 disease and pulmonary embolus, may be especially difficult The clinical classification of patients with ADHF con- to differentiate clinically from HF.9 tinues to evolve and reflects ongoing changes in our under- 7 standing of the pathophysiology of this syndrome. Diagnostic Utility of Natriuretic Peptides. Two forms Worsening renal function, persistent neurohormonal activa- of natriuretic peptides, BNP and NT-proBNP,have been stud- tion, and progressive deterioration in myocardial function ied as aids to establish the diagnosis, estimate prognosis and all seem to play a role. Decompensation also commonly oc- monitor the response to therapy of patients with ADHF.10 curs without a fundamental worsening of underlying car- Measurement of these peptides has been proposed in cases diac structure or function. Failure to adhere to prescribed where the diagnosis of HF is uncertain. A large, multicenter medications related to inadequate financial resources, investigation, The Breathing Not Properly Study provides poor adherence, and lack of education or an inadequate important evidence supporting the clinical utility of plasma medical regimen may lead to hospitalization without a wors- BNP in the assessment of patients presenting with possible ening of underlying circulatory function. HF.11,12 This study evaluated 1586 patients seen in the emer- There is a paucity of controlled clinical trial data to de- gency department with the complaint of acute dyspnea who fine optimal treatment for patients with acute HF. The had prospective determination of BNP by bedside assay. Pa- few trials have focused primarily on symptom relief, not tients were assigned a probability of HF by physicians in the outcomes, and have mainly enrolled patients with reduced emergency department who were blinded to the results of the LVEF who were not hypertensive. Clinical studies to deter- BNP assay. The final determination of whether or not HF was mine the best care processes to achieve the multiple goals present was based on a review of the clinical data by 2 cardi- for patients admitted with ADHF are lacking. The recom- ologists also blinded to the BNP assay results. The sensitivity mendations in this section address the common therapeutic and specificity of BNP measurements for the diagnosis of HF dilemmas associated with the broad group of patients with were compared with the accuracy of an assessment based on ADHF using the best available evidence from clinical re- standard clinical examination. search and consensus expert opinion. The diagnostic accuracy of BNP, using a cutoff value of 100 pg/mL, was 83% relative to the assessment made by the independent cardiologists, whereas the negative predic- 1071-9164/$ - see front matter ! Ó 2010 Elsevier Inc. All rights reserved. tive value of BNP for HF when levels were 50 pg/mL doi:10.1016/j.cardfail.2010.05.021 was 96%. As expected, measurement of BNP appeared to e134 Heart Failure Practice Guideline HFSA e135 be most useful in patients with an intermediate probability !100 pg/mL, whereas levels of O500 pg/mL were consid- of HF. In these patients, a BNP cutoff value of 100 pg/mL ered diagnostic of ADHF. resulted in the correct classification 74% of the time. BNP Fewer patients were hospitalized or admitted to intensive was found to be predictive of HF when left ventricular (LV) care units in the BNP aided group compared with those function was depressed or preserved.13 Although BNP evaluated by standard clinical evaluation alone. The median levels were lower in patients with HF associated with pre- time to discharge was 8 days in the group with BNP mea- served LVEF, the cutoff value of 100 pg/mL still had a sen- sured versus 11 days in the control group (P 5 .001). Al- sitivity of 86% and a negative predictive value of 96%. though the data on outcomes from this study are not BNP levels increase with age, more so in older women, definitive and the hospital lengths of stay are not reflective so that cutoff of 100 pg/mL may not provide the same de- of practice patterns in the United States, making generaliz- gree of specificity for the diagnosis of HF, especially in el- ability problematic, they do not suggest that triage using derly women with dyspnea.14,15 BNP resulted in the under-treatment of patients truly at The clinical utility of NT-proBNP in the diagnosis of HF risk. The readmission rate for HF was similar in the 2 study was reported in the N-terminal Pro-BNP Investigation of groups and the mortality rate, while not reduced statisti- Dyspnea in the Emergency Department (PRIDE) study. cally, was lower in those patients with BNP determined. This study used NT-proBNP measurements in the emer- Larger randomized trials of this strategy are needed to as- gency department to rule out acute HF in 600 patients sess the impact of this approach on adverse outcomes asso- who presented with dyspnea.16 NT-proBNP results were ciated with admission for ADHF. correlated with a clinical diagnosis of acute HF as deter- mined by study physicians blinded to these measurements. Use of Natriuretic Peptides to Guide Therapy. A small The median NT-proBNP level among the 209 patients who number of studies have evaluated the use of BNP or NT- had acute HF (35%) was 4054 versus 131 pg/mL among proBNP to guide HF therapy. In the initial study, Troughton 390 patients who did not (65%, P !.001). NT-proBNP et al24 randomized 69 patients with symptomatic HF and levels increase with age so that the study investigators rec- LVEF !40% to a clinically guided treatment group and ommend NT-proBNP cut points of O450 pg/mL for pa- a group for whom therapy was increased to drive the ami- tients younger than 50 years of age and O900 pg/mL for noterminal portion of BNP (N-BNP) level to !200 pg/mL. patients age 50 years or older, both of which were highly In the N-BNP guided group there were fewer total cardio- sensitive and specific for HF in this study. For patients 75 vascular events (death, hospital admission, or HF decom- years or older, 1800 pg/mL is the recommended cutpoint pensation than in the clinical group (19 vs 54, p50$02). for NT-proBNP.17,18 At 6 months, 27% of patients in the N-BNP group and 53% in the clinical group had experienced a first cardiovas- Prognostic Role of Natriuretic Peptides. Although cular event (p50$034). Changes in LV function, quality of baseline BNP levels may correlate only modestly with pul- life, renal function, and adverse events were similar in both monary capillary wedge pressure (PCWP), changes in groups. In the Systolic Heart Failure Treatment Supported PCWP do correlate directly with changes in BNP concen- by BNP (STARS-BNP) study25 220 patients with New tration during hospitalization.19,20 The predischarge BNP York Heart Association (NYHA) Class II-III HF symptoms after treatment for acute HF appears to predict patients at on evidence-based medical therapy with angiotensin con- risk of early readmission or death following hospitalization verting enzyme (ACE) inhibitors and beta blockers were for HF.21,22 Although specific discharge cutoff values are randomized to a clinical care group and a group for still being defined, patients whose BNP increases during whom the goal was a BNP of !100 pg/mL.
Recommended publications
  • Effects of Vasodilation and Arterial Resistance on Cardiac Output Aliya Siddiqui Department of Biotechnology, Chaitanya P.G
    & Experim l e ca n i t in a l l C Aliya, J Clinic Experiment Cardiol 2011, 2:11 C f a Journal of Clinical & Experimental o r d l DOI: 10.4172/2155-9880.1000170 i a o n l o r g u y o J Cardiology ISSN: 2155-9880 Review Article Open Access Effects of Vasodilation and Arterial Resistance on Cardiac Output Aliya Siddiqui Department of Biotechnology, Chaitanya P.G. College, Kakatiya University, Warangal, India Abstract Heart is one of the most important organs present in human body which pumps blood throughout the body using blood vessels. With each heartbeat, blood is sent throughout the body, carrying oxygen and nutrients to all the cells in body. The cardiac cycle is the sequence of events that occurs when the heart beats. Blood pressure is maximum during systole, when the heart is pushing and minimum during diastole, when the heart is relaxed. Vasodilation caused by relaxation of smooth muscle cells in arteries causes an increase in blood flow. When blood vessels dilate, the blood flow is increased due to a decrease in vascular resistance. Therefore, dilation of arteries and arterioles leads to an immediate decrease in arterial blood pressure and heart rate. Cardiac output is the amount of blood ejected by the left ventricle in one minute. Cardiac output (CO) is the volume of blood being pumped by the heart, by left ventricle in the time interval of one minute. The effects of vasodilation, how the blood quantity increases and decreases along with the blood flow and the arterial blood flow and resistance on cardiac output is discussed in this reviewArticle.
    [Show full text]
  • Clinical Assessment in Acute Heart Failure
    Hellenic J Cardiol 2015; 56: 285-301 Review Article Clinical Assessment in Acute Heart Failure 1 2 NIKOLAOS S. KAKOUROS , STAVROS N. KAKOUROS 1University of Massachusetts, MA, USA; 2Cardiac Department, “Amalia Fleming” General Hospital, Athens, Greece Key words: eart failure (HF) is defined as “a clear precipitant or trigger. It is very im­ Heart failure, complex clinical syn drome that portant to establish the precipitating diagnosis, physical examination, H can result from any structural or causes, which may have therapeutic and congestion. functional cardiac disorder that impairs the prognostic implications. Approximate­ ability of the ventricle to fill with, or eject ly 60% of patients with AHF have doc­ blood.” HF has an estimated overall prev­ umented CAD. Myocardial ischemia in alence of 2.6%. It is becoming more com­ the setting of acute coronary syndromes mon in adults older than 65 years, because is a precipitant or cause, particularly in of increased survival after acute myocar­ patients presenting with de novo AHF.4 dial infarction (AMI) and improved treat­ AHF is also often precipitated by medica­ ment of coronary artery disease (CAD), tion and dietary non­compliance, as well val vular heart disease and hypertension.1 as by many other conditions, which are Acute HF (AHF) is an increasingly com­ summarized in Table 1. Once the diagno­ mon cause of hospitalizations and mortality sis of AHF is confirmed, initial therapy in­ worldwide. In the majority of patients, AHF cludes removal of precipitants; if this can Manuscript received: can be attributed to worsening chronic HF, be carried out successfully, the patient’s August 25, 2014; and approximately 40­50% of this group have subsequent course may be stable.
    [Show full text]
  • Pulse Pressure Variation Guided Fluid Therapy During Kidney Transplantation
    Rev Bras Anestesiol. 2020;70(3):194---201 SCIENTIFIC ARTICLE Pulse pressure variation guided fluid therapy during ଝ kidney transplantation: a randomized controlled trial a,∗ a a a Alessandro De Cassai , Ottavia Bond , Silvia Marini , Giulio Panciera , b b a b a Lucrezia Furian , Flavia Neri , Giulio Andreatta , Paolo Rigotti , Paolo Feltracco a University of Padova, Department of Medicine --- DIMED, Section of Anesthesiology and Intensive Care, Padova, Italy b Padua University Hospital, Department of Surgery, Oncology and Gastroenterology, Kidney and Pancreas Transplant Unit, Padua, Italy Received 12 November 2019; accepted 15 February 2020 Available online 17 May 2020 KEYWORDS Abstract Kidney Purpose: Kidney transplantation is the gold-standard treatment for end stage renal disease. transplantation; Although different hemodynamic variables, like central venous pressure and mean arterial pres- sure, have been used to guide volume replacement during surgery, the best strategy still ought Fluid therapy; Creatinine; to be determined. Respiratory arterial Pulse Pressure Variation (PPV) is recognized to be a good Urea; predictor of fluid responsiveness for perioperative hemodynamic optimization in operating room Urine settings. The aim of this study was to investigate whether a PPV guided fluid management strat- egy is better than a liberal fluid strategy during kidney transplantation surgeries. Identification of differences in urine output in the first postoperative hour was the main objective of this study. Methods: We conducted a prospective, single blind, randomized controlled trial. We enrolled 40 patients who underwent kidney transplantation from deceased donors. Patients random- ized in the ‘‘PPV’’ group received fluids whenever PPV was higher than 12%, patients in the ‘‘free fluid’’ group received fluids following our institutional standard care protocol for kidney -1 -1 transplantations (10 mL.kg .
    [Show full text]
  • JUGULAR VENOUS PRESSURE Maddury Jyotsna
    INDIAN JOURNAL OF CARDIOVASCULAR DISEASES JOURNAL in women (IJCD) 2017 VOL 2 ISSUE 2 CLINICAL ROUNDS 1 WINCARS JVP- JUGULAR VENOUS PRESSURE Maddury Jyotsna DEFINITION OF JUGULAR VENOUS PULSE AND The external jugular vein descends from the angle of the PRESSURE mandible to the middle of the clavicle at the posterior Jugular venous pulse is defined as the oscillating top of border of the sternocleidomastoid muscle. The external vertical column of blood in the right Internal Jugular jugular vein possesses valves that are occasionally Vein (IJV) that reflects the pressure changes in the right visible. Blood flow within the external jugular vein is atrium in cardiac cycle. In other words, Jugular venous nonpulsatile and thus cannot be used to assess the pressure (JVP) is the vertical height of oscillating column contour of the jugular venous pulse. of blood (Fig 1). Reasons for Internal Jugular Vein (IJV) preferred over Fig 1: Schematic diagram of JVP other neck veins are IJV is anatomically closer to and has a direct course to right atrium while EJV does not directly drain into Superior vena cava. It is valve less and pulsations can be seen. Due to presence of valves in External Jugular vein, pulsations cannot be seen. Vasoconstriction secondary to hypotension (as in congestive heart failure) can make EJV small and barely visible. EJV is superficial and prone to kinking. Partial compression of the left in nominate vein is usually relieved during modest inspiration as the diaphragm and the aorta descend and the pressure in the two internal
    [Show full text]
  • Hemodynamic Parameters in the Assessment of Fluid Status in A
    PERIOPERATIVE MEDICINE ABSTRACT Background: Measuring fluid status during intraoperative hemorrhage is challenging, but detection and quantification of fluid overload is far more diffi- cult. Using a porcine model of hemorrhage and over-resuscitation, it is hypoth- Hemodynamic Parameters esized that centrally obtained hemodynamic parameters will predict volume status more accurately than peripherally obtained vital signs. in the Assessment Methods: Eight anesthetized female pigs were hemorrhaged at 30 ml/min to a blood loss of 400 ml. After each 100 ml of hemorrhage, vital signs (heart of Fluid Status in a rate, systolic blood pressure, mean arterial pressure, diastolic blood pressure, pulse pressure, pulse pressure variation) and centrally obtained hemodynamic Porcine Hemorrhage and parameters (mean pulmonary artery pressure, pulmonary capillary wedge pressure, central venous pressure, cardiac output) were obtained. Blood Resuscitation Model volume was restored, and the pigs were over-resuscitated with 2,500 ml of crystalloid, collecting parameters after each 500-ml bolus. Hemorrhage Eric S. Wise, M.D., Kyle M. Hocking, Ph.D., and resuscitation phases were analyzed separately to determine differences Monica E. Polcz, M.D., Gregory J. Beilman, M.D., among parameters over the range of volume. Conformity of parameters during Colleen M. Brophy, M.D., Jenna H. Sobey, M.D., hemorrhage or over-resuscitation was assessed. Philip J. Leisy, M.D., Roy K. Kiberenge, M.D., Bret D. Alvis, M.D. Results: During the course of hemorrhage, changes from baseline euvolemia were observed in vital signs (systolic blood pressure, diastolic blood pressure, ANESTHESIOLOGY 2021; 134:607–16 and mean arterial pressure) after 100 ml of blood loss.
    [Show full text]
  • The Utility of Modified Butler-Leggett Criteria for Right Ventricular
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by eCommons@AKU eCommons@AKU Section of Cardiology Department of Medicine March 2010 The utility of modified utleB r-Leggett criteria for right ventricular hypertrophy in detection of clinically significant shunt ratio in ostium secundum-type atrial septal defect in adults Adeel M. Siddiqui Aga Khan University Zainab Samad Nina Hakacova James Kinsella Cary Ward See next page for additional authors Follow this and additional works at: https://ecommons.aku.edu/pakistan_fhs_mc_med_cardiol Part of the Cardiology Commons Recommended Citation Siddiqui, A., Samad, Z., Hakacova, N., Kinsella, J., Ward, C., White, M., Crowley, A., Wagner, G., Harrison, J. (2010). The utility of modified Butler-Leggett criteria for right ventricular hypertrophy in detection of clinically significant shunt ratio in ostium secundum- type atrial septal defect in adults. Journal of Electrocardiology, 43(2), 161-166. Available at: https://ecommons.aku.edu/pakistan_fhs_mc_med_cardiol/36 Authors Adeel M. Siddiqui, Zainab Samad, Nina Hakacova, James Kinsella, Cary Ward, Michael White, Anna Lisa C. Crowley, Galen S. Wagner, and J. Kevin Harrison This article is available at eCommons@AKU: https://ecommons.aku.edu/pakistan_fhs_mc_med_cardiol/36 Available online at www.sciencedirect.com Journal of Electrocardiology 43 (2010) 161–166 www.jecgonline.com The utility of modified Butler-Leggett criteria for right ventricular hypertrophy in detection of clinically significant shunt ratio in ostium secundum–type atrial septal defect in adults ⁎ Adeel M. Siddiqui,a, Zainab Samad, MD,b,c Nina Hakacova, MD,c James Kinsella,d Cary Ward, MD,b Michael White, MD,b Anna Lisa C.
    [Show full text]
  • Acute Vs Chronic Volume Overload on Arterial Stiffness in Haemodialysis Patients
    Journal of Human Hypertension (2005) 19, 425–427 & 2005 Nature Publishing Group All rights reserved 0950-9240/05 $30.00 www.nature.com/jhh COMMENTARY Acute vs chronic volume overload on arterial stiffness in haemodialysis patients Y-P Lin1,W-CYu1 and C-H Chen1,2,3 1Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; 2Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; 3Department of Social Medicine, National Yang-Ming University, Taipei, Taiwan Journal of Human Hypertension (2005) 19, 425–427. doi:10.1038/sj.jhh.1001842 Published online 10 March 2005 Volume overload is a cardinal feature of end-stage in the various vascular parameters monitored. renal disease (ESRD) patients. Acute volume over- Each vascular parameter may be affected variably load, as represented by interdialytic weight gain, is by factors such as blood pressure and heart rate. associated with increased aortic pulse wave velocity For instance, augmentation index may be under- (aPWV) and independently related to total mortality estimated for approximately 4% per 10 beats/min in haemodialysis patients.1,2 Based on the Laplace’s increase of heart rate.9 aPWV may increase 41 m/s law, volume expansion increases arterial stiffness (or by an increase in heart rate of 40 beats/min.10 The reduces arterial compliance) by increasing arterial existence of multiple arteriovenous shunts may also distension. Therefore, it would appear intriguing that affect systemic compliance. aPWV is proportional to acute volume reduction by ultrafiltration does not the square root of the product of wall elastance and always acutely improve arterial stiffness.3–7 Dialysis thickness.
    [Show full text]
  • Electrocardiography in Aortic Regurgitation: It's in the Details
    THE CLINICAL PICTURE SRIDHAR VENKATACHALAM, MD, MRCP CURTIS M. RIMMERMAN, MD, MBA Department of Hospital Medicine, Cleveland Clinic Gus P. Karos Chair, Clinical Cardiovascular Medicine, Department of Cardiovascular Medicine, Cleveland Clinic The Clinical Picture Electrocardiography in aortic regurgitation: It’s in the details Although not routinely reported, the negative U wave indicates underlying FIGURE 1. The patient’s 12-lead electrocardiogram shows normal sinus rhythm and a rate of 55 beats per minute. The frontal-plane QRS complex vector is deviated leftward. Left atrial abnor- structural or mality is present, given the terminally negative P wave in lead V1 and the bifid P wave in lead II. ischemic heart Left ventricular volume overload is supported by the following findings: increased QRS complex voltage, best seen in the precordial (chest) leads, indicative of increased left ventricular mass; disease prominent septal depolarization, as reflected by Q waves in leads 4V to V6; the absence of an ST- segment or T-wave abnormality; and negative U waves in leads V4 to V6 (arrows). 72-year-old man with a 15-year history taking any cardiac drugs, and his health has A of a heart murmur presents to his cardi- previously been excellent. ologist with shortness of breath on exertion On physical examination, his pulse rate is over the past 12 months. He otherwise feels regular at 55 beats per minute, and his blood well and reports no chest discomfort, palpita- pressure is 178/66 mm Hg. Cardiac ausculta- tions, or swelling of his legs or feet. He is not tion reveals an early- to mid-diastolic murmur heard best with the patient seated and leaning doi:10.3949/ccjm.78a.10141 forward, and located at the left sternal border; CLEVELAND CLINIC JOURNAL OF MEDICINE VOLUME 78 • NUMBER 8 AUGUST 2011 505 Downloaded from www.ccjm.org on October 2, 2021.
    [Show full text]
  • Clinicoradiological Session
    Clinicoradiological Session Case 5/2015 Late Outcome of Corrected Aortopulmonary Window in A 23-Year-Old Female Patient Who Underwent Surgery in Childhood Edmar Atik Clínica Privada Dr. Edmar Atik, São Paulo, SP – Brazil Clinical data: At 10 months of age, the patient underwent tracing), showed marked left ventricular overload, with correction of a large aortopulmonary window and mitral valve QRSA = +70o, PA = +20o and TA = +80o; RS morphology regurgitation secondary to volume overload, which caused (amplitudes of 24 and 30 mm) from V1 to V3 and QRs severe heart failure. The post-operative clinical outcome was (amplitudes of 10, 50 and 3 mm) from V4 to V6; Sokolow favorable. Prior to operation, her clinical picture was of concern index of 90 mm; no ventricular repolarization abnormalities. because of severe malnutrition (weight of 5,500 g), congestive Chest radiograph showed normal cardiac silhouette heart failure (tachypnea of 60 bpm), hepatomegaly (liver (cardiothoracic ratio = 0.46) and pulmonary vasculature palpable at 4 cm of the right costal margin), severe cardiomegaly, (Figure 2). In the image prior to surgery, these parameters were and increased pulmonary vasculature. Cardiovascular markedly increased, with a cardiothoracic ratio of 0.85 (Figure 2). examination showed left ventricular (LV) enlargement; thrill Echocardiogram showed normal size cardiac chambers and systolic murmur in the mitral area; accentuated S2; marked (Ao = 34; left atrium − LA = 36, right ventricle − RV = 13, LV overload on electrocardiogram (ECG); mitral regurgitation LV = 49; ejection fraction − EF = 61%, septum = posterior due to incomplete leaflet coaptation; and pulmonary systolic wall = 8 mm); no mitral regurgitation. Echocardiogram prior pressure of 60 mmHg.
    [Show full text]
  • Third-Spacing: When Body Fluid Shifts by Susan Simmons Holcomb, ARNP-BC, Phd
    Topics in Progressive Care Third-spacing: When body fluid shifts By Susan Simmons Holcomb, ARNP-BC, PhD In a healthy adult, nearly all fluid is contained in Water, water the intracellular, intravascular, or interstitial everywhere spaces, with the intracellular space holding about two-thirds of total body water. Normally, fluid moves freely between these three spaces to main- Intracellular fluid tain fluid balance (see Water, water everywhere). Third-spacing occurs when too much fluid moves Ifrom the intravascular space (blood vessels) into the interstitial or “third” space—the nonfunctional Intravascular fluid area between cells. This can cause potentially seri- ous problems such as edema, reduced cardiac output, and hypotension. Interstitial fluid In this article, I’ll describe why third-spacing occurs and how to intervene to restore balance. Let’s start with a brief physiology review. Body fluids are distributed between the intracellular What’s behind third-spacing? and extracellular fluid compartments. The intracellular Fluid volume, pressure, and levels of sodium compartment consists of fluid contained within all the and albumin are the keys to maintaining fluid body cells. The extracellular compartment contains all balance between the intracellular and extracellu- the fluids outside the cells, including fluid in the inter- lar (intravascular and interstitial) spaces. Capillary stitial (tissue) spaces, and that in the intravascular permeability and the lymphatic system also play space (blood vessels). a role. A problem with any of these components can cause fluid to shift from the intravascular space losses during diarrhea or fluid losses caused by to the interstitial space. Let’s look more closely at medications such as diuretics.
    [Show full text]
  • Heart Failure: Heart Disease and Heart Failure: Merck Veterinary Manual Page 1 of 12
    Heart Failure: Heart Disease and Heart Failure: Merck Veterinary Manual Page 1 of 12 Merck Manual > Veterinary Professionals > Circulatory System > Heart Disease and Heart Failure Heart Failure Heart failure occurs when the cardiovascular system is unable to meet the metabolic demands of the body, or when it can only do so at elevated filling pressures, and subsequent decompensation develops by one or more mechanisms. Thus, heart failure is neither a specific disease nor a diagnosis. It is a progressive condition initiated by decreased cardiac performance that leads to compensatory mechanisms designed to preserve tissue perfusion and cellular metabolism. These mechanisms lead to maladaptive changes that further decrease cardiac performance, initiating a vicious cycle causing failure of the heart as a pump. As a result, normal peripheral perfusion can only be maintained at elevated filling pressures. Heart failure can occur as a result of systolic dysfunction, diastolic dysfunction, or both. Commonly, both systolic and diastolic dysfunction are present, especially in advanced disease states. Clinical signs that may develop as a result of these conditions can be thought of in terms of low output (forward) or congestive (backward) heart failure (CHF). Initial changes in cardiac chamber dimension (volume) or wall thickness that occur are best understood in relation to preload (the tension imposed by venous return on the ventricular walls at end-diastole) and afterload (the tension imposed on the ventricular walls at end-systole). Alterations in preload or afterload may be caused by structural cardiac abnormalities, systemic compensatory mechanisms, or both. Volume overload states, such as those that occur with chronic valvular disease/valvular insufficiencies, patent ductus arteriosus, atrial or ventricular septal defects, peripheral left-to-right shunts, anemia, or hyperthyroidism, cause an increase in preload that leads to eventual ventricular chamber enlargement (dilation) via eccentric myocyte hypertrophy.
    [Show full text]
  • The Volume and Pressure Overloads of the Heart Las Sobrecargas De Presión Y De Volumen Del Corazón
    CARTA AL EDITOR The volume and pressure overloads of the heart Las sobrecargas de presión y de volumen del corazón Daniel Manzur-Sandoval1, Luis A. Baeza Herrera2, Eric N. Cuevas-Medina2 y José A. Cornejo-Guerra3* 1Unidad de Terapia Intensiva Cardiovascular; 2Departamento de Cardiología; 3Departamento de Cardiología Intervencionista. Instituto Nacional de Cardiología Dr. Ignacio Chávez, Ciudad de México, México Dear Editor: 114/81 mm Hg, temperature 36.5°C, and SatO2 of 92%. The contribution of the Mexican School of Electrocar- The physical findings revealed a regurgitant systolic diography is based mainly on its deductive nature. Its murmur in the left sternal border, with irradiation to the main contributions include the description of the normal axilla. ECG showed tall pointed and symmetrical T ventricular activation, the study of intraventricular con- waves in V5-V6 (Fig. 1a). Chest X-ray revealed dilation duction disorders1-2, description of the electrophysio- of the left cavities with pulmonary venocapillary hyper- logical phenomena in acute acute myocardial infarc- tension. Transthoracic echocardiogram (TTE) showed tion3 and the effect of the pressure and volume severe mitral regurgitation (due to flail of the P2 seg- overloads in the heart. The first electrocardiographic ment of the posterior leaflet) with dilation of the left description of volume overload in our institution was atrium and left ventricle and left ventricular end-diastol- done by Dr. Cabrera when he observed changes in ic volume of 140 ml/m2. The patient underwent mitral repolarization in V5-V6 in a patient with a peripheral valve repair and annuloplasty with a prosthetic ring with arteriovenous fistula when he intermittent occluded and adequate post-operative evolution; post-surgical elec- recorded it4-5.
    [Show full text]