Effects of Vasodilation and Arterial Resistance on Cardiac Output Aliya Siddiqui Department of Biotechnology, Chaitanya P.G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 20 *Lecture Powerpoint the Circulatory System: Blood Vessels and Circulation
Chapter 20 *Lecture PowerPoint The Circulatory System: Blood Vessels and Circulation *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • The route taken by the blood after it leaves the heart was a point of much confusion for many centuries – Chinese emperor Huang Ti (2697–2597 BC) believed that blood flowed in a complete circuit around the body and back to the heart – Roman physician Galen (129–c. 199) thought blood flowed back and forth like air; the liver created blood out of nutrients and organs consumed it – English physician William Harvey (1578–1657) did experimentation on circulation in snakes; birth of experimental physiology – After microscope was invented, blood and capillaries were discovered by van Leeuwenhoek and Malpighi 20-2 General Anatomy of the Blood Vessels • Expected Learning Outcomes – Describe the structure of a blood vessel. – Describe the different types of arteries, capillaries, and veins. – Trace the general route usually taken by the blood from the heart and back again. – Describe some variations on this route. 20-3 General Anatomy of the Blood Vessels Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Capillaries Artery: Tunica interna Tunica media Tunica externa Nerve Vein Figure 20.1a (a) 1 mm © The McGraw-Hill Companies, Inc./Dennis Strete, photographer • Arteries carry blood away from heart • Veins -
Heart Rate Information Sheet Finding Your Pulse Taking Your Pulse
Heart rate In this activity you will measure your heart rate and investigate the effect that other things have on your heart rate. Information sheet You can measure your heart (pulse) rate anywhere on your body where a major artery is close to the surface of your skin. The easiest places are: • on the front of your forearm • just above your wrist on your thumb side • on the side of your neck about half way between your chin and your ear. Finding your pulse Try to locate your pulse in one of these places, using the tips of your index and middle fingers. You should feel a gentle, regular beat. This is your heart rate. Do not use your thumb, as your thumb has a pulse of its own. Taking your pulse When you find your pulse, use a stopwatch or a watch with a second hand to count how many beats there are in a full minute (60 seconds). In most situations, taking your pulse rate over one minute will give a reasonably accurate result, but if you want to take your pulse after exercise, you should do so over a much shorter time interval. After exercise your pulse rate will be changing rapidly. To get a reasonably accurate result, start to measure the rate immediately after the exercise and count the number of beats in 10 seconds. Multiply this number by six to find your heart rate. For an adult, a normal resting heart rate is between 60–100 beats a minute. The fitter you are, the lower your resting heart beat will be. -
Heart to Heart - STEAM Activity
Heart to Heart - STEAM Activity Purpose: The main objective of this exercise is to introduce how the human heart works. This lesson will be divided into four different lessons, including an introduction to heart anatomy, heart beats and pulses, and the circulatory system. We will be using coloring activities, stethoscopes, and handmade pumps to reinforce the concepts seen in this lesson. Vocabulary ● Artery: A blood vessel that carries blood high in oxygen content away from the heart to the farthest reaches of the body. ● Vein: a Blood vessel that carries blood low in oxygen content from the body back to the heart. ● Atrium: One of the two upper cavities of the heart that passes blood to the ventricles. ● Ventricles: One of the two lower chambers of the heart that receives blood from the atria. ● Valves: Tissue-paper thin membranes attached to the heart wall that constantly open and close to regulate blood flow. ● Pulse: A rhythmical, mechanical throbbing of the arteries as blood pumps through them. ● Heart Rate: The number of times per minute that the heart contracts - the number of heart beats per minute (bpm). ● Taquicardia: A high resting heart rate that is usually higher than 100 beats per minute. ● Bradycardia: A low resting heart rate that is usually lower than 60 beats per minute. ● Circulation: The movement of blood through the vessels of the body by the pumping action of the heart. It distributes nutrients and oxygen and removes waste products from all parts of the body. ● Pulmonary Circulation: The portion of the circulatory system that carries deoxygenated blood from the heart to the lungs and oxygenated blood back to the heart. -
Pressure on Perfusion - Mean Arterial Pressure in Relation to Cerebral Ischemia and Kidney Injury
Pressure on Perfusion - Mean Arterial Pressure in Relation to Cerebral Ischemia and Kidney Injury Line Larsen and Carina Dyhr Jørgensen Affiliation: Department of Cardiac Thoracic Surgery University Hospital Odense Sdr. Boulevard 29 5000 Odense C, Denmark Supervisor: Claus Andersen, MD, Consultant Anaesthesiologist, Department of Anaesthesiology, V, OUH. Poul Erik Mortensen, MD, Consultant Surgeon, Department of Cardiac Thoracic Surgery, T, OUH. Pressure on Perfusion Line Larsen and Carina Dyhr Jørgensen Index Abstract ........................................................................................................................................................... 2 Introduction ..................................................................................................................................................... 3 Aim ................................................................................................................................................................ 8 Hypothesis ..................................................................................................................................................... 8 Methodological considerations ....................................................................................................................... 9 Materials and methods .................................................................................................................................. 10 Study design ............................................................................................................................................... -
Blood Vessels: Part A
Chapter 19 The Cardiovascular System: Blood Vessels: Part A Blood Vessels • Delivery system of dynamic structures that begins and ends at heart – Arteries: carry blood away from heart; oxygenated except for pulmonary circulation and umbilical vessels of fetus – Capillaries: contact tissue cells; directly serve cellular needs – Veins: carry blood toward heart Structure of Blood Vessel Walls • Lumen – Central blood-containing space • Three wall layers in arteries and veins – Tunica intima, tunica media, and tunica externa • Capillaries – Endothelium with sparse basal lamina Tunics • Tunica intima – Endothelium lines lumen of all vessels • Continuous with endocardium • Slick surface reduces friction – Subendothelial layer in vessels larger than 1 mm; connective tissue basement membrane Tunics • Tunica media – Smooth muscle and sheets of elastin – Sympathetic vasomotor nerve fibers control vasoconstriction and vasodilation of vessels • Influence blood flow and blood pressure Tunics • Tunica externa (tunica adventitia) – Collagen fibers protect and reinforce; anchor to surrounding structures – Contains nerve fibers, lymphatic vessels – Vasa vasorum of larger vessels nourishes external layer Blood Vessels • Vessels vary in length, diameter, wall thickness, tissue makeup • See figure 19.2 for interaction with lymphatic vessels Arterial System: Elastic Arteries • Large thick-walled arteries with elastin in all three tunics • Aorta and its major branches • Large lumen offers low resistance • Inactive in vasoconstriction • Act as pressure reservoirs—expand -
Drug Class Review Antianginal Agents
Drug Class Review Antianginal Agents 24:12.08 Nitrates and Nitrites 24:04.92 Cardiac Drugs, Miscellaneous Amyl Nitrite Isosorbide Dinitrate (IsoDitrate ER®, others) Isosorbide Mononitrate (Imdur®) Nitroglycerin (Minitran®, Nitrostat®, others) Ranolazine (Ranexa®) Final Report May 2015 Review prepared by: Melissa Archer, PharmD, Clinical Pharmacist Carin Steinvoort, PharmD, Clinical Pharmacist Gary Oderda, PharmD, MPH, Professor University of Utah College of Pharmacy Copyright © 2015 by University of Utah College of Pharmacy Salt Lake City, Utah. All rights reserved. Table of Contents Executive Summary ......................................................................................................................... 3 Introduction .................................................................................................................................... 4 Table 1. Antianginal Therapies .............................................................................................. 4 Table 2. Summary of Agents .................................................................................................. 5 Disease Overview ........................................................................................................................ 8 Table 3. Summary of Current Clinical Practice Guidelines .................................................... 9 Pharmacology ............................................................................................................................... 10 Table 4. Pharmacokinetic Properties -
Central Venous Pressure: Uses and Limitations
Central Venous Pressure: Uses and Limitations T. Smith, R. M. Grounds, and A. Rhodes Introduction A key component of the management of the critically ill patient is the optimization of cardiovascular function, including the provision of an adequate circulating volume and the titration of cardiac preload to improve cardiac output. In spite of the appearance of several newer monitoring technologies, central venous pressure (CVP) monitoring remains in common use [1] as an index of circulatory filling and of cardiac preload. In this chapter we will discuss the uses and limitations of this monitor in the critically ill patient. Defining Central Venous Pressure What is the Central Venous Pressure? Central venous pressure is the intravascular pressure in the great thoracic veins, measured relative to atmospheric pressure. It is conventionally measured at the junction of the superior vena cava and the right atrium and provides an estimate of the right atrial pressure. The Central Venous Pressure Waveform The normal CVP exhibits a complex waveform as illustrated in Figure 1. The waveform is described in terms of its components, three ascending ‘waves’ and two descents. The a-wave corresponds to atrial contraction and the x descent to atrial relaxation. The c wave, which punctuates the x descent, is caused by the closure of the tricuspid valve at the start of ventricular systole and the bulging of its leaflets back into the atrium. The v wave is due to continued venous return in the presence of a closed tricuspid valve. The y descent occurs at the end of ventricular systole when the tricuspid valve opens and blood once again flows from the atrium into the ventricle. -
Pathophysiology of the Cardiovascular System and Neonatal Hypotension
Pathophysiology of the Cardiovascular System and Neonatal Hypotension Sandra L. Shead, RNC-NIC, MSN, CNS, NNP-BC Continuing Nursing Education BSTRACT (CNE) Credit A A total of 2.5 contact Hypotension is common in low birth weight neonates and less common in term newborns and is hours may be earned as CNE credit associated with significant morbidity and mortality. Determining an adequate blood pressure in for reading the articles in this issue neonates remains challenging for the neonatal nurse because of the lack of agreed-upon norms. Values identified as CNE and for completing an online posttest and evaluation. for determining norms for blood pressure at varying gestational and postnatal ages are based on To be successful the learner must empirical data. Understanding cardiovascular pathophysiology, potential causes of hypotension, and obtain a grade of at least 80% on assessment of adequate perfusion in the neonatal population is important and can assist the neonatal the test. Test expires three (3) years from publication date. Disclosure: nurse in the evaluation of effective blood pressure. This article reviews cardiovascular pathophysiology The author/planning committee as it relates to blood pressure and discusses potential causes of hypotension in the term and preterm has no relevant financial interest or affiliations with any commercial neonate. Variation in management of hypotension across centers is discussed. Underlying causes and interests related to the subjects pathophysiology of hypotension in the neonate are described. discussed within this article. No commercial support or sponsorship was provided for this educational Keywords: neonatal hypotension; definition; physiology; cardiovascular system; preterm; management; activity. ANN/ANCC does not assessment; cerebral; autoregulation; blood pressure endorse any commercial products discussed/displayed in conjunction with this educational activity. -
Toolbox-Talks--Blood-Pressure.Pdf
TOOLBOX Toolbox Talk #1 TALKS Blood Pressure vs. Heart Rate While your blood pressure is the force of your blood moving through your blood vessels, your heart rate is the number of times your heart beats per minute. They are two separate measurements and indicators of health. • For people with high blood pressure (HBP or hypertension), there’s no substitute for measuring blood pressure. • Heart rate and blood pressure do not necessarily increase at the same rate. A rising heart rate does not cause your blood pressure to increase at the same Quarter: rate. Even though your heart is beating more times a minute, healthy blood BLOOD vessels dilate (get larger) to allow more blood to flow through more easily. PRESSURE When you exercise, your heart speeds up so more blood can reach your muscles. It may be possible for your heart rate to double safely, while your blood pressure may respond by only increasing a modest amount. Talk Number: Heart Rate and Exercise 1 In discussions about high blood pressure, you will often see heart rate Blood mentioned in relation to exercise. Your target heart rate is based on age and Pressure can help you monitor the intensity of your exercise. vs. • If you measure your heart rate (take your pulse) before, during and after Heart Rate physical activity, you’ll notice it will increase over the course of the exercise. • The greater the intensity of the exercise, the more your heart rate will increase. • When you stop exercising, your heart rate does not immediately return to your normal (resting) heart rate. -
Cardiovascular Physiology
CARDIOVASCULAR PHYSIOLOGY Ida Sletteng Karlsen • Trym Reiberg Second Edition 15 March 2020 Copyright StudyAid 2020 Authors Trym Reiberg Ida Sletteng Karlsen Illustrators Nora Charlotte Sønstebø Ida Marie Lisle Amalie Misund Ida Sletteng Karlsen Trym Reiberg Booklet Disclaimer All rights reserved. No part oF this book may be reproduced in any Form on by an electronic or mechanical means, without permission From StudyAid. Although the authors have made every efFort to ensure the inFormation in the booklet was correct at date of publishing, the authors do not assume and hereby disclaim any liability to any part For any inFormation that is omitted or possible errors. The material is taken From a variety of academic sources as well as physiology lecturers, but are Further incorporated and summarized in an original manner. It is important to note, the material has not been approved by professors of physiology. All illustrations in the booklet are original. This booklet is made especially For students at the Jagiellonian University in Krakow by tutors in the StudyAid group (students at JU). It is available as a PDF and is available for printing. If you have any questions concerning copyrights oF the booklet please contact [email protected]. About StudyAid StudyAid is a student organization at the Jagiellonian University in Krakow. Throughout the academic year we host seminars in the major theoretical subjects: anatomy, physiology, biochemistry, immunology, pathophysiology, supplementing the lectures provided by the university. We are a group of 25 tutors, who are students at JU, each with their own Field oF specialty. To make our seminars as useful and relevant as possible, we teach in an interactive manner often using drawings and diagrams to help students remember the concepts. -
The Icefish (Chionodraco Hamatus)
The Journal of Experimental Biology 207, 3855-3864 3855 Published by The Company of Biologists 2004 doi:10.1242/jeb.01180 No hemoglobin but NO: the icefish (Chionodraco hamatus) heart as a paradigm D. Pellegrino1,2, C. A. Palmerini3 and B. Tota2,4,* Departments of 1Pharmaco-Biology and 2Cellular Biology, University of Calabria, 87030, Arcavacata di Rende, CS, Italy, 3Department of Cellular and Molecular Biology, University of Perugia, 06126, Perugia, Italy and 4Zoological Station ‘A. Dohrn’, Villa Comunale, 80121, Napoli, Italy *Author for correspondence (e-mail: [email protected]) Accepted 13 July 2004 Summary The role of nitric oxide (NO) in cardio-vascular therefore demonstrate that under basal working homeostasis is now known to include allosteric redox conditions the icefish heart is under the tonic influence modulation of cell respiration. An interesting animal for of a NO-cGMP-mediated positive inotropism. We also the study of this wide-ranging influence of NO is the cold- show that the working heart, which has intracardiac adapted Antarctic icefish Chionodraco hamatus, which is NOS (shown by NADPH-diaphorase activity and characterised by evolutionary loss of hemoglobin and immunolocalization), can produce and release NO, as multiple cardio-circulatory and subcellular compensations measured by nitrite appearance in the cardiac effluent. for efficient oxygen delivery. Using an isolated, perfused These results indicate the presence of a functional NOS working heart preparation of C. hamatus, we show that system in the icefish heart, possibly serving a both endogenous (L-arginine) and exogenous (SIN-1 in paracrine/autocrine regulatory role. presence of SOD) NO-donors as well as the guanylate cyclase (GC) donor 8Br-cGMP elicit positive inotropism, while both nitric oxide synthase (NOS) and sGC Key words: nitric oxide, heart, Antarctic teleost, icefish, Chionodraco inhibitors, i.e. -
Arterial System Lecture Block 10 Vascular Structure/Function
Arterial System Lecture Block 10 Arterial System Bioengineering 6000 CV Physiology Vascular Structure/Function Arterial System Bioengineering 6000 CV Physiology Functional Overview Arterial System Bioengineering 6000 CV Physiology Vessel Structure Aorta Artery Vein Vena Cava Arteriole Capillary Venule Diameter 25 mm 4 mm 5 mm 30 mm 30 µm 8 µm 20 µm Wall 2 mm 1 mm 0.5 mm 1.5 mm 6 µm 0.5 µm 1 µm thickness Endothelium Elastic tissue Smooth Muscle Fibrous Tissue Arterial System Bioengineering 6000 CV Physiology Aortic Compliance • Factors: – age 20--24 yrs – athersclerosis 300 • Effects – more pulsatile flow 200 dV 30--40 yrs C = – more cardiac work dP 50-60 yrs – not hypertension Laplace’s Law 100 70--75 yrs (thin-walled cylinder): [%] Volume Blood T = wall tension P = pressure T = Pr r = radius For thick wall cylinder 100 150 200 P = pressure Pr Pressure [mm Hg] σ = wall stress r = radius σ = Tension Wall Stress w = wall thickness w [dyne/cm] [dyne/cm2] Aorta 2 x 105 10 x 105 Capillary 15-70 1.5 x 105 Arterial System Bioengineering 6000 CV Physiology Arterial Hydraulic Filter Arterial System Bioengineering 6000 CV Physiology Arterial System as Hydraulic Filter Arterial Cardiac Pressure • Pulsatile --> Output t Physiological smooth flow t Ideal • Cardiac energy conversion Cardiac • Reduces total Output Arterial cardiac work Pressure t Pulsatile t Challenge Cardiac Output Arterial Pressure t Filtered t Reality Arterial System Bioengineering 6000 CV Physiology Elastic Recoil in Arteries Arterial System Bioengineering 6000 CV Physiology Effects of Vascular Resistance and Compliance Arterial System Bioengineering 6000 CV Physiology Cardiac Output vs.