Central Venous Pressure: Uses and Limitations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 20 *Lecture Powerpoint the Circulatory System: Blood Vessels and Circulation
Chapter 20 *Lecture PowerPoint The Circulatory System: Blood Vessels and Circulation *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • The route taken by the blood after it leaves the heart was a point of much confusion for many centuries – Chinese emperor Huang Ti (2697–2597 BC) believed that blood flowed in a complete circuit around the body and back to the heart – Roman physician Galen (129–c. 199) thought blood flowed back and forth like air; the liver created blood out of nutrients and organs consumed it – English physician William Harvey (1578–1657) did experimentation on circulation in snakes; birth of experimental physiology – After microscope was invented, blood and capillaries were discovered by van Leeuwenhoek and Malpighi 20-2 General Anatomy of the Blood Vessels • Expected Learning Outcomes – Describe the structure of a blood vessel. – Describe the different types of arteries, capillaries, and veins. – Trace the general route usually taken by the blood from the heart and back again. – Describe some variations on this route. 20-3 General Anatomy of the Blood Vessels Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Capillaries Artery: Tunica interna Tunica media Tunica externa Nerve Vein Figure 20.1a (a) 1 mm © The McGraw-Hill Companies, Inc./Dennis Strete, photographer • Arteries carry blood away from heart • Veins -
Central Venous Pressure Venous Examination but Underestimates Ultrasound Accurately Reflects the Jugular
Ultrasound Accurately Reflects the Jugular Venous Examination but Underestimates Central Venous Pressure Gur Raj Deol, Nicole Collett, Andrew Ashby and Gregory A. Schmidt Chest 2011;139;95-100; Prepublished online August 26, 2010; DOI 10.1378/chest.10-1301 The online version of this article, along with updated information and services can be found online on the World Wide Web at: http://chestjournal.chestpubs.org/content/139/1/95.full.html Chest is the official journal of the American College of Chest Physicians. It has been published monthly since 1935. Copyright2011by the American College of Chest Physicians, 3300 Dundee Road, Northbrook, IL 60062. All rights reserved. No part of this article or PDF may be reproduced or distributed without the prior written permission of the copyright holder. (http://chestjournal.chestpubs.org/site/misc/reprints.xhtml) ISSN:0012-3692 Downloaded from chestjournal.chestpubs.org at UCSF Library & CKM on January 21, 2011 © 2011 American College of Chest Physicians CHEST Original Research CRITICAL CARE Ultrasound Accurately Refl ects the Jugular Venous Examination but Underestimates Central Venous Pressure Gur Raj Deol , MD ; Nicole Collett , MD ; Andrew Ashby , MD ; and Gregory A. Schmidt , MD , FCCP Background: Bedside ultrasound examination could be used to assess jugular venous pressure (JVP), and thus central venous pressure (CVP), more reliably than clinical examination. Methods: The study was a prospective, blinded evaluation comparing physical examination of external jugular venous pressure (JVPEXT), internal jugular venous pressure (JVPINT), and ultrasound collapse pressure (UCP) with CVP measured using an indwelling catheter. We com- pared the examination of the external and internal JVP with each other and with the UCP and CVP. -
Cardiovascular Physiology
CARDIOVASCULAR PHYSIOLOGY Ida Sletteng Karlsen • Trym Reiberg Second Edition 15 March 2020 Copyright StudyAid 2020 Authors Trym Reiberg Ida Sletteng Karlsen Illustrators Nora Charlotte Sønstebø Ida Marie Lisle Amalie Misund Ida Sletteng Karlsen Trym Reiberg Booklet Disclaimer All rights reserved. No part oF this book may be reproduced in any Form on by an electronic or mechanical means, without permission From StudyAid. Although the authors have made every efFort to ensure the inFormation in the booklet was correct at date of publishing, the authors do not assume and hereby disclaim any liability to any part For any inFormation that is omitted or possible errors. The material is taken From a variety of academic sources as well as physiology lecturers, but are Further incorporated and summarized in an original manner. It is important to note, the material has not been approved by professors of physiology. All illustrations in the booklet are original. This booklet is made especially For students at the Jagiellonian University in Krakow by tutors in the StudyAid group (students at JU). It is available as a PDF and is available for printing. If you have any questions concerning copyrights oF the booklet please contact [email protected]. About StudyAid StudyAid is a student organization at the Jagiellonian University in Krakow. Throughout the academic year we host seminars in the major theoretical subjects: anatomy, physiology, biochemistry, immunology, pathophysiology, supplementing the lectures provided by the university. We are a group of 25 tutors, who are students at JU, each with their own Field oF specialty. To make our seminars as useful and relevant as possible, we teach in an interactive manner often using drawings and diagrams to help students remember the concepts. -
Effects of Vasodilation and Arterial Resistance on Cardiac Output Aliya Siddiqui Department of Biotechnology, Chaitanya P.G
& Experim l e ca n i t in a l l C Aliya, J Clinic Experiment Cardiol 2011, 2:11 C f a Journal of Clinical & Experimental o r d l DOI: 10.4172/2155-9880.1000170 i a o n l o r g u y o J Cardiology ISSN: 2155-9880 Review Article Open Access Effects of Vasodilation and Arterial Resistance on Cardiac Output Aliya Siddiqui Department of Biotechnology, Chaitanya P.G. College, Kakatiya University, Warangal, India Abstract Heart is one of the most important organs present in human body which pumps blood throughout the body using blood vessels. With each heartbeat, blood is sent throughout the body, carrying oxygen and nutrients to all the cells in body. The cardiac cycle is the sequence of events that occurs when the heart beats. Blood pressure is maximum during systole, when the heart is pushing and minimum during diastole, when the heart is relaxed. Vasodilation caused by relaxation of smooth muscle cells in arteries causes an increase in blood flow. When blood vessels dilate, the blood flow is increased due to a decrease in vascular resistance. Therefore, dilation of arteries and arterioles leads to an immediate decrease in arterial blood pressure and heart rate. Cardiac output is the amount of blood ejected by the left ventricle in one minute. Cardiac output (CO) is the volume of blood being pumped by the heart, by left ventricle in the time interval of one minute. The effects of vasodilation, how the blood quantity increases and decreases along with the blood flow and the arterial blood flow and resistance on cardiac output is discussed in this reviewArticle. -
Electrical Activity of the Heart: Action Potential, Automaticity, and Conduction 1 & 2 Clive M
Electrical Activity of the Heart: Action Potential, Automaticity, and Conduction 1 & 2 Clive M. Baumgarten, Ph.D. OBJECTIVES: 1. Describe the basic characteristics of cardiac electrical activity and the spread of the action potential through the heart 2. Compare the characteristics of action potentials in different parts of the heart 3. Describe how serum K modulates resting potential 4. Describe the ionic basis for the cardiac action potential and changes in ion currents during each phase of the action potential 5. Identify differences in electrical activity across the tissues of the heart 6. Describe the basis for normal automaticity 7. Describe the basis for excitability 8. Describe the basis for conduction of the cardiac action potential 9. Describe how the responsiveness relationship and the Na+ channel cycle modulate cardiac electrical activity I. BASIC ELECTROPHYSIOLOGIC CHARACTERISTICS OF CARDIAC MUSCLE A. Electrical activity is myogenic, i.e., it originates in the heart. The heart is an electrical syncitium (i.e., behaves as if one cell). The action potential spreads from cell-to-cell initiating contraction. Cardiac electrical activity is modulated by the autonomic nervous system. B. Cardiac cells are electrically coupled by low resistance conducting pathways gap junctions located at the intercalated disc, at the ends of cells, and at nexus, points of side-to-side contact. The low resistance pathways (wide channels) are formed by connexins. Connexins permit the flow of current and the spread of the action potential from cell-to-cell. C. Action potentials are much longer in duration in cardiac muscle (up to 400 msec) than in nerve or skeletal muscle (~5 msec). -
Jugular Venous Pressure
NURSING Jugular Venous Pressure: Measuring PRACTICE & SKILL What is Measuring Jugular Venous Pressure? Measuring jugular venous pressure (JVP) is a noninvasive physical examination technique used to indirectly measure central venous pressure(i.e., the pressure of the blood in the superior and inferior vena cava close to the right atrium). It is a part of a complete cardiovascular assessment. (For more information on cardiovascular assessment in adults, see Nursing Practice & Skill ... Physical Assessment: Performing a Cardiovascular Assessment in Adults ) › What: Measuring JVP is a screening mechanism to identify abnormalities in venous return, blood volume, and right heart hemodynamics › How: JVP is determined by measuring the vertical distance between the sternal angle and the highest point of the visible venous pulsation in the internal jugular vein orthe height of the column of blood in the external jugular vein › Where: JVP can be measured in inpatient, outpatient, and residential settings › Who: Nurses, nurse practitioners, physician assistants, and treating clinicians can measure JVP as part of a complete cardiovascular assessment What is the Desired Outcome of Measuring Jugular Venous Pressure? › The desired outcome of measuring JVP is to establish the patient’s JVP within the normal range or for abnormal JVP to be identified so that appropriate treatment may be initiated. Patients’ level of activity should not be affected by having had the JVP measured ICD-9 Why is Measuring Jugular Venous Pressure Important? 89.62 › The JVP is -
Impaired Baroreflex Function and Arterial Compliance in Primary
Journal of Human Hypertension (1999) 13, 29–36 1999 Stockton Press. All rights reserved 0950-9240/99 $12.00 http://www.stockton-press.co.uk/jhh ORIGINAL ARTICLE Impaired baroreflex function and arterial compliance in primary aldosteronism F Veglio, P Molino, G Cat Genova, R Melchio, F Rabbia, T Grosso, G Martini and L Chiandussi Department of Medicine and Experimental Oncology, University of Turin, Italy The purpose of this study was to evaluate if changes in mary aldosteronism patients in the supine position (P vascular properties were related to baroreflex function = 0.002 and P Ͻ 0.05 respectively). Aldosterone in patients with primary aldosteronism. Twenty-three plasma levels (R2 = 0.31, P = 0.01),age,systolicand patients with primary aldosteronism, 22 essential hyper- diastolic BP, high and low frequency components of tensive patients and 16 normal controls were studied. diastolic BP variability were independently related to Continuous finger blood pressure (BP) was recorded by compliance in primary aldosteronism. In conclusion Portapres device during supine rest and active stand primary aldosteronism is associated with an impaired up. Compliance was estimated from the time constant baroreflex function related in part to a reduced arterial of pressure decay during diastole. Baroreflex sensitivity compliance. Despite a reduction of BP values and was calculated by autoregressive cross-spectral analy- aldosterone levels, surgical or pharmacological treat- sis of systolic BP and interbeat interval. The result was ment did not significantly change compliance values. that baroreflex gain and compliance were lower in pri- Keywords: baroreflex; compliance; primary aldosteronism Introduction of arterial pressure decay during the diastolic por- tion of the arterial pressure wave. -
Time-Varying Elastance and Left Ventricular Aortic Coupling Keith R
Walley Critical Care (2016) 20:270 DOI 10.1186/s13054-016-1439-6 REVIEW Open Access Left ventricular function: time-varying elastance and left ventricular aortic coupling Keith R. Walley Abstract heart must have special characteristics that allow it to respond appropriately and deliver necessary blood flow Many aspects of left ventricular function are explained and oxygen, even though flow is regulated from outside by considering ventricular pressure–volume characteristics. the heart. Contractility is best measured by the slope, Emax, of the To understand these special cardiac characteristics we end-systolic pressure–volume relationship. Ventricular start with ventricular function curves and show how systole is usefully characterized by a time-varying these curves are generated by underlying ventricular elastance (ΔP/ΔV). An extended area, the pressure– pressure–volume characteristics. Understanding ventricu- volume area, subtended by the ventricular pressure– lar function from a pressure–volume perspective leads to volume loop (useful mechanical work) and the ESPVR consideration of concepts such as time-varying ventricular (energy expended without mechanical work), is linearly elastance and the connection between the work of the related to myocardial oxygen consumption per beat. heart during a cardiac cycle and myocardial oxygen con- For energetically efficient systolic ejection ventricular sumption. Connection of the heart to the arterial circula- elastance should be, and is, matched to aortic elastance. tion is then considered. Diastole and the connection of Without matching, the fraction of energy expended the heart to the venous circulation is considered in an ab- without mechanical work increases and energy is lost breviated form as these relationships, which define how during ejection across the aortic valve. -
CARDIAC CYCLE & CONTROL (All Cd References Refer to Interactiv
Biology 251 Fall 2015 TOPIC 15: CARDIOVASCULAR SYSTEM: CARDIAC CYCLE & CONTROL (All cd references refer to Interactive Physiology cd, Cardiovascular menu) I. Mechanical Events in the Cardiac Cycle (Figs 13.18 to 13.21; cd cardiac cycle 5 to 17) A. Introduction 1. Systole: Contraction and emptying of the chambers 2. Diastole: Relaxation and filling of the chambers 3. Atria and Ventricles go through separate cycles of systole and diastole 4. The contraction status (being in systole or diastole) determines heart chamber pressure which determines whether valves are open or closed. B. TP interval: Ventricular diastole 1. Atria and ventricles are in diastole (i.e., relaxed). 2. Blood flows from veins into atria 3. Ventricuclar Pressure < Aortic Pressure = Aortic Valve closed 4. Atrial pressure > Ventricular Pressure = AV valve open so 5. Blood flows from atria directly into ventricles. C. P wave and PQ interval: Late ventricular diastole 1. Ventricuclar Pressure < Aortic Pressure = aortic valve closed 2. SA node reaches threshold and fires. 3. Atrial depolarization occurs. 4. Atria contract = atrial systole 5. Atrial Pressure > Ventricular Pressure = AV valves open. 6. Blood squeezed by atrial contraction from atria into ventricles. D. QR Interval: End of ventricular diastole 1. Ventricuclar pressure < Aortic Pressure = Aortic Valve closed 2. Atrial Pressure > Ventricular Pressure = AV valves open. 3. Blood squeezed from atria into ventricles. 4. Electrical impulse enters ventricles from the AV node. 5. Ventricles begin to depolarize. 6. R peak is end of ventricular diastole and start of ventricular systole. E. RS interval: Early ventricluar systole 1. Ventricles begin to contract. 2. Atrial Pressure < Ventricle Pressure = AV valves close 3. -
Passive Leg Raising: Five Rules, Not a Drop of Fluid! Xavier Monnet1,2* and Jean-Louis Teboul1,2
Monnet and Teboul Critical Care (2015) 19:18 DOI 10.1186/s13054-014-0708-5 EDITORIAL Open Access Passive leg raising: five rules, not a drop of fluid! Xavier Monnet1,2* and Jean-Louis Teboul1,2 In acute circulatory failure, passive leg raising (PLR) is a Third, the technique used to measure cardiac output test that predicts whether cardiac output will increase during PLR must be able to detect short-term and tran- with volume expansion [1]. By transferring a volume of sient changes since the PLR effects may vanish after around 300 mL of venous blood [2] from the lower body 1 minute [1]. Techniques monitoring cardiac output in toward the right heart, PLR mimics a fluid challenge. ‘real time’, such as arterial pulse contour analysis, echo- However, no fluid is infused and the hemodynamic effects cardiography, esophageal Doppler, or contour analysis of are rapidly reversible [1,3], thereby avoiding the risks of the volume clamp-derived arterial pressure, can be used fluid overload. This test has the advantage of remaining [6]. Conflicting results have been reported for bioreac- reliable in conditions in which indices of fluid responsive- tance [7,8]. The hemodynamic response to PLR can even ness that are based on the respiratory variations of stroke be assessed by the changes in end-tidal exhaled carbon volume cannot be used [1], like spontaneous breathing, dioxide, which reflect the changes in cardiac output in arrhythmias, low tidal volume ventilation, and low lung the case of constant minute ventilation [5]. compliance. Fourth, cardiac output must be measured not only The method for performing PLR is of the utmost before and during PLR but also after PLR when the importance because it fundamentally affects its hemody- patient has been moved back to the semi-recumbent namic effects and reliability. -
67 Central Venous/Right Atrial Pressure Monitoring 579
PROCEDURE Central Venous/Right Atrial 67 Pressure Monitoring Reba McVay PURPOSE: Central venous/right-atrial pressure monitoring provides information about the patient ’ s intravascular volume status and right-ventricular preload. The central venous pressure (CVP) or the right atrial pressure (RAP) allows for evaluation of right-sided heart hemodynamics and evaluation of patient response to therapy. CVP and right-atrial pressure are used interchangeably. PREREQUISITE NURSING EQUIPMENT KNOWLEDGE • Pressure transducer system, including fl ush solution rec- • Knowledge of the normal anatomy and physiology of the ommended according to institutional standards, a pressure cardiovascular system is needed. bag or device, pressure tubing with transducer, and fl ush • Knowledge of the principles of aseptic technique and device (see Procedure 75 ) infection control is necessary. • Pressure module and cable for interface with the monitor • Knowledge is needed of the principles of hemodynamic • Dual-channel recorder monitoring. • Leveling device (low-intensity laser or carpenter level) • The CVP/RAP represents right-sided heart preload or the • Nonsterile gloves volume of blood found in the right ventricle at the end of • Sterile injectable or noninjectable caps diastole. Additional equipment (to have available depending on patient • CVP/RAP infl uences and is infl uenced by venous return need) includes the following: and cardiac function. Although the CVP/RAP is used as a • Indelible marker measure of changes in the right ventricle, the relationship is not linear because the right ventricle has the ability to PATIENT AND FAMILY EDUCATION expand and alter its compliance, changes in volume can occur with little change in pressure. • Discuss the purpose of the central venous catheter and • The CVP/RAP normally ranges from 2 to 6 mm Hg in the monitoring with both the patient and family. -
Phases of Diastole in Various Syndromes of Mitral Valvular Disease
Br Heart J: first published as 10.1136/hrt.25.3.393 on 1 May 1963. Downloaded from PHASES OF DIASTOLE IN VARIOUS SYNDROMES OF MITRAL VALVULAR DISEASE BY P. G. F. NIXON AND G. H. WOOLER From the Departments of Thoracic Surgery and Medicine, The General Infirmary, Leeds Received September 24, 1962 The diastolic events of the left side of the heart are modified by the obstruction of mitral stenosis and the disordered heart volumes of mitral incompetence, and tracings that illustrate the abnormali- ties have great diagnostic value. Methods developed recently for measuring pressure and movement simultaneously with the heart sounds have allowed records of the patterns of diastolic left heart activity to supplement the physical examination in clinical practice. A degree of confusion has been caused by the use of similar terms in different contexts, and by the failure to recognize the occurrence, significance, or coincidence of certain events. This paper describes the phases of diastole and the syndromes of mitral valvular disease that were observed in the ward and the laboratory, and dis- cusses their bearing upon the genesis of the third heart sound. SUBJECTS AND METHODS Patients with chronic rheumatic heart disease were selected for this study when it was considered that the mitral valvular lesion was the sole or the predominant cause of symptoms and signs. Most had been referred for pre-operative assessment, and presented with atrial fibrillation and pulmonary hypertension. The phonocardiogram was recorded in every case. In nearly 200 the left atrial pressure pulse was the reference http://heart.bmj.com/ tracing.