Third-Spacing: When Body Fluid Shifts by Susan Simmons Holcomb, ARNP-BC, Phd

Total Page:16

File Type:pdf, Size:1020Kb

Third-Spacing: When Body Fluid Shifts by Susan Simmons Holcomb, ARNP-BC, Phd Topics in Progressive Care Third-spacing: When body fluid shifts By Susan Simmons Holcomb, ARNP-BC, PhD In a healthy adult, nearly all fluid is contained in Water, water the intracellular, intravascular, or interstitial everywhere spaces, with the intracellular space holding about two-thirds of total body water. Normally, fluid moves freely between these three spaces to main- Intracellular fluid tain fluid balance (see Water, water everywhere). Third-spacing occurs when too much fluid moves Ifrom the intravascular space (blood vessels) into the interstitial or “third” space—the nonfunctional Intravascular fluid area between cells. This can cause potentially seri- ous problems such as edema, reduced cardiac output, and hypotension. Interstitial fluid In this article, I’ll describe why third-spacing occurs and how to intervene to restore balance. Let’s start with a brief physiology review. Body fluids are distributed between the intracellular What’s behind third-spacing? and extracellular fluid compartments. The intracellular Fluid volume, pressure, and levels of sodium compartment consists of fluid contained within all the and albumin are the keys to maintaining fluid body cells. The extracellular compartment contains all balance between the intracellular and extracellu- the fluids outside the cells, including fluid in the inter- lar (intravascular and interstitial) spaces. Capillary stitial (tissue) spaces, and that in the intravascular permeability and the lymphatic system also play space (blood vessels). a role. A problem with any of these components can cause fluid to shift from the intravascular space losses during diarrhea or fluid losses caused by to the interstitial space. Let’s look more closely at medications such as diuretics. Hyponatremia can each component. also arise from volume overload. Also called dilu- • Increased fluid volume can be caused by overzealous tional or hypervolemic hyponatremia, this can fluid replacement or renal dysfunction. Volume occur with overzealous fluid replacement, heart overload can lead to peripheral edema, pulmonary failure, hepatic cirrhosis, renal disease, hypothy- edema, hepatic dysfunction, cerebral edema and roidism, or administration of vasopressin. mental changes, and decreased cardiac output. Other • Albumin losses disrupt colloidal osmotic pressure. signs of fluid overload include jugular vein distension, Plasma proteins are crucial to maintaining colloidal hypertension, and a pathologic S3. osmotic pressure. Albumin, the major protein con- • Increased capillary hydrostatic pressure often stituent of the intravascular space, accounts for up accompanies heart failure. Right-sided heart to 60% of total protein. Any condition that destroys failure is characterized by an increase in venous tissue or reduces protein intake can lead to protein pressure that causes edema in the liver and the losses and third-spacing. Some examples are periphery. Left-sided heart failure causes pul- hypocalcemia, decreased iron intake, severe liver monary edema. diseases, alcoholism, hypothyroidism, malabsorption, • Decreased sodium level, or hyponatremia, may result malnutrition, renal disease, diarrhea, immobility, from sodium loss; for example, gastrointestinal burns, and cancer. www.nursingcenter.com March l Nursing2009Critical Care l 9 Topics in Progressive Care • Increased capillary permeability results from burns and other forms of tissue The role of the lymph system trauma. Edema due to an increase in Normally the forces moving fluid out of the capillaries into the interstitial capillary permeability can be local, as space are greater than those returning fluid to the capillaries. The lym- with a localized trauma, or systemic as phatic system usually returns excess fluids and osmotically active plas- with anaphylaxis or disseminated ma proteins to the circulation. But if the lymphatic system is obstructed, intravascular coagulation. fluid and plasma proteins accumulate in the interstitial space. • Lymphatic system obstruction is com- monly caused by lymph node removal to treat cancer. An obstruc- Venous end tion typically leads to localized Arterial end Capillary edema; fluid and plasma proteins accumulate and can’t be drained into Excess fluid and proteins accumulate in interstitial space the general circulation because of the lymphatic obstruction (see The role of the lymph system). Postmastectomy Obstructed lymphedema is an example of this lymphatic vessel type of third-spacing. Phases of third-spacing hypovolemia; decreased values may indicate hyper- Third-spacing has two distinct phases—loss and volemia. The metabolic panel will give clues to renal reabsorption. and hepatic function as well as electrolyte balance In the loss phase, increased capillary permeability (especially sodium), and levels of protein, including leads to a loss of proteins and fluids from the albumin. intravascular space to the interstitial space. This The albumin-to-globulin ratio (normally slightly phase lasts 24 to 72 hours after the initial insult greater than 1:1) will elicit more information about that led to the increased capillary permeability colloidal osmotic pressure than total protein and (for example, surgery, trauma, burns, or sepsis). albumin levels alone. Albumin molecules are large Fluid loss from diarrhea, vomiting, or bleeding can and don’t diffuse freely through the vascular be measured, but fluid loss from third-spacing isn’t so endothelium, making this protein a major source easy to quantify. Signs and symptoms include weight of plasma colloid osmotic pressures. gain, decreased urinary output, and signs of hypo- Noninvasive assessment tools include an echocar- volemia, such as tachycardia and hypotension. diogram, which may yield information on cardiac During the reabsorption phase, tissues begin to heal function and volume status, and weighing the and fluid is transported back into the intravascular patient daily. Invasive hemodynamic monitoring of space. Signs of hypovolemia resolve, urine output central venous pressure, right atrial pressure, and increases, the patient’s weight stabilizes, and signs pulmonary artery occlusive pressure also help track of shock (if any) begin to reverse. If the patient volume status and the patient’s response to treat- was given fluid resuscitation during the loss phase, ment for hypervolemia or hypovolemia. However, monitor for fluid overload as interstitial fluid shifts some patients aren’t candidates for hemodynamic back to the intravascular space. monitoring, and some facilities aren’t equipped for this type of monitoring. Determining the cause Treatment of third-spacing depends on the cause, In some cases, the cause of third-spacing may be the phase, and the factors involved. Stabilizing your subtle and require a diagnostic workup, including a patient’s hemodynamic status is the first priority. complete blood cell count (CBC), complete metabol- During the loss phase, your focus is on preventing ic profile, and serum osmolality. The CBC may give hypovolemia and hypotension, which can lead to clues to volume status and factors contributing to shock and renal failure. During the reabsorption third-spacing, such as infection or necrosis. Elevated phase, focus on preventing circulatory overload and hemoglobin and hematocrit values may indicate hypertension, which can lead to pulmonary edema. 10 l Nursing2009Critical Care l Volume 4, Number 2 www.nursingcenter.com Which fluid is best? To stabilize the patient’s volume status, you’ll administer crystalloids, colloids, or a combination of these. Crystalloids replace electrolytes and restore normal serum osmolality; colloids replace the proteins responsible for maintaining plasma colloid osmotic pressure. Crystalloids are most commonly used, and can also treat hyponatremia. Remember, you’re trying to replenish intravascu- lar volume, not deplete the third space. Crystalloid fluids can be hypotonic, isotonic, or hypertonic. Hypotonic solutions, such as 0.45% sodium chloride solution, aren’t appropriate for volume resuscitation because very little of the THE GENTLE GIANT fluid would remain in the intravascular space. Isotonic solutions such as lactated Ringer’s solu- tion and 0.9% sodium chloride solution, which are There’s always been a genuine comfort level between similar to plasma in tonicity and osmolality, are used health care professionals and the powerful pink for resuscitation, with 0.9% sodium chloride solution preferred if the patient is hyponatremic. presence of Hy•Tape. And with good reason. No Hypertonic solutions, such as 3% sodium chloride other surgical tape sizes up to the formidable array of solution, contain large amounts of sodium and have easy working properties neatly rolled into every spool. been rarely used for resuscitation because of their potential for cellular dehydration and overexpansion This industry giant is all about sensitivity. of the intravascular space. However, a recent study found that hypertonic crystalloids were better than Hy•Tape is durable, yet flexible, so it’s perfect isotonic crystalloids for reducing abdominal third- for extended wearing while it gently accommodates spacing and abdominal compartment syndrome that often occur with massive fluid resuscitation in underlying tissue shifts. Its waterproof surface can be patients with extensive burns.1 Another study of washed with soap and water without slipping or critically ill patients found that even though smaller detaching from wet, oily or hairy surfaces. Remarkably, volumes of hypertonic solutions are needed
Recommended publications
  • Vii. Infection Prevention
    VII. INFECTION PREVENTION Prevention of Hospital Acquired Infections What is Infection Prevention? Infection prevention is doing everything possible to prevent the spread of germs which lead to hospital acquired infection. What is a bloodborne pathogen? • Bloodborne pathogens are micro-organisms such as viruses or bacteria that are present in human blood that can cause disease in humans. These pathogens include, but are not limited to: – Hepatitis B (HBV) – Hepatitis C (HCV) – Human immuno-deficiency virus (HIV) – Malaria, syphilis, West Nile virus, Ebola OTHER POTENTIALLY INFECTIOUS MATERIAL (OPIM) • In addition to human blood, bloodborne pathogens can be found in other potentially infectious material such as: – Blood products (plasma/serum) – Saliva – Semen – Vaginal secretions – Skin tissue/cell cultures – Any body fluid that is contaminated with blood • Body fluids that are not usually considered infectious with bloodborne pathogens are: – Vomit – Tears – Sweat – Urine – Feces – Sputum /nasal secretions ALL BODY FLUIDS SHOULD BE REGARDED AS POTENTIALLY INFECTIOUS!!! TRANSMISSION IN THE WORKPLACE Bloodborne pathogens can be transmitted when blood or OPIM is introduced into the blood stream of a person • This can happen through: – Non intact skin (acne, scratches, cuts, bites, blisters, wounds) – Contact with mucus membranes found in the eyes, nose and mouth – Contaminated instruments such as needles and sharps METHODS TO PREVENT BLOODBORNE PATHOGEN EXPOSURE A. Standard Precautions – ALL body fluids should be considered as potentially infectious materials – Use stand precautions EVERY TIME you anticipate contact with blood, body fluids, secretions/excretions, broken skin and mucous membranes – Use appropriate personal protective equipment – Decontaminate spills METHODS TO PREVENT BLOODBORNE PATHOGEN EXPOSURE B. Personal Protective Equipment Include: gloves, gowns, laboratory coats, face shields or masks, eye protection, mouthpieces, resuscitation bags, pocket masks, or other ventilation devices.
    [Show full text]
  • Body Fluid Exposure Procedure
    Employee Health Services 210 Lincoln Street Worcester, MA 01605 Body Fluid Exposure Procedure Step 1: Treat Exposure Site As soon as possible after exposure, use soap and water to wash areas exposed to potentially infectious fluids Flush exposed mucous membranes with water Flush exposed eyes with 500 ml of water or saline, at least 3-5 minutes Do not apply caustic agents, disinfectants or antibiotics in the wound Step 2: Gather Information and Document Employees need to complete a “First Report of Injury” form, state or clinical, as appropriate. Students need to complete an occurrence form. Using the UMMHC PEEP sheet as a guide, document o The circumstances of the occupational exposure o Evaluation of the employee . Evaluation of exposure site . Evaluation of Hepatitis B, C and HIV status Hepatitis B antibody (HBA) Hepatitis B antigen (HSA) Hepatitis C antibody (HCV) HIV antibody . Baseline lab. At the initial visit, we do not necessarily know the disease status of the source patient. Therefore, the baseline labs take into account only the decision to take or decline PEP. No Post-Exposure Prophylaxis (PEP) [2 gold top tubes] Alt HSA HBA HCV HIV Taking Post-Exposure Prophylaxis 2 gold top and 1 purple top tubes All of the above, PLUS AST Amylase Creatinine Glucose CBC/diff UCG as appropriate o Evaluation of the source patient . When the source of the exposure is known Source chart needs to be reviewed and source consented for HIV, Hepatitis B antigen and antibody, and Hepatitis C. J: Employee Health: Body Fluid Exposure Procedure-Revised 09/29/09 jc 1 On the University campus, notify Pat Pehl, the HIV counselor.
    [Show full text]
  • Persistence of Ebola Virus in Various Body Fluids During Convalescence
    Epidemiol. Infect. (2016), 144, 1652–1660. © Cambridge University Press 2016 doi:10.1017/S0950268816000054 Persistence of Ebola virus in various body fluids during convalescence: evidence and implications for disease transmission and control A. A. CHUGHTAI*, M. BARNES AND C. R. MACINTYRE School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia Received 19 November 2015; Final revision 22 December 2015; Accepted 6 January 2016; first published online 25 January 2016 SUMMARY The aim of this study was to review the current evidence regarding the persistence of Ebola virus (EBOV) in various body fluids during convalescence and discuss its implication on disease transmission and control. We conducted a systematic review and searched articles from Medline and EMBASE using key words. We included studies that examined the persistence of EBOV in various body fluids during the convalescent phase. Twelve studies examined the persistence of EBOV in body fluids, with around 800 specimens tested in total. Available evidence suggests that EBOV can persist in some body fluids after clinical recovery and clearance of virus from the blood. EBOV has been isolated from semen, aqueous humor, urine and breast milk 82, 63, 26 and 15 days after onset of illness, respectively. Viral RNA has been detectable in semen (day 272), aqueous humor (day 63), sweat (day 40), urine (day 30), vaginal secretions (day 33), conjunctival fluid (day 22), faeces (day 19) and breast milk (day 17). Given high case fatality and uncertainties around the transmission characteristics, patients should be considered potentially infectious for a period of time after immediate clinical recovery.
    [Show full text]
  • 1 Fluid and Elect. Disorders of Serum Sodium Concentration
    DISORDERS OF SERUM SODIUM CONCENTRATION Bruce M. Tune, M.D. Stanford, California Regulation of Sodium and Water Excretion Sodium: glomerular filtration, aldosterone, atrial natriuretic factors, in response to the following stimuli. 1. Reabsorption: hypovolemia, decreased cardiac output, decreased renal blood flow. 2. Excretion: hypervolemia (Also caused by adrenal insufficiency, renal tubular disease, and diuretic drugs.) Water: antidiuretic honnone (serum osmolality, effective vascular volume), renal solute excretion. 1. Antidiuresis: hyperosmolality, hypovolemia, decreased cardiac output. 2. Diuresis: hypoosmolality, hypervolemia ~ natriuresis. Physiologic changes in renal salt and water excretion are more likely to favor conservation of normal vascular volume than nonnal osmolality, and may therefore lead to abnormalities of serum sodium concentration. Most commonly, 1. Hypovolemia -7 salt and water retention. 2. Hypervolemia -7 salt and water excretion. • HYFERNATREMIA Clinical Senini:: Sodium excess: salt-poisoning, hypertonic saline enemas Primary water deficit: chronic dehydration (as in diabetes insipidus) Mechanism: Dehydration ~ renal sodium retention, even during hypernatremia Rapid correction of hypernatremia can cause brain swelling - Management: Slow correction -- without rapid administration of free water (except in nephrogenic or untreated central diabetes insipidus) HYPONA1REMIAS Isosmolar A. Factitious: hyperlipidemia (lriglyceride-plus-plasma water volume). B. Other solutes: hyperglycemia, radiocontrast agents,. mannitol.
    [Show full text]
  • Evaluation and Treatment of Alkalosis in Children
    Review Article 51 Evaluation and Treatment of Alkalosis in Children Matjaž Kopač1 1 Division of Pediatrics, Department of Nephrology, University Address for correspondence Matjaž Kopač, MD, DSc, Division of Medical Centre Ljubljana, Ljubljana, Slovenia Pediatrics, Department of Nephrology, University Medical Centre Ljubljana, Bohoričeva 20, 1000 Ljubljana, Slovenia J Pediatr Intensive Care 2019;8:51–56. (e-mail: [email protected]). Abstract Alkalosisisadisorderofacid–base balance defined by elevated pH of the arterial blood. Metabolic alkalosis is characterized by primary elevation of the serum bicarbonate. Due to several mechanisms, it is often associated with hypochloremia and hypokalemia and can only persist in the presence of factors causing and maintaining alkalosis. Keywords Respiratory alkalosis is a consequence of dysfunction of respiratory system’s control ► alkalosis center. There are no pathognomonic symptoms. History is important in the evaluation ► children of alkalosis and usually reveals the cause. It is important to evaluate volemia during ► chloride physical examination. Treatment must be causal and prognosis depends on a cause. Introduction hydrogen ion concentration and an alkalosis is a pathologic Alkalosis is a disorder of acid–base balance defined by process that causes a decrease in the hydrogen ion concentra- elevated pH of the arterial blood. According to the origin, it tion. Therefore, acidemia and alkalemia indicate the pH can be metabolic or respiratory. Metabolic alkalosis is char- abnormality while acidosis and alkalosis indicate the patho- acterized by primary elevation of the serum bicarbonate that logic process that is taking place.3 can result from several mechanisms. It is the most common Regulation of hydrogen ion balance is basically similar to form of acid–base balance disorders.
    [Show full text]
  • Managing Hyponatremia in Patients with Syndrome of Inappropriate Antidiuretic Hormone Secretion
    REVIEW Managing Hyponatremia in Patients With Syndrome of Inappropriate Antidiuretic Hormone Secretion Joseph G. Verbalis, MD Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University Medical Center, Washington DC. J.G. Verbalis received an honorarium funded by an unrestricted educational grant from Otsuka America Pharmaceuticals, Inc., for time and expertise spent in the composition of this article. No editorial assistance was provided. No other conflicts exist. This review will address the management of hyponatremia caused by the syndrome of inappropriate antidiuretic hormone secretion (SIADH) in hospitalized patients. To do so requires an understanding of the pathogenesis and diagnosis of SIADH, as well as currently available treatment options. The review will be structured as responses to a series of questions, followed by a presentation of an algorithm for determining the most appropriate treatments for individual patients with SIADH based on their presenting symptoms. Journal of Hospital Medicine 2010;5:S18–S26. VC 2010 Society of Hospital Medicine. Why is SIADH Important to Hospitalists? What Causes Hyponatremia in Patients with SIADH? Disorders of body fluids, and particularly hyponatremia, are Hyponatremia can be caused by 1 of 2 potential disruptions among the most commonly encountered problems in clinical in fluid balance: dilution from retained water, or depletion medicine, affecting up to 30% of hospitalized patients. In a from electrolyte losses in excess of water. Dilutional hypo- study of 303,577 laboratory samples collected from 120,137 natremias are associated with either a normal (euvolemic) patients, the prevalence of hyponatremia (serum [Naþ] <135 or an increased (hypervolemic) extracellular fluid (ECF) vol- mmol/L) on initial presentation to a healthcare provider was ume, whereas depletional hyponatremias generally are asso- 28.2% among those treated in an acute hospital care setting, ciated with a decreased ECF volume (hypovolemic).
    [Show full text]
  • BIPN100 F15 Human Physiology 1 (Kristan) Lecture 15. Body Fluids, Tonicity P
    BIPN100 F15 Human Physiology 1 (Kristan) Lecture 15. Body fluids, tonicity p. 1 Terms you should understand: intracellular compartment, plasma compartment, interstitial compartment, extracellular compartment, dilution technique, concentration, quantity, volume, Evans blue, plasma volume, interstitial fluid, inulin, total body water, intracellular volume, diffusion, osmosis, colligative property, osmotic pressure, iso-osmotic, hypo-osmotic, hyperosmotic, tonicity, isotonic, hypotonic, hypertonic, active transport, symporter, antiporter, facilitated diffusion. I. Body fluids are distributed in a variety of compartments. A. The three major compartments are: 1. Intracellular compartment = total volume inside all body cells. 2. Plasma compartment = fluid volume inside the circulatory system. 3. Interstitial compartment = volume between the plasma and intracellular compartments. 4. Extracellular compartment = plasma + interstitial fluid B. Slowly-exchanging compartments include bones and dense connective tissues, fluids within the eyes and in the joint capsules; in total, they comprise a small volume. C. Cells exchange materials with the environment almost entirely through the plasma. Fig. 15.1. The major fluid compartments of the body and how water, ions, and metabolites pass among them. D. Under normal conditions, the three compartments are in osmotic equilibrium with one another, but they contain different distributions of solutes. 1. There is a lot of organic anion (mostly proteins) inside cells, essentially none in interstitial fluid, and small quantities in the plasma. 2. Na+ and K+ have inverse concentration profiles across the cell membranes. 3. The total millimolar concentration of solutes is equal in each of the three compartments. 4. Materials that exchange between compartments must cross barriers: a. Cell membranes separate the intracellular and interstitial compartments. b.
    [Show full text]
  • Palliative Care in Advanced Liver Disease (Marsano 2018)
    Palliative Care in Advanced Liver Disease Luis Marsano, MD 2018 Mortality in Cirrhosis • Stable Cirrhosis: – Prognosis determined by MELD-Na score – Provides 90 day mortality. – http://www.mdcalc.com/meldna-meld-na-score-for-liver-cirrhosis/ • Acute on Chronic Liver Failure (ACLF) – Mortality Provided by CLIF-C ACLF Calculator – Provides mortality at 1, 3, 6 and 12 months. – http://www.clifresearch.com/ToolsCalculators.aspx • Acute Decompensation (without ACLF): – Mortality Provided by CLIF-C Acute decompensation Calculator – Provides mortality at 1, 3, 6 and 12 months. – http://www.clifresearch.com/ToolsCalculators.aspx • Survival of Ambulatory Patients with HCC (MESIAH) – Provides survival at 1, 3, 6, 12, 24 and 36 months. – https://www.mayoclinic.org/medical-professionals/model-end-stage-liver- disease/model-estimate-survival-ambulatory-hepatocellular-carcinoma-patients- mesiah Acute Decompensation Type and Mortality Organ Failure in Acute-on-Chronic Liver Failure Organ Failure Mortality Impact Frequency of Organ Failure 48% have >/= 2 Organ Failures The MESIAH Score Model of Estimated Survival In Ambulatory patients with HCC Complications of Cirrhosis Affecting Palliative Care • Ascites and Hepatic Hydrothorax. • Hyponatremia. • Hepatorenal syndrome. • Hepatic Encephalopathy. • Malnutrition/ Anorexia. • GI bleeding: Varices, Portal gastropathy & Gastric Antral Vascular Ectasia • Pruritus • Hepatopulmonary Syndrome. Difficult Decisions with Shifting Balance • Is patient a liver transplant candidate? • Effect of illness in: – patient’s survival – patient’s Quality of Life • patient’s relation to family • family’s Quality of Life • Effect of therapy in: – patient’s survival – patient’s Quality of Life • patient’s relation to family • family’s Quality of life Ascites and Palliation • PATHOGENESIS • CONSEQUENCES • Hepatic sinusoidal HTN • Abdominal distention with early stimulates hepatic satiety.
    [Show full text]
  • Body Fluid Compartments Dr Sunita Mittal
    Body fluid compartments Dr Sunita Mittal Learning Objectives To learn: ▪ Composition of body fluid compartments. ▪ Differences of various body fluid compartments. ▪Molarity, Equivalence,Osmolarity-Osmolality, Osmotic pressure and Tonicity of substances ▪ Effect of dehydration and overhydration on body fluids Why is this knowledge important? ▪To understand various changes in body fluid compartments, we should understand normal configuration of body fluids. Total Body Water (TBW) Water is 60% by body weight (42 L in an adult of 70 kg - a major part of body). Water content varies in different body organs & tissues, Distribution of TBW in various fluid compartments Total Body Water (TBW) Volume (60% bw) ________________________________________________________________ Intracellular Fluid Compartment Extracellular Fluid Compartment (40%) (20%) _______________________________________ Extra Vascular Comp Intra Vascular Comp (15%) (Plasma ) (05%) Electrolytes distribution in body fluid compartments Intracellular fluid comp.mEq/L Extracellular fluid comp.mEq/L Major Anions Major Cation Major Anions + HPO4- - Major Cation K Cl- Proteins - Na+ HCO3- A set ‘Terminology’ is required to understand change of volume &/or ionic conc of various body fluid compartments. Molarity Definition Example Equivalence Osmolarity Osmolarity is total no. of osmotically active solute particles (the particles which attract water to it) per 1 L of solvent - Osm/L. Example- Osmolarity and Osmolality? Osmolarity is total no. of osmotically active solute particles per 1 L of solvent - Osm/L Osmolality is total no. of osmotically active solute particles per 1 Kg of solvent - Osm/Kg Osmosis Tendency of water to move passively, across a semi-permeable membrane, separating two fluids of different osmolarity is referred to as ‘Osmosis’. Osmotic Pressure Osmotic pressure is the pressure, applied to stop the flow of solvent molecules from low osmolarity to a compartment of high osmolarity, separated through a semi-permeable membrane.
    [Show full text]
  • Effects of Vasodilation and Arterial Resistance on Cardiac Output Aliya Siddiqui Department of Biotechnology, Chaitanya P.G
    & Experim l e ca n i t in a l l C Aliya, J Clinic Experiment Cardiol 2011, 2:11 C f a Journal of Clinical & Experimental o r d l DOI: 10.4172/2155-9880.1000170 i a o n l o r g u y o J Cardiology ISSN: 2155-9880 Review Article Open Access Effects of Vasodilation and Arterial Resistance on Cardiac Output Aliya Siddiqui Department of Biotechnology, Chaitanya P.G. College, Kakatiya University, Warangal, India Abstract Heart is one of the most important organs present in human body which pumps blood throughout the body using blood vessels. With each heartbeat, blood is sent throughout the body, carrying oxygen and nutrients to all the cells in body. The cardiac cycle is the sequence of events that occurs when the heart beats. Blood pressure is maximum during systole, when the heart is pushing and minimum during diastole, when the heart is relaxed. Vasodilation caused by relaxation of smooth muscle cells in arteries causes an increase in blood flow. When blood vessels dilate, the blood flow is increased due to a decrease in vascular resistance. Therefore, dilation of arteries and arterioles leads to an immediate decrease in arterial blood pressure and heart rate. Cardiac output is the amount of blood ejected by the left ventricle in one minute. Cardiac output (CO) is the volume of blood being pumped by the heart, by left ventricle in the time interval of one minute. The effects of vasodilation, how the blood quantity increases and decreases along with the blood flow and the arterial blood flow and resistance on cardiac output is discussed in this reviewArticle.
    [Show full text]
  • Real Facts About Fluid Overload
    Real Facts About Fluid Overload Venkat K. Iyer, MD, MBA Assistant Professor, Mayo School of Medicine Medical Director, Quality and Process Improvement, Mayo Clinic Dialysis System ©2017 MFMER | slide-1 Disclosure • None Objectives Discuss the meaning of fluid overload and its negative physiological effects on the body of a person who has kidney failure. Two major functions of dialysis Uremic solute removal Excess ECF volume removal Main Process Diffusion Ultrafiltration How is adequacy Clearance of surrogate BP control, Dry weight measured? solute - urea Quantification of spKt/V, Std Kt/V, URR No objective measure to quantify adequacy adequacy of fluid removal. Trial & Error method to achieve DW Debate Small versus middle What is the best method to molecular clearance quantify ECF volume removal. (diffusive versus Clinical versus Non-clinical Convective clearance) methods What is dry weight? • Lowest tolerated post-dialysis weight achieved via a gradual reduction in post dialysis weight at which there are minimal signs or symptoms of hypovolemia or hypervolemia Dry Weight ECF volume LBM Initiation of HD High Low Adequate Maintenance HD Euvolemic Improves Acute illness Increases Decreases Negative Effects of Fluid Overload (“Volutrauma”) Acute Fluid Overload Chronic Fluid Overload • Dyspnea • Hypertension • CHF • LVH • Hospitalization • CHF • Decreased vascular compliance • Increased cardiovascular mortality • Organ dysfunction • Gut edema: malabsorption • Tissue edema: poor wound healing • Renal edema: renal BF, reduced GFR • Pulmonary edema Cost of Hospitalization for Volume Overload % of Fluid Overload admission % of 41,699 episodes 25,291 pts of 176,790 100 86 14.3 80 60 40 85.7 20 9 5 0 Inpatient ED Observation FO admission Others care Average cost per episode $6,372 Total cost $266 million • Arneson et al.
    [Show full text]
  • Infection Control Orientation
    Infection Control: Preventing the Spread of Infectious Diseases Mount Sinai Hospital Healthcare-Associated Infections ~2 million hospital-acquired infections per year – These infections affect ~5-10% of patients. ~88,000 deaths related to those infections. At least 1/3 of those infections are preventable. Healthcare-Associated Infections (HAI) The most common HAI are: – Urinary tract infections (35%) – Surgical site infections (20%) – Bloodstream infections (15%) – Pneumonia (15%) Often associated with multidrug-resistant pathogens: MRSA, VRE, C. difficile, GNR (Klebsiella, Acinetobacter, etc.). Risk Factors for Healthcare- Associated Infections Severity of underlying illness Invasive devices and procedures Antimicrobial therapy Poor infection prevention practices – Healthcare worker hand hygiene – Environmental cleaning – Equipment disinfection and sterilization The Chain of Infection Pathogen Reservoir Susceptible Host where infectious agent normally lacks effective resistance lives and multiplies to pathogen Portal of Entry Portal of Exit entry sites, mechanisms by which mechanisms of introduction Mode of pathogen can leave reservoir Transmission contact, droplet, airborne, common vehicle, vector-borne Topics to be Covered Blood and Body Fluid Exposures (BBFE) – Definitions – Risk –Prevention – Post-exposure management Regulated Medical Waste Standard Precautions – Hand hygiene – Personal protective equipment Transmission-Based Precautions Bloodborne Pathogens Hepatitis B Hepatitis C Human Immunodeficiency Virus (HIV) Case 1 You are on your first rotation as a third year medical student. You want to be helpful to the nursing staff so you offer to empty Mr. Jones’ urinal. Unfortunately, you drop the urinal and your leg is splashed with clear, yellow urine. Case 2 You are now a seasoned fourth year student and you are performing phlebotomy on a 36 year old man admitted to the hospital with pneumonia.
    [Show full text]