Mechanisms and Management of Nephrotic Edema
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Albumin in Health and Disease: Protein Metabolism and Function*
Article #2 CE An In-Depth Look: ALBUMIN IN HEALTH AND DISEASE Albumin in Health and Disease: Protein Metabolism and Function* Juliene L. Throop, VMD Marie E. Kerl, DVM, DACVIM (Small Animal Internal Medicine), DACVECC Leah A. Cohn, DVM, PhD, DACVIM (Small Animal Internal Medicine) University of Missouri-Columbia ABSTRACT: Albumin is a highly charged, 69,000 D protein with a similar amino acid sequence among many veterinary species. Albumin is the major contributor to colloid oncotic pressure and also serves as an important carrier protein. Its ability to modulate coagulation by preventing pathologic platelet aggrega- tion and augmenting antithrombin III is important in diseases that result in moderately to severely decreased serum albumin levels. Synthesis is primar- ily influenced by oncotic pressure, but inflammation, hormone status, and nutrition impact the synthetic rate as well. Albumin degradation is a poorly understood process that does not appear to be selective for older mole- cules.The clinical consequences of hypoalbuminemia reflect the varied func- tions of the ubiquitous albumin protein molecule. he albumin molecule has several characteristics that make it a unique protein. Most veterinarians are aware of the importance of this molecule in maintain- Ting colloid oncotic pressure, but albumin has many other less commonly recog- nized functions as well. The clinical consequences of hypoalbuminemia are reflections of the many functions albumin fulfills. Understanding the functions, synthesis, and *A companion article on degradation of the albumin molecule can improve understanding of the causes, conse- causes and treatment of quences, and treatment of hypoalbuminemia. hypoalbuminemia appears on page 940. STRUCTURE Email comments/questions to Albumin has a molecular weight of approximately 69,000 D, with minor variations [email protected], among species. -
Renal Sodium Handling in Minimal Change Nephrotic Syndrome
Arch Dis Child: first published as 10.1136/adc.59.9.825 on 1 September 1984. Downloaded from Archives of Disease in Childhood, 1984, 59, 825-830 Renal sodium handling in minimal change nephrotic syndrome A-B BOHLIN AND U BERG Department of Paediatrics, Karolinska Institute, Huddinge Hospital, Stockholm, Sweden SUMMARY Renal sodium handling was studied in 23 children at three different stages of the minimal change nephrotic syndrome-the oedema forming state, proteinuric steady state, and remission. Clearances of inulin and para-aminohippuric acid and urinary sodium excretion were determined basally, after intravenous infusion of isotonic saline and hyperoncotic albumin, and after furosemide injection. Absolute and fractional basal sodium excretion were significantly lower in oedema forming patients than in proteinuric patients in steady state, and non-proteinuric patients. In contrast to proteinuric patients in steady state and non-proteinuric patients, the oedema forming patients failed to respond to isotonic saline infusion with increased sodium excretion. After diuretic blockade with furosemide, the fractional sodium excretion of the oedema forming patients increased to values no different from those of the non-proteinuric patients, whereas the fractional sodium excretion of the steady state patients increased to significantly higher values. The plasma aldosterone concentration was within normal limits in 11 of 14 proteinuric patients, and did not correlate with the basal sodium excretion. Thus, sodium copyright. retention in the minimal change nephrotic syndrome was found only in oedema forming patients, and since this is not related to the plasma aldosterone concentration it may be caused by an intrarenal mechanism, probably sited in distal parts of the nephron. -
1 Fluid and Elect. Disorders of Serum Sodium Concentration
DISORDERS OF SERUM SODIUM CONCENTRATION Bruce M. Tune, M.D. Stanford, California Regulation of Sodium and Water Excretion Sodium: glomerular filtration, aldosterone, atrial natriuretic factors, in response to the following stimuli. 1. Reabsorption: hypovolemia, decreased cardiac output, decreased renal blood flow. 2. Excretion: hypervolemia (Also caused by adrenal insufficiency, renal tubular disease, and diuretic drugs.) Water: antidiuretic honnone (serum osmolality, effective vascular volume), renal solute excretion. 1. Antidiuresis: hyperosmolality, hypovolemia, decreased cardiac output. 2. Diuresis: hypoosmolality, hypervolemia ~ natriuresis. Physiologic changes in renal salt and water excretion are more likely to favor conservation of normal vascular volume than nonnal osmolality, and may therefore lead to abnormalities of serum sodium concentration. Most commonly, 1. Hypovolemia -7 salt and water retention. 2. Hypervolemia -7 salt and water excretion. • HYFERNATREMIA Clinical Senini:: Sodium excess: salt-poisoning, hypertonic saline enemas Primary water deficit: chronic dehydration (as in diabetes insipidus) Mechanism: Dehydration ~ renal sodium retention, even during hypernatremia Rapid correction of hypernatremia can cause brain swelling - Management: Slow correction -- without rapid administration of free water (except in nephrogenic or untreated central diabetes insipidus) HYPONA1REMIAS Isosmolar A. Factitious: hyperlipidemia (lriglyceride-plus-plasma water volume). B. Other solutes: hyperglycemia, radiocontrast agents,. mannitol. -
Evaluation and Treatment of Alkalosis in Children
Review Article 51 Evaluation and Treatment of Alkalosis in Children Matjaž Kopač1 1 Division of Pediatrics, Department of Nephrology, University Address for correspondence Matjaž Kopač, MD, DSc, Division of Medical Centre Ljubljana, Ljubljana, Slovenia Pediatrics, Department of Nephrology, University Medical Centre Ljubljana, Bohoričeva 20, 1000 Ljubljana, Slovenia J Pediatr Intensive Care 2019;8:51–56. (e-mail: [email protected]). Abstract Alkalosisisadisorderofacid–base balance defined by elevated pH of the arterial blood. Metabolic alkalosis is characterized by primary elevation of the serum bicarbonate. Due to several mechanisms, it is often associated with hypochloremia and hypokalemia and can only persist in the presence of factors causing and maintaining alkalosis. Keywords Respiratory alkalosis is a consequence of dysfunction of respiratory system’s control ► alkalosis center. There are no pathognomonic symptoms. History is important in the evaluation ► children of alkalosis and usually reveals the cause. It is important to evaluate volemia during ► chloride physical examination. Treatment must be causal and prognosis depends on a cause. Introduction hydrogen ion concentration and an alkalosis is a pathologic Alkalosis is a disorder of acid–base balance defined by process that causes a decrease in the hydrogen ion concentra- elevated pH of the arterial blood. According to the origin, it tion. Therefore, acidemia and alkalemia indicate the pH can be metabolic or respiratory. Metabolic alkalosis is char- abnormality while acidosis and alkalosis indicate the patho- acterized by primary elevation of the serum bicarbonate that logic process that is taking place.3 can result from several mechanisms. It is the most common Regulation of hydrogen ion balance is basically similar to form of acid–base balance disorders. -
Managing Hyponatremia in Patients with Syndrome of Inappropriate Antidiuretic Hormone Secretion
REVIEW Managing Hyponatremia in Patients With Syndrome of Inappropriate Antidiuretic Hormone Secretion Joseph G. Verbalis, MD Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University Medical Center, Washington DC. J.G. Verbalis received an honorarium funded by an unrestricted educational grant from Otsuka America Pharmaceuticals, Inc., for time and expertise spent in the composition of this article. No editorial assistance was provided. No other conflicts exist. This review will address the management of hyponatremia caused by the syndrome of inappropriate antidiuretic hormone secretion (SIADH) in hospitalized patients. To do so requires an understanding of the pathogenesis and diagnosis of SIADH, as well as currently available treatment options. The review will be structured as responses to a series of questions, followed by a presentation of an algorithm for determining the most appropriate treatments for individual patients with SIADH based on their presenting symptoms. Journal of Hospital Medicine 2010;5:S18–S26. VC 2010 Society of Hospital Medicine. Why is SIADH Important to Hospitalists? What Causes Hyponatremia in Patients with SIADH? Disorders of body fluids, and particularly hyponatremia, are Hyponatremia can be caused by 1 of 2 potential disruptions among the most commonly encountered problems in clinical in fluid balance: dilution from retained water, or depletion medicine, affecting up to 30% of hospitalized patients. In a from electrolyte losses in excess of water. Dilutional hypo- study of 303,577 laboratory samples collected from 120,137 natremias are associated with either a normal (euvolemic) patients, the prevalence of hyponatremia (serum [Naþ] <135 or an increased (hypervolemic) extracellular fluid (ECF) vol- mmol/L) on initial presentation to a healthcare provider was ume, whereas depletional hyponatremias generally are asso- 28.2% among those treated in an acute hospital care setting, ciated with a decreased ECF volume (hypovolemic). -
Determinants of Glomerular Filtration in Experimental Glomerulonephritis in the Rat
Determinants of glomerular filtration in experimental glomerulonephritis in the rat. D A Maddox, … , T M Daugharty, B M Brenner J Clin Invest. 1975;55(2):305-318. https://doi.org/10.1172/JCI107934. Research Article Pressures and flows were measured in surface glomerular capillaries, efferent arterioles, and proximal tubules of 22 Wistar rats in the early autologous phase of nephrotoxic serum nephritis (NSN). Linear deposits of rabbit and rat IgG and C3 component of complement were demonstrated in glomerular capillary walls by immunofluorescence microscopy. Light microscopy revealed diffuse proliferative glomerulonephritis, and proteinuria was present. Although whole kidney and single nephron glomerular filtration rate (GFR) in NSN (0.8 plus or minus 0.04 SE2 ml/min and 2 plus or minus 2 nl/min, respectively) remained unchanged from values in 16 weight-matched NORMAL HYDROPENIC control rats (0.8 plus or minus 0.08 and 28 plus or minus 2), important alterations in glomerular dynamics were noted. Mean transcapillary hydraulic pressure difference (deltaP) averaged 41 plus or minus 1 mm Hg in NSN versus 32 plus or minus 1 in controls (P LESS THAN 0.005). Oncotic pressures at the afferent (piA) end of the glomerular capillary were similar in both groups ( 16 mm /g) but increased much less by the efferent end (piE) in NSN (to 29 plus or minus 1 mm Hg) than in controls (33 plus or minus 1, P less than 0.025). Hence, equality between deltaP and piE, denoting filtration pressure equilibrium, obtained in control but not in NSN rats. While glomerular plasma flow rate was slightly higher […] Find the latest version: https://jci.me/107934/pdf Determinants of Glomerular Filtration in Experimental Glomerulonephritis in the Rat D. -
Palliative Care in Advanced Liver Disease (Marsano 2018)
Palliative Care in Advanced Liver Disease Luis Marsano, MD 2018 Mortality in Cirrhosis • Stable Cirrhosis: – Prognosis determined by MELD-Na score – Provides 90 day mortality. – http://www.mdcalc.com/meldna-meld-na-score-for-liver-cirrhosis/ • Acute on Chronic Liver Failure (ACLF) – Mortality Provided by CLIF-C ACLF Calculator – Provides mortality at 1, 3, 6 and 12 months. – http://www.clifresearch.com/ToolsCalculators.aspx • Acute Decompensation (without ACLF): – Mortality Provided by CLIF-C Acute decompensation Calculator – Provides mortality at 1, 3, 6 and 12 months. – http://www.clifresearch.com/ToolsCalculators.aspx • Survival of Ambulatory Patients with HCC (MESIAH) – Provides survival at 1, 3, 6, 12, 24 and 36 months. – https://www.mayoclinic.org/medical-professionals/model-end-stage-liver- disease/model-estimate-survival-ambulatory-hepatocellular-carcinoma-patients- mesiah Acute Decompensation Type and Mortality Organ Failure in Acute-on-Chronic Liver Failure Organ Failure Mortality Impact Frequency of Organ Failure 48% have >/= 2 Organ Failures The MESIAH Score Model of Estimated Survival In Ambulatory patients with HCC Complications of Cirrhosis Affecting Palliative Care • Ascites and Hepatic Hydrothorax. • Hyponatremia. • Hepatorenal syndrome. • Hepatic Encephalopathy. • Malnutrition/ Anorexia. • GI bleeding: Varices, Portal gastropathy & Gastric Antral Vascular Ectasia • Pruritus • Hepatopulmonary Syndrome. Difficult Decisions with Shifting Balance • Is patient a liver transplant candidate? • Effect of illness in: – patient’s survival – patient’s Quality of Life • patient’s relation to family • family’s Quality of Life • Effect of therapy in: – patient’s survival – patient’s Quality of Life • patient’s relation to family • family’s Quality of life Ascites and Palliation • PATHOGENESIS • CONSEQUENCES • Hepatic sinusoidal HTN • Abdominal distention with early stimulates hepatic satiety. -
Glomerulonephritis Management in General Practice
Renal disease • THEME Glomerulonephritis Management in general practice Nicole M Isbel MBBS, FRACP, is Consultant Nephrologist, Princess Alexandra lomerular disease remains an important cause Hospital, Brisbane, BACKGROUND Glomerulonephritis (GN) is an G and Senior Lecturer in important cause of both acute and chronic kidney of renal impairment (and is the commonest cause Medicine, University disease, however the diagnosis can be difficult of end stage kidney disease [ESKD] in Australia).1 of Queensland. nikky_ due to the variability of presenting features. Early diagnosis is essential as intervention can make [email protected] a significant impact on improving patient outcomes. OBJECTIVE This article aims to develop However, presentation can be variable – from indolent a structured approach to the investigation of patients with markers of kidney disease, and and asymptomatic to explosive with rapid loss of kidney promote the recognition of patients who need function. Pathology may be localised to the kidney or further assessment. Consideration is given to the part of a systemic illness. Therefore diagnosis involves importance of general measures required in the a systematic approach using a combination of clinical care of patients with GN. features, directed laboratory and radiological testing, DISCUSSION Glomerulonephritis is not an and in many (but not all) cases, a kidney biopsy to everyday presentation, however recognition establish the histological diagnosis. Management of and appropriate management is important to glomerulonephritis (GN) involves specific therapies prevent loss of kidney function. Disease specific directed at the underlying, often immunological cause treatment of GN may require specialist care, of the disease and more general strategies aimed at however much of the management involves delaying progression of kidney impairment. -
Glomerular Filtration I DR.CHARUSHILA RUKADIKAR Assistant Professor Physiology GFR 1
Glomerular filtration I DR.CHARUSHILA RUKADIKAR Assistant Professor Physiology GFR 1. Definition 2. Normal value 3. Variation 4. Calculation (different pressures acting on glomerular membrane) 5. Factors affecting GFR 6. Regulation of GFR 7. Measurement of GFR QUESTIONS LONG QUESTION 1. GFR 2. RENIN ANGIOTENSIN SYSTEM SHORT NOTE 1. DYNAMICS OF GFR 2. FILTRATION FRACTION 3. ANGIOTENSIN II 4. FACTORS AFFECTING GLOMERULAR FILTRATION RATE 5. REGULATION OF GFR 6. RENAL CLEARANCE TEST 7. MEASUREMENT OF GFR Collecting duct epithelium P Cells – Tall, predominant, have few organelles, Na reabsorption & vasopressin stimulated water reabsorption I cells- CT and DCT, less, having more cell organelles, Acid secretion and HCO3 transport CHARACTERISTICS OF RENAL BLOOD FLOW 600-1200 ml/min (high) AV O2 difference low (1.5 mL/dL) During exercise increases 1.5 times Low basal tone, not altered in denervated / innervated kidney VO2 in kidneys is directly proportional to RBF, Na reabsorption & GFR Not homogenous flow, cortex more & medulla less Vasa recta hairpin bend like structure, hyperosmolarity inner medulla Transplanted kidney- cortical blood flow show autoregulation & medullary blood flow don’t show autoregulation, so no TGF mechanism Neurogenic vasodilation not exist 20% of resting cardiac output, while the two kidneys make < 0.5% of total body weight. Excretory function rather than its metabolic requirement. Remarkable constancy due to autoregulation. Processes concerned with urine formation. 1. Glomerular filtration, 2. Tubular reabsorption and 3. Tubular secretion. • Filtration Fluid is squeezed out of glomerular capillary bed • Reabsorption Most nutrients, water and essential ions are returned to blood of peritubular capillaries • Secretion Moves additional undesirable molecules into tubule from blood of peritubular capillaries Glomerular filtration Glomerular filtration refers to process of ultrafiltration of plasma from glomerular capillaries into the Bowman’s capsule. -
Real Facts About Fluid Overload
Real Facts About Fluid Overload Venkat K. Iyer, MD, MBA Assistant Professor, Mayo School of Medicine Medical Director, Quality and Process Improvement, Mayo Clinic Dialysis System ©2017 MFMER | slide-1 Disclosure • None Objectives Discuss the meaning of fluid overload and its negative physiological effects on the body of a person who has kidney failure. Two major functions of dialysis Uremic solute removal Excess ECF volume removal Main Process Diffusion Ultrafiltration How is adequacy Clearance of surrogate BP control, Dry weight measured? solute - urea Quantification of spKt/V, Std Kt/V, URR No objective measure to quantify adequacy adequacy of fluid removal. Trial & Error method to achieve DW Debate Small versus middle What is the best method to molecular clearance quantify ECF volume removal. (diffusive versus Clinical versus Non-clinical Convective clearance) methods What is dry weight? • Lowest tolerated post-dialysis weight achieved via a gradual reduction in post dialysis weight at which there are minimal signs or symptoms of hypovolemia or hypervolemia Dry Weight ECF volume LBM Initiation of HD High Low Adequate Maintenance HD Euvolemic Improves Acute illness Increases Decreases Negative Effects of Fluid Overload (“Volutrauma”) Acute Fluid Overload Chronic Fluid Overload • Dyspnea • Hypertension • CHF • LVH • Hospitalization • CHF • Decreased vascular compliance • Increased cardiovascular mortality • Organ dysfunction • Gut edema: malabsorption • Tissue edema: poor wound healing • Renal edema: renal BF, reduced GFR • Pulmonary edema Cost of Hospitalization for Volume Overload % of Fluid Overload admission % of 41,699 episodes 25,291 pts of 176,790 100 86 14.3 80 60 40 85.7 20 9 5 0 Inpatient ED Observation FO admission Others care Average cost per episode $6,372 Total cost $266 million • Arneson et al. -
Significance of Protein in Edema Fluids I C
i Significance of Protein in Edema Fluids I C. L. Witte, M. H. "f itte, A. E. Dumont Departments of Surgery, University of Arizona College of Medicine, Tucson, Arizona and "'ewYorkl.Jniversity_School of Medicine, New York, N. Y. Lymphology 4 (1971), 29-31 The partition of extracellular fluid between plasma and tissues is largely regulated by the balance of hydrostatic an~ colloid osmotic (oncotic) pressure gradients across capillary membranes. Normally ~ small excess of tissue fluid forms, enters lymphatics and returns to the bloodstream. When an imbalance develops between the rate of lymph production and the rate of its return to the systemic venous circulation, edema.or effusion appear. Accumulation of edema, however, is not uniform in amount and composition throughout the body and depend, on the forces governing capillary filtration, regional differences in capillary permeabiFty, lymph flow and the specific factor tending to per petuate the edema. Obstruction td lymph return or disruption of capillary integrity (e.g. I infiltrating cancer or inflammation) promote effusion or edema high in protein content (so-called "exudate"). On the other hand, increased hydrostatic pressure in semiperme able capillaries promotes excess lymph and ultimately edema or effusion low in protein content (so-called "transudate"). iThe hepatic sinusoid is unique in its free permeability to plasma protein. Hepatic venous outflow obstruction, accordingly, produces excess hepatic and thoracic duct lymphi and eventually ascitic fluid, high in protein. In his monograph on The Fluids of the Body (1), Starling reasoned that increased capillary hydrostatic pressure Jas initially off set by a fall in tissue oncotic pressure. As the gradient in hydrostatic pressure rises in semipermeable capillary beds a progres sively more dilute capillary filtrate forms in tissues. -
Outcome of Acute Kidney Injury: How to Make a Difference?
Jamme et al. Ann. Intensive Care (2021) 11:60 https://doi.org/10.1186/s13613-021-00849-x REVIEW Open Access Outcome of acute kidney injury: how to make a diference? Matthieu Jamme1,2,3* , Matthieu Legrand4 and Guillaume Geri2,3,5 Abstract Background: Acute kidney injury (AKI) is one of the most frequent organ failure encountered among intensive care unit patients. In addition to the well-known immediate complications (hydroelectrolytic disorders, hypervolemia, drug overdose), the occurrence of long-term complications and/or chronic comorbidities related to AKI has long been underestimated. The aim of this manuscript is to briefy review the short- and long-term consequences of AKI and discuss strategies likely to improve outcome of AKI. Main body: We reviewed the literature, focusing on the consequences of AKI in all its aspects and the management of AKI. We addressed the importance of clinical management for improving outcomes AKI. Finally, we have also pro- posed candidate future strategies and management perspectives. Conclusion: AKI must be considered as a systemic disease. Due to its short- and long-term impact, measures to prevent AKI and limit the consequences of AKI are expected to improve global outcomes of patients sufering from critical illnesses. Keywords: Acute kidney injury, Long-term outcome, Chronic kidney disease, Intensive care Introduction Why physicians should worry about AKI? Acute kidney injury (AKI) is one of the most frequent Occurrence of AKI represents a sharp prognostic turn organ failure encountered in intensive care units (ICU). for patients by afecting both short- and long-term Since his frst defnition by Homer W.