Polygynandry, Extra-Group Paternity and Multiple-Paternity Litters In

Total Page:16

File Type:pdf, Size:1020Kb

Polygynandry, Extra-Group Paternity and Multiple-Paternity Litters In Molecular Ecology (2007) 16, 5294–5306 doi: 10.1111/j.1365-294X.2007.03571.x Polygynandry,Blackwell Publishing Ltd extra-group paternity and multiple-paternity litters in European badger (Meles meles) social groups HANNAH L. DUGDALE,*† DAVID W. MACDONALD,* LISA C. POPE† and TERRY BURKE† *Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Tubney House, Abingdon Road, Tubney OX13 5QL, UK, †Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK Abstract The costs and benefits of natal philopatry are central to the formation and maintenance of social groups. Badger groups, thought to form passively according to the resource dispersion hypothesis (RDH), are maintained through natal philopatry and delayed dispersal; however, there is minimal evidence for the functional benefits of such grouping. We assigned parentage to 630 badger cubs from a high-density population in Wytham Woods, Oxford, born between 1988 and 2005. Our methodological approach was different to previous studies; we used 22 microsatellite loci to assign parent pairs, which in combination with sibship inference provided a high parentage assignment rate. We assigned both parents to 331 cubs at ≥ 95% confidence, revealing a polygynandrous mating system with up to five mothers and five fathers within a social group. We estimated that only 27% of adult males and 31% of adult females bred each year, suggesting a cost to group living for both sexes. Any strong motivation or selection to disperse, however, may be reduced because just under half of the paternities were gained by extra-group males, mainly from neighbouring groups, with males displaying a mixture of paternity strategies. We provide the strongest evidence to date for multiple- paternity litters, and for the first time show that within-group and extra-group males can sire cubs in the same litter. We investigate the factors that may play a role in determining the degree of delayed dispersal and conclude that the ecological constraints hypothesis, benefits of philopatry hypothesis, and life history hypothesis may all play a part, as proposed by the broad constraints hypothesis. Keywords: cervus, Extra Pair Copulation (EPC), mating system, microsatellites, Mustelidae, reproductive skew Received 4 April 2007; revision received 24 June 2007; accepted 5 September 2007 the environment, the minimum defendable territory that Introduction provides sufficient resources for a minimum social unit may Mammals exhibit a diverse array of mating systems, chara- also accommodate more individuals. Once social groups form, cterized by the ecological and behavioural opportunities the factors under which selection will favour natal philopatry for individuals to monopolize mates and the way in which (Waser & Jones 1983) are central to the maintenance of social mates are acquired (Emlen & Oring 1977). Breeding system groups (Macdonald & Carr 1989). Delayed dispersal may properties determine group composition (Ross 2001). occur due to ecological constraints on dispersing and breeding As individuals are expected to act in a way that maximizes elsewhere (Emlen 1982), benefits of philopatry (Stacey & their lifetime inclusive fitness (Hamilton 1964), understanding Ligon 1991), certain life history traits, such as a low rate of why individuals live in groups requires knowledge of the breeder mortality that increases habitat saturation (Arnold costs and benefits of group living. The resource dispersion & Owens 1998), or a combination of these factors (the broad hypothesis (RDH) (Macdonald 1983; Carr & Macdonald constraints hypothesis, Hatchwell & Komdeur 2000). 1986) proposes that when resources are spaced patchily in Social species that encounter a variety of environmental conditions may exhibit variation in their mating system Correspondence: Hannah L. Dugdale, Fax: +44 (0) 1865 393101. (Taylor et al. 2000). The European badger is a promising E-mail: [email protected] species for understanding such variation because it has a © 2007 The Authors Journal compilation © 2007 Blackwell Publishing Ltd BADGER MATING SYSTEM 5295 widespread distribution from the British Isles to Japan and Our study combines parentage assignment and sibship from the southern Mediterranean to the Russian Arctic inference, a novel approach recommended by Garant & Circle. It exhibits large variation in social organization over Kruuk (2005), to test whether (i) badger social groups exhibit this range, living singly, or in pairs and defending territories plural breeding; (ii) females breed with extra-group males; in parts of mainland Europe, whereas in lowland England (iii) males have different paternity strategies; and (iv) multiple- badgers are typically group living (Johnson et al. 2000). Despite paternity litters occur. We discuss our results in relation to their sociality, there is minimal evidence of the functional the four proposed hypotheses for the occurrence of delayed significance of grouping in badgers (Johnson et al. 2004), dispersal. In particular, we ask: Is group living costly to whereas there is evidence of an ecological basis of group liv- badgers? Does extra-group paternity reduce inbreeding? ing that does not invoke cooperation (Johnson et al. 2001a, b). Do multiple-paternity litters provide fitness benefits? Do Badger social groups have been reported to vary in size delayed implantation and the potential for superfetation from 2 to 29 individuals (da Silva et al. 1994). One proposal, (conception during pregnancy, Yamaguchi et al. 2006) facilitate first advanced for badgers by Kruuk (1978) is that groups multiple-paternity litters? form according to the RDH (Macdonald 1983) and are main- tained by natal philopatry (Cheeseman et al. 1988; da Silva Materials and methods et al. 1994). Dispersal is restricted (Pope et al. 2006), with only 20% of the badgers trapped in Wytham Woods at any given Study site and population demography time having ‘dispersed’ (i.e. resident in more than one group), with residence defined as trapped in the same group in two Our data come from Wytham Woods, Oxfordshire (51°46′N, consecutive trapping events, and at least one of two trapping 01°19′W), that cover 4 km2 and consist of deciduous events prior to that (D. W. Macdonald, C. Newman, C. D. woodland, surrounded by permanent pasture and mixed Buesching & P. J. Johnson, unpublished). Dispersal may be arable land (Kruuk 1978). Enclosing features potentially costly; females that dispersed failed to produce cubs (da limit badger movement in and out of the study area Silva et al. 1993) and reduced fecundity was associated with (Macdonald & Newman 2002). From June 1987 to November increased dispersal rates in a culled compared with a con- 2005, trapping events have usually been undertaken at trol population (Tuyttens et al. 2000). Costs of group living also least four times a year, in January, June, August and include low levels of cub productivity (Cheeseman et al. 1987; November (Macdonald & Newman 2002). The badger Cresswell et al. 1992; Woodroffe & Macdonald 1995; Rogers population ranged from 60 to 228 adults and 23–61 cubs et al. 1997; Macdonald & Newman 2002) and a decreased (1987–96) with the highest density being 44 badgers/km2 proportion of lactating females in a control vs. culled popu- (Macdonald & Newman 2002). lation (Tuyttens et al. 2000). Few benefits to badgers of group living have been identified (Johnson et al. 2004). Although Sample collection cooperative breeding has been suggested in badgers (Woodroffe 1993), this has not been confirmed. The number Badgers were sedated by an intramuscular injection of of nonbreeding females had a negative effect on mean approximately 0.2 mL/kg ketamine hydrochloride. Cubs litter size, after controlling for territory quality (Woodroffe were first trapped around 16 weeks of age; those judged & Macdonald 2000); however, longer-term benefits have to weigh ≤ 2 kg were considered too small for sedation not been investigated. and were released after a hair sample was plucked. On Badgers give birth once a year, around February, with initial capture, badgers were marked with a unique tattoo cubs remaining underground for the first 8 weeks. This, number, through which recaptures were identified. Badgers along with the presence of many potential parents, means were classified as cub or adult based on their size and that it is not possible to identify individuals that have bred tooth wear; they were then sexed. Tooth wear was graded successfully using conventional ecological methods. Our on a subjective scale of 1 (no tooth wear: white teeth, study uses microsatellite data to assign parentage in a long- pointed canines and unworn ridges on molars) to 5 term study in Wytham Woods, Oxford, UK. Microsatellites (extreme tooth wear: canines broken or missing and molars were also used to determine parentage in Woodchester Park, worn down to the dentine). Approximately 3 mL of blood Gloucestershire, UK, which is a similarly high-density was collected from the jugular vein of each badger using population (Carpenter et al. 2005). Prior to this, multiple a vacutainer containing EDTA, and mixed immediately. maternity and extra-group paternity had been shown Blood was transferred into two 1.5-mL microcentrifuge (Evans et al. 1989; da Silva et al. 1994; Domingo-Roura et al. tubes and frozen immediately at –4 °C. Additionally, 2003), but parentage could not be assigned to individuals. from June 2002 onwards, approximately 100 guard hairs Behavioural observations
Recommended publications
  • Reproductive Attributes of Polynoid Polychaetes from Hydrothermal Vents on the East Pacific Rise
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2005 Reproductive Attributes of Polynoid Polychaetes from Hydrothermal Vents on the East Pacific Rise Jessica Lynn Wallace College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Marine Biology Commons, and the Oceanography Commons Recommended Citation Wallace, Jessica Lynn, "Reproductive Attributes of Polynoid Polychaetes from Hydrothermal Vents on the East Pacific Rise" (2005). Dissertations, Theses, and Masters Projects. Paper 1539626835. https://dx.doi.org/doi:10.21220/s2-zy51-8j97 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. REPRODUCTIVE ATTRIBUTES OF POLYNOID POLYCHAETES FROM HYDROTHERMAL VENTS ON THE EAST PACIFIC RISE A Thesis Presented to The Faculty of the Department of Biology The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Science by Jessica Lynn Wallace 2005 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science Jessica L. Wallace Approved by the Committee, August 2005 Dr. Cindy Lee Van Dover, Chair Dr. Paul D. Heideman Dr. Joseph L. Scott To Dad and Ken for inspiring my love of oceanography To Mom and Stephen for their unending love and support TABLE OF CONTENTS Page Acknowledgements v List of Figures vi Abstract vii Introduction 2 Chapter I.
    [Show full text]
  • Human Reproductive Systems Males Vs. Females Learning Goals • Students Will Describe the Basic Anatomy and Physiology of the Male and Female Reproductive Systems
    Human Reproductive Systems Males vs. Females Learning Goals • Students will describe the basic anatomy and physiology of the male and female reproductive systems. Gonads are sex organs that create gametes? & excrete sex hormones Gonads are sex organs that create gametes & excrete sex hormones Male gonads are called testes Female gonads are called ovaries -Are the site of sperm production -Are the site of egg production & maturation Gametes are also called sex ?cells, and are used to create offspring with a mixture of genetic information. Gametes are also called sex cells, and are used to create offspring with a mixture of genetic information. Male gametes are called sperm Female gametes are called -produce 300-500 million per 5ml eggs/ova of semen -70,000-100,000 at birth -release 1-2 per month from puberty to menopause. Sex Hormones are chemical? signals that tell the sex organs how to function. Sex Hormones are chemical signals that tell the sex organs how to function. Male hormone is called Female hormones are estrogen testosterone and progesterone -released from the testes -released from the ovary -controls sperm production -controls egg production & release Duct systems help deliver gametes from gonads and are the site of fertilization in females and delivers sperm out of the body in males. Male duct systems include: Epididymis -site of sperm maturation (about 20 days for sperm to mature) Male duct systems include: Vas deferens -Tube for sperm to travel through as they leave the testes Male duct systems include: Urethra -shared tube for release of semen from reproductive tract and urine from the bladder.
    [Show full text]
  • REVIEW Physiological Dependence on Copulation in Parthenogenetic Females Can Reduce the Cost of Sex
    ANIMAL BEHAVIOUR, 2004, 67, 811e822 doi:10.1016/j.anbehav.2003.05.014 REVIEW Physiological dependence on copulation in parthenogenetic females can reduce the cost of sex M. NEIMAN Department of Biology, Indiana University, Bloomington (Received 6 December 2002; initial acceptance 10 April 2003; final acceptance 27 May 2003; MS. number: ARV-25) Despite the two-fold reproductive advantage of asexual over sexual reproduction, the majority of eukaryotic species are sexual. Why sex is so widespread is still unknown and remains one of the most important unanswered questions in evolutionary biology. Although there are several hypothesized mechanisms for the maintenance of sex, all require assumptions that may limit their applicability. I suggest that the maintenance of sex may be aided by the detrimental retention of ancestral traits related to sexual reproduction in the asexual descendants of sexual taxa. This reasoning is based on the fact that successful reproduction in many obligately sexual species is dependent upon the behavioural, physical and physiological cues that accompany sperm delivery. More specifically, I suggest that although parthenogenetic (asexual) females have no need for sperm per se, parthenogens descended from sexual ancestors may not be able to reach their full reproductive potential in the absence of the various stimuli provided by copulatory behaviour. This mechanism is novel in assuming no intrinsic advantage to producing genetically variable offspring; rather, sex is maintained simply through phylogenetic constraint. I review and synthesize relevant literature and data showing that access to males and copulation increases reproductive output in both sexual and parthenogenetic females. These findings suggest that the current predominance of sexual reproduction, despite its well-documented drawbacks, could in part be due to the retention of physiological dependence on copulatory stimuli in parthenogenetic females.
    [Show full text]
  • A Polyandrous Society in Transition: a CASE STUDY of JAUNSAR-BAWAR
    10/31/2014 A Polyandrous Society in transition: A CASE STUDY OF JAUNSAR-BAWAR SUBMITTED BY: Nargis Jahan IndraniTalukdar ShrutiChoudhary (Department of Sociology) (Delhi School of Economics) Abstract Man being a social animal cannot survive alone and has therefore been livingin groups or communities called families for ages. How these ‘families’ come about through the institution of marriage or any other way is rather an elaborate and an arduous notion. India along with its diverse people and societies offers innumerable ways by which people unite to come together as a family. Polyandry is one such way that has been prevalent in various regions of the sub-continent evidently among the Paharis of Himachal Pradesh, the Todas of Nilgiris, Nairs of Travancore and the Ezhavas of Malabar. While polyandrous unions have disappeared from the traditions of many of the groups and tribes, it is still practiced by some Jaunsaris—an ethnic group living in the lower Himalayan range—especially in the JaunsarBawar region of Uttarakhand.The concept of polyandry is so vast and mystifying that people who have just heard of the practice or the people who even did an in- depth study of it are confused in certain matters regarding it. This thesis aims at providing answers to many questions arising in the minds of people who have little or no knowledge of this subject. In this paper we have tried to find out why people follow this tradition and whether or not it has undergone transition. Also its various characteristics along with its socio-economic issues like the state and position of women in such a society and how the economic balance in a polyandrous family is maintained has been looked into.
    [Show full text]
  • Infectious Diseases: Respiratory & Reproductive Systems
    Chapter 10 - Lesson 3 Infectious Diseases: Respiratory & Reproductive Systems Nasal Passages and Sinuses Rhinitis is an inflammation of the mucous membranes of the nasal passages, and sinusitis is the inflamma- tion of sinuses. These conditions can be either acute or chronic. Bacterial infections may occur following an acute viral infection or after exposure to inclimate weather. Conjunctivitis (inflammation of eyelids) of- ten accompanies rhinitis and sinusitis. Affected tissues may become red and swollen and Conjunctivitis is an inflammation of the eyelids. produce a mucoid or mucopurulent nasal discharge. In addition drainage from the nostrils, open-mouth breathing and sneezing are also common signs of a re- spiratory infection. Strangles in horses is caused by a streptococcus bacterium and is an inflammation of the sinuses and nasal passages that may include abscessa- tion of associated lymph nodes. Tonsils Tonsillitis is the inflammation of the tonsils. This con- dition is common in dogs and rare in cats. The bacteri- Canine distemper. al infection causes the tonsils to swell resulting in gag- ging, retching, soft coughing, and expulsion of mucus. pneumonia with congestion, hemorrhage, mucus, Lungs edema, and emphysema of lung tissue and air sacs. Bacteria commonly complicate viral lung infections Pneumonitis is an acute or chronic inflammation of by causing collection of pus in the air sacs. the lung tissue and air passages. Symptoms include a deep cough and difficult breathing. Infectious bovine rhinotracheitis (IBR), equine rhi- nopneumonitis, equine influenza, swine influenza, Viral and bacterial infections of the lungs are con- canine distemper, feline viral rhinotracheitis (FVR), tagious and can produce severe damage resulting in feline calicivirus (FCV), fowl infectious bronchitis, Chapter 10 - Infectious Diseases 225 fowl infectious laryngotracheitis (LT), and avian in- fluenza (AI) are viral diseases of the respiratory sys- tem.
    [Show full text]
  • Mating Systems in the Pleurothallidinae (Orchidaceae): Evolutionary and Systematic Implications
    LANKESTERIANA 11(3): 207—221. 2011. MATING SYSTEMS IN THE PLEUROTHALLIDINAE (ORCHIDACEAE): EVOLUTIONARY AND SYSTEMATIC IMPLICATIONS EDUARDO LEITE BORBA*, ARIANE RAQUEL BARBOSA, MARCOS CABRAL DE MELO, SAMUEL LOUREIRO GONTIJO & HENRIQUE ORNELLAS DE OLIVEIRA Departamento de Botânica, Instituto de Ciências Biológicas Universidade Federal de MinasGerais, Belo Horizonte, MG, 31270-901, Brazil * Corresponding author: [email protected] ABSTRACT. We developed a project addressing the determination of the reproductive system through experimental pollinations of species in the major genera representing all major lineages of Pleurothallidinae in order to determine occurrence of self-incompatibility in the subtribe, in which group it has possibly appeared for the first time, and how many times it has evolved. Additionally we surveyed the floral biology of species ofOctomeria , a genus with morphological characters typical of bee-pollinated flowers that was previously regarded as mellitophilous. At the moment, all but one of the species studied in selected large genera of the major lineages (Acianthera, Anathallis, Masdevallia, Octomeria, Specklinia, and Stelis) are self-incompatible. The species studied may possess complete, strong or partial self-incompatibility. We found two different sites where self-incompatibility reactions occur, the stigma and the stylar channel, and both sites were not found in the same genus except for Anathallis. In Anathallis, the two groups that differ morphologically (formerly Pleurothallis subgen. Specklinia sect. Muscosae
    [Show full text]
  • The Seahorse Genome and the Evolution of Its Specialized
    OPEN ARTICLE doi:10.1038/nature20595 The seahorse genome and the evolution of its specialized morphology Qiang Lin1*§, Shaohua Fan2†*, Yanhong Zhang1*, Meng Xu3*, Huixian Zhang1,4*, Yulan Yang3*, Alison P. Lee4†, Joost M. Woltering2, Vydianathan Ravi4, Helen M. Gunter2†, Wei Luo1, Zexia Gao5, Zhi Wei Lim4†, Geng Qin1,6, Ralf F. Schneider2, Xin Wang1,6, Peiwen Xiong2, Gang Li1, Kai Wang7, Jiumeng Min3, Chi Zhang3, Ying Qiu8, Jie Bai8, Weiming He3, Chao Bian8, Xinhui Zhang8, Dai Shan3, Hongyue Qu1,6, Ying Sun8, Qiang Gao3, Liangmin Huang1,6, Qiong Shi1,8§, Axel Meyer2§ & Byrappa Venkatesh4,9§ Seahorses have a specialized morphology that includes a toothless tubular mouth, a body covered with bony plates, a male brood pouch, and the absence of caudal and pelvic fins. Here we report the sequencing and de novo assembly of the genome of the tiger tail seahorse, Hippocampus comes. Comparative genomic analysis identifies higher protein and nucleotide evolutionary rates in H. comes compared with other teleost fish genomes. We identified an astacin metalloprotease gene family that has undergone expansion and is highly expressed in the male brood pouch. We also find that the H. comes genome lacks enamel matrix protein-coding proline/glutamine-rich secretory calcium-binding phosphoprotein genes, which might have led to the loss of mineralized teeth. tbx4, a regulator of hindlimb development, is also not found in H. comes genome. Knockout of tbx4 in zebrafish showed a ‘pelvic fin-loss’ phenotype similar to that of seahorses. Members of the teleost family Syngnathidae (seahorses, pipefishes de novo. The H. comes genome assembly is of high quality, as > 99% and seadragons) (Extended Data Fig.
    [Show full text]
  • Researchers Reveal Negative Effects of Tributyltin on the Reproductive System of Seahorses 21 December 2020, by Li Yuan
    Researchers reveal negative effects of tributyltin on the reproductive system of seahorses 21 December 2020, by Li Yuan The researchers conducted physiological, histological, and transcriptional analyses, and found that high levels of TBT bioaccumulation occurred in male and female seahorses. "TBT leads to ovarian follicular atresia and apoptosis with the elevation of androgen levels, accompanied by the induction of genes associated with lysosomes and autophagosomes," said Prof. Lin. Effects of tributyltin on gonad and brood pouch development of male pregnant lined seahorse Comparative transcriptional analyses revealed the (Hippocampus erectus) at environmentally relevant likely inhibition of spermatogenesis via the concentrations. Credit: SCSIO suppression of cyclic AMP and androgen synthesis. "The transcriptional profiles show that TBT potentially affects the immune system, Seahorses epitomize the exuberance of evolution. angiogenesis, and embryo nourishment of the They have the unique characteristic of male brood pouch, indicating that it has negative effects pregnancy, which includes the carrying of many on the male reproductive system of seahorses," embryos in a brood pouch that incubates and said Prof. Lin. nourishes the embryos, similar to the mammalian placenta. The study reveals that environmental levels of TBT have the potential to affect the reproductive The male pregnancy of seahorses is unique, but efficiency of seahorses, possibly leading to a their reproductive response to environmental reduction in their populations in coastal disturbances has not been clarified. Tributyltin environments. (TBT) is known to have an endocrine disrupting effect on the reproductive system of coastal marine More information: Lu Tang et al. Effects of organisms. tributyltin on gonad and brood pouch development of male pregnant lined seahorse (Hippocampus Researchers led by Prof.
    [Show full text]
  • Mate Choice | Principles of Biology from Nature Education
    contents Principles of Biology 171 Mate Choice Reproduction underlies many animal behaviors. The greater sage grouse (Centrocercus urophasianus). Female sage grouse evaluate males as sexual partners on the basis of the feather ornaments and the males' elaborate displays. Stephen J. Krasemann/Science Source. Topics Covered in this Module Mating as a Risky Behavior Major Objectives of this Module Describe factors associated with specific patterns of mating and life history strategies of specific mating patterns. Describe how genetics contributes to behavioral phenotypes such as mating. Describe the selection factors influencing behaviors like mate choice. page 882 of 989 3 pages left in this module contents Principles of Biology 171 Mate Choice Mating as a Risky Behavior Different species have different mating patterns. Different species have evolved a range of mating behaviors that vary in the number of individuals involved and the length of time over which their relationships last. The most open type of relationship is promiscuity, in which all members of a community can mate with each other. Within a promiscuous species, an animal of either gender may mate with any other male or female. No permanent relationships develop between mates, and offspring cannot be certain of the identity of their fathers. Promiscuous behavior is common in bonobos (Pan paniscus), as well as their close relatives, the chimpanzee (P. troglodytes). Bonobos also engage in sexual activity for activities other than reproduction: to greet other members of the community, to release social tensions, and to resolve conflicts. Test Yourself How might promiscuous behavior provide an evolutionary advantage for males? Submit Some animals demonstrate polygamous relationships, in which a single individual of one gender mates with multiple individuals of the opposite gender.
    [Show full text]
  • Chapter 28 Reproductive System (RS)
    Chapter 28 Reproductive System (RS) AP2 Chapter 28 1 Chapter 28 Outline I. Anatomy of the Male RS II. Physiology of the male RS III. Anatomy of the female RS IV. Physiology of the female RS V. FX of aging on the RS AP2 Chapter 28 2 The Reproductive System • Controls the development of the structural & fxnal diff between ♀ and ♂ • Not only are reproductive structures different but integumentary, muscular & skeletal system diff’s also exist • Reproduction: essential to all living organisms (Thus fxnal RS are required to successfully reproduce) • The ♂ RS is designed to prod sperm & deliver it to the ♀ oocyte • The ♀ RS is designed to prod oocytes & receive sperm from the ♂ RS. It is also intimately involved with nurturing the development of the new individual until and well after birth. AP2 Chapter 28 3 I. Anatomy of the ♂ RS AP2 Chapter 28 4 I. Anatomy of the ♂ RS Pathway • Consists of: • Temp sensitive sperm cells 1. Testes develop outside the body 2. Ducts cavity in the testes & ED Epididymides (ED) Ductus Differentia (DD) • DD lead from the testes into Urethra the pelvis & join with the SV 3. Accessory glands to form the ampullae Seminal Vesicles (SV) Prostate Gland (PG) • Extensions called Bulbourethral Gland (BG) ejaculatory ducts pass thru 4. Supporting Structures the PG & empty into the Scrotum urethra w/in the PG Penis • Urethra exits the pelvis & passes thru the penis to the outside of the body 5 I. Anatomy of the ♂ RS: Scrotum • Holds testes in compartments separated by an incomplete CT septum • Raphe: external irregular midline ridge on the scrotum that continues to the anus (posteriorly) and Base of the penis (anteriorly) • Outer layers of scrotum: – Skin Raphe – Superficial Fascia (LCT) – Dartos Muscle • 2 muscles control the scrotum’s hold on the testes: – Dartos muscle & cremaster muscle – Hot they both relax & testes move away from the body – Cold and they contract bringing testes toward the warmth of the body – Normal sperm formation is temperature sensitive 6 I.
    [Show full text]
  • Priorities for Syngnathid Research
    TECHNICAL REPORT SERIES No. 10 PRIORITIES FOR SYNGNATHID RESEARCH Keith Martin-Smith Version 1.0. February 2006 Suggested reference Martin-Smith, K. (2006). Priorities For Syngnathid Research. Project Seahorse Technical Report No.10, Version 1.0. Project Seahorse, Fisheries Centre, University of British Columbia. 10 pp. Online dissemination This document is available online at www.projectseahorse.org (click on Technical Reports link). Note on revision This document was revised and reprinted/reposted in March 2006. Previous copies of the report should be destroyed as this revision replaces the earlier version. Obtaining additional copies Additional copies of this document are available from Project Seahorse, Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver, B.C. V6T 1Z4 Copyright law Although contents of this document have not been copyrighted and may be reprinted entirely, reference to source is appreciated. Published by Project Seahorse, Fisheries Centre, University of British Columbia Series Editor – Keith Martin-Smith i Table of Contents 1. Introduction.......................................................................................................... 1 2. Summary of Priorities for Syngnathid Research.................................................... 1 3. Priority Life-History Parameters for Syngnathids.................................................. 3 4. References............................................................................................................ 7 ii PROJECT SEAHORSE TECHNICAL
    [Show full text]
  • Multiple Mating and Its Relationship to Alternative Modes of Gestation in Male-Pregnant Versus Female-Pregnant fish Species
    Multiple mating and its relationship to alternative modes of gestation in male-pregnant versus female-pregnant fish species John C. Avise1 and Jin-Xian Liu Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697 Contributed by John C. Avise, September 28, 2010 (sent for review August 20, 2010) We construct a verbal and graphical theory (the “fecundity-limitation within which he must incubate the embryos that he has sired with hypothesis”) about how constraints on the brooding space for em- one or more mates (14–17). This inversion from the familiar bryos probably truncate individual fecundity in male-pregnant and situation in female-pregnant animals apparently has translated in female-pregnant species in ways that should differentially influence some but not all syngnathid species into mating systems char- selection pressures for multiple mating by males or by females. We acterized by “sex-role reversal” (18, 19): a higher intensity of then review the empirical literature on genetically deduced rates of sexual selection on females than on males and an elaboration of fi multiple mating by the embryo-brooding parent in various fish spe- sexual secondary traits mostly in females. For one such pipe sh cies with three alternative categories of pregnancy: internal gesta- species, researchers also have documented that the sexual- tion by males, internal gestation by females, and external gestation selection gradient for females is steeper than that for males (20). More generally, fishes should be excellent subjects for as- (in nests) by males. Multiple mating by the brooding gender was fl common in all three forms of pregnancy.
    [Show full text]