The Neuroendocrinology of Reproduction: an Overview1

Total Page:16

File Type:pdf, Size:1020Kb

The Neuroendocrinology of Reproduction: an Overview1 BIOLOGY OF REPRODUCTION 20, 111-127 (1979) The Neuroendocrinology of Reproduction: An Overview1 ROGER A. GORSKI Department of Anatomy and Brain Research Institute, UCLA School of Medicine, Los Angeles, California 90024 Downloaded from https://academic.oup.com/biolreprod/article/20/1/111/4559056 by guest on 27 September 2021 INTRODUCTION isms, it may be useful to divide the reproductive Each of the preceding speakers in this process into several distinct phases (Table symposium has already reviewed one important 1). A very early step in the reproductive process facet of the neuroendocrinology of reproduc­ is the differentiation of the two individuals tion. Therefore, it is clearly unnecessary to which will eventually be capable of reproducing present a thorough review of this entire field when mature. Although the concept of the and my approach will be to attempt to present sexual differentiation of the reproductive one overall perspective of the role of the brain system is well-known for the internal reproduc­ in the reproductive process while attempting to tive organs and the external genitalia (Wilson, emphasize that which has not already been dis­ 1978), this same concept applies to brain cussed. At best, this discussion will complement function as well. With respect to the peripheral the other presentations, which together do reproductive system, remember that for a form a rather complete overview of the neuro­ period during development, the male and endocrinology of reproduction. To begin with, female are morphologically indistinguishable. it will be helpful to consider the role of the After subsequent differntiation of the gonadal brain in the reproductive process in very anlage into testis or ovary, the secretory activity general terms. of the male gonad appears to be critical for masculine differentiation of both internal A possible fundamental division of the level reproductive organs and of the external genitalia. of involvement of the brain in reproduction is This concept is apparently also directly applic­ presented in Fig. 1. Control mechanisms able to brain function (Fig. 2). It is well-estab­ which can be independent of another individual lished that the brain of the male and female rat constitute the intrinsic regulatory processes differ functionally; however, these differences involving brain, pituitary and gonad. Those in brain function are not determined directly mechanisms which involve two individuals, the by the neuronal genome, rather, these sex extrinsic regulatory processes, can be further differences in brain function are established by subdivided into those interactions which the hormone environment during the early involve general afferent stimuli or primary perinatal period, apparently by the modification sensory input such as olfaction. Since sexual of an inherently female brain (Beach, 1975; reproduction by definition involves two indivi­ Flerko, 1975; Gorski, 1971; Gorski et al., duals, the existence of this extrinsic regulatory 1977, Quadagno et al., 1977; Reinisch, 1976). system should not be surprising. However, Note that if development occurs in the absence relatively little attention has been paid to this of gonadal hormones (e.g., the intact or neo- aspect of reproduction, yet there can be impor­ natally spayed female and the neonatally tant endocrine responses to behavioral and castrated male) regardless of the genetic sex of sensory input, as will be described below. the animal, the brain is functionally female in the adult. In contrast, if differentiation occurs Sexual Differentiation of the Brain in the presence of endogenous or exogenous With respect to intrinsic regulatory mechan- gonadal steroids, such a hormone-exposed animal exhibits masculine brain function when adult. There are a number of brain functions which Original research from the author's laboratory supported by USPHS Grant HD-01182 and by the Ford have been suggested to undergo this process of Foundation. sexual differentiation, although not all in 111 112 GORSKI GENETIC FEMALE INTACT MALE NEONATALLY SPAYED FEMALE INTACT OR SPAYED FEMALE, OR NEONATALLY CASTRATED MALE CASTRATED MALE EXPOSED TO EXOGENOUS STEROIDS Downloaded from https://academic.oup.com/biolreprod/article/20/1/111/4559056 by guest on 27 September 2021 FIG. 1. Highly schematic representation of two levels of involvement of the brain in the regulation of FUNCTIONALLY FUNCTIONALLY reproduction: 1) intrinsic regulatory processes which FEMALE MALE include the reciprocal interactions between brain, pituitary (P) and gonad and 2) extrinsic regulatory FIG. 2. Schematic representation of the influence processes which involve an interaction between two of the perinatal hormone environment on the sexual individuals either at the level of special sensory input differentiation of the rat brain. Regardless of genetic (2a, e.g., olfaction, vision) or general afferent stimuli sex, at birth (or shortly before) the brain of the rat (2b, e.g., genital stimulation). Abbreviations: A, appears to be potentially female and exposure to adrenal; O, ovary; T, testis; U, uterus. gonadal steroids is required for the development of a functionally masculine brain. the rat, which is the mammal upon which the present comments will be focused. Note that 1975), gender role (Ehrhardt, 1978) and also this concept appears to apply to the regula­ territorial marking (Lumia et al., 1977). tion of pituitary secretion (Flerko, 1975; Two functional parameters of the reproduc­ Gorski, 1971; Neill, 1974), male and female sex tive neuroendocrine system can be used to behavior (Beach, 1975; Gorski, 1974; Reinisch, illustrate clearly this concept of the sexual 1976), aggressive behavior (Barr et al., 1976; differentiation of the brain. In the adult animal, vom Saal et al., 1976), social and play behavior the female rat has the potential to release (Goy and Resko, 1972; Quadagno et al., 1977), gonadotropins cyclically in the surge mode urination posturing in the dog (Beach, 1974), which is essential for ovulation (Brown-Grant, the influence of gonadal hormones on food 1974; Harlan and Gorski, 1977; Mennin and intake and body weight regulation (Nance and Gorski, 1975; Taleisnik et al., 1971) and the Gorski, 1975; Tarttelin et al., 1975), some female also exhibits lordosis behavior frequently aspects of learning behavior (Dawson et al., (Gorski, 1974). In contrast, in the adult male, 1975; Denti and Negroni, 1975; Scouten et al., even in the presence of exogenous ovarian hormones, there is no surge of luteinizing hormone (LH) nor is the genetic male able to exhibit lordosis behavior except occasionally TABLE 1. The neural regulation of reproduction. (Brown-Grant, 1974; Gorski, 1974; Gorski and Wagner, 1965; Harris, 1964; Harris and Levine, Intrinsic regulation Extrinsic regulation 1965; Taleisnik et al., 1971). If exogenous steroids are administered to rats during the Differentiation of brain Special sensory input perinatal period, what are the consequences to Puberty Olfactory cues these animals when they mature? In the case Gametogenesis Photoperiod of the male there are no apparent effects of Ovulation Visual displays Sexual behavior Vocalization such perinatal treatment provided the dose of Correlation: ovulation General sensory factors hormone is not excessive; the male will still with sexual behavior Genital stimulation exhibit the typical lack of cyclic gonadotropin Pregnancy Suckling stimulus release and only rarely exhibit lordosis behavior.. Parturition In contrast, if the female is exposed to gonadal NEUROENDOCRINE)LOGY OF REPRODUCTION 113 steroids early in life, there is a marked change; Sutherland and Gorski, 1972). Moreoever, she no longer will exhibit lordosis behavior nor antiestrogenic compounds or aromatase inhibi­ will she show the cyclic release of LH and in tors have been shown to inhibit masculinization fact such an animal is anovulatory and sterile due to testosterone injection (Booth, 1977; (Barraclough and Gorski, 1961, 1962; Gorski, Doughty and McDonald, 1974; McEwen et al., 1971, 1974; Harlan and Gorski, 1977; Harris 1977a; Vreeburg et al, 1977). It has also been and Levine, 1965). Although these results could demonstrated that within brain tissue, as represent a pharmacological artifact to exogen­ elsewhere in the body, steroids are metabolized, ous hormone exposure, the effects of neonatal and testosterone in the brain can be aromatized Downloaded from https://academic.oup.com/biolreprod/article/20/1/111/4559056 by guest on 27 September 2021 gonadectomy clearly indicate the importance of to estradiol (Naftolin et al., 1975; Selmanoff et the hormone environment for normal develop­ al., 1977). Finally, the nonaromatizable andro­ ment of brain function. If the perinatal female gen dihydrotestosterone fails to masculinize the is gonadectomized, when she is adult she still brain (Korenbrot et al., 1975; Sodersten, 1978; has the capacity (of course following ovarian Whalen and Rezek, 1974). Thus, as already transplantation) to ovulate (Gorski and Wagner, discussed with respect to behavior (Crews, 1965) and also to display high rates of lordosis 1979), we have the seemingly unusual situation responses (Gerall et al, 1973). The neonatally where estradiol appears to be the vehicle for gonadectomized female appears to be essentially masculinization of the brain. Since removal of comparable to the normal female; thus, the the ovary is without apparent consequence to ovaries may play little role in the process of sexual differentiation, it was logical to assume sexual differentiation.
Recommended publications
  • Reproductive Attributes of Polynoid Polychaetes from Hydrothermal Vents on the East Pacific Rise
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2005 Reproductive Attributes of Polynoid Polychaetes from Hydrothermal Vents on the East Pacific Rise Jessica Lynn Wallace College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Marine Biology Commons, and the Oceanography Commons Recommended Citation Wallace, Jessica Lynn, "Reproductive Attributes of Polynoid Polychaetes from Hydrothermal Vents on the East Pacific Rise" (2005). Dissertations, Theses, and Masters Projects. Paper 1539626835. https://dx.doi.org/doi:10.21220/s2-zy51-8j97 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. REPRODUCTIVE ATTRIBUTES OF POLYNOID POLYCHAETES FROM HYDROTHERMAL VENTS ON THE EAST PACIFIC RISE A Thesis Presented to The Faculty of the Department of Biology The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Science by Jessica Lynn Wallace 2005 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science Jessica L. Wallace Approved by the Committee, August 2005 Dr. Cindy Lee Van Dover, Chair Dr. Paul D. Heideman Dr. Joseph L. Scott To Dad and Ken for inspiring my love of oceanography To Mom and Stephen for their unending love and support TABLE OF CONTENTS Page Acknowledgements v List of Figures vi Abstract vii Introduction 2 Chapter I.
    [Show full text]
  • Human Reproductive Systems Males Vs. Females Learning Goals • Students Will Describe the Basic Anatomy and Physiology of the Male and Female Reproductive Systems
    Human Reproductive Systems Males vs. Females Learning Goals • Students will describe the basic anatomy and physiology of the male and female reproductive systems. Gonads are sex organs that create gametes? & excrete sex hormones Gonads are sex organs that create gametes & excrete sex hormones Male gonads are called testes Female gonads are called ovaries -Are the site of sperm production -Are the site of egg production & maturation Gametes are also called sex ?cells, and are used to create offspring with a mixture of genetic information. Gametes are also called sex cells, and are used to create offspring with a mixture of genetic information. Male gametes are called sperm Female gametes are called -produce 300-500 million per 5ml eggs/ova of semen -70,000-100,000 at birth -release 1-2 per month from puberty to menopause. Sex Hormones are chemical? signals that tell the sex organs how to function. Sex Hormones are chemical signals that tell the sex organs how to function. Male hormone is called Female hormones are estrogen testosterone and progesterone -released from the testes -released from the ovary -controls sperm production -controls egg production & release Duct systems help deliver gametes from gonads and are the site of fertilization in females and delivers sperm out of the body in males. Male duct systems include: Epididymis -site of sperm maturation (about 20 days for sperm to mature) Male duct systems include: Vas deferens -Tube for sperm to travel through as they leave the testes Male duct systems include: Urethra -shared tube for release of semen from reproductive tract and urine from the bladder.
    [Show full text]
  • REVIEW Physiological Dependence on Copulation in Parthenogenetic Females Can Reduce the Cost of Sex
    ANIMAL BEHAVIOUR, 2004, 67, 811e822 doi:10.1016/j.anbehav.2003.05.014 REVIEW Physiological dependence on copulation in parthenogenetic females can reduce the cost of sex M. NEIMAN Department of Biology, Indiana University, Bloomington (Received 6 December 2002; initial acceptance 10 April 2003; final acceptance 27 May 2003; MS. number: ARV-25) Despite the two-fold reproductive advantage of asexual over sexual reproduction, the majority of eukaryotic species are sexual. Why sex is so widespread is still unknown and remains one of the most important unanswered questions in evolutionary biology. Although there are several hypothesized mechanisms for the maintenance of sex, all require assumptions that may limit their applicability. I suggest that the maintenance of sex may be aided by the detrimental retention of ancestral traits related to sexual reproduction in the asexual descendants of sexual taxa. This reasoning is based on the fact that successful reproduction in many obligately sexual species is dependent upon the behavioural, physical and physiological cues that accompany sperm delivery. More specifically, I suggest that although parthenogenetic (asexual) females have no need for sperm per se, parthenogens descended from sexual ancestors may not be able to reach their full reproductive potential in the absence of the various stimuli provided by copulatory behaviour. This mechanism is novel in assuming no intrinsic advantage to producing genetically variable offspring; rather, sex is maintained simply through phylogenetic constraint. I review and synthesize relevant literature and data showing that access to males and copulation increases reproductive output in both sexual and parthenogenetic females. These findings suggest that the current predominance of sexual reproduction, despite its well-documented drawbacks, could in part be due to the retention of physiological dependence on copulatory stimuli in parthenogenetic females.
    [Show full text]
  • Infectious Diseases: Respiratory & Reproductive Systems
    Chapter 10 - Lesson 3 Infectious Diseases: Respiratory & Reproductive Systems Nasal Passages and Sinuses Rhinitis is an inflammation of the mucous membranes of the nasal passages, and sinusitis is the inflamma- tion of sinuses. These conditions can be either acute or chronic. Bacterial infections may occur following an acute viral infection or after exposure to inclimate weather. Conjunctivitis (inflammation of eyelids) of- ten accompanies rhinitis and sinusitis. Affected tissues may become red and swollen and Conjunctivitis is an inflammation of the eyelids. produce a mucoid or mucopurulent nasal discharge. In addition drainage from the nostrils, open-mouth breathing and sneezing are also common signs of a re- spiratory infection. Strangles in horses is caused by a streptococcus bacterium and is an inflammation of the sinuses and nasal passages that may include abscessa- tion of associated lymph nodes. Tonsils Tonsillitis is the inflammation of the tonsils. This con- dition is common in dogs and rare in cats. The bacteri- Canine distemper. al infection causes the tonsils to swell resulting in gag- ging, retching, soft coughing, and expulsion of mucus. pneumonia with congestion, hemorrhage, mucus, Lungs edema, and emphysema of lung tissue and air sacs. Bacteria commonly complicate viral lung infections Pneumonitis is an acute or chronic inflammation of by causing collection of pus in the air sacs. the lung tissue and air passages. Symptoms include a deep cough and difficult breathing. Infectious bovine rhinotracheitis (IBR), equine rhi- nopneumonitis, equine influenza, swine influenza, Viral and bacterial infections of the lungs are con- canine distemper, feline viral rhinotracheitis (FVR), tagious and can produce severe damage resulting in feline calicivirus (FCV), fowl infectious bronchitis, Chapter 10 - Infectious Diseases 225 fowl infectious laryngotracheitis (LT), and avian in- fluenza (AI) are viral diseases of the respiratory sys- tem.
    [Show full text]
  • Mating Systems in the Pleurothallidinae (Orchidaceae): Evolutionary and Systematic Implications
    LANKESTERIANA 11(3): 207—221. 2011. MATING SYSTEMS IN THE PLEUROTHALLIDINAE (ORCHIDACEAE): EVOLUTIONARY AND SYSTEMATIC IMPLICATIONS EDUARDO LEITE BORBA*, ARIANE RAQUEL BARBOSA, MARCOS CABRAL DE MELO, SAMUEL LOUREIRO GONTIJO & HENRIQUE ORNELLAS DE OLIVEIRA Departamento de Botânica, Instituto de Ciências Biológicas Universidade Federal de MinasGerais, Belo Horizonte, MG, 31270-901, Brazil * Corresponding author: [email protected] ABSTRACT. We developed a project addressing the determination of the reproductive system through experimental pollinations of species in the major genera representing all major lineages of Pleurothallidinae in order to determine occurrence of self-incompatibility in the subtribe, in which group it has possibly appeared for the first time, and how many times it has evolved. Additionally we surveyed the floral biology of species ofOctomeria , a genus with morphological characters typical of bee-pollinated flowers that was previously regarded as mellitophilous. At the moment, all but one of the species studied in selected large genera of the major lineages (Acianthera, Anathallis, Masdevallia, Octomeria, Specklinia, and Stelis) are self-incompatible. The species studied may possess complete, strong or partial self-incompatibility. We found two different sites where self-incompatibility reactions occur, the stigma and the stylar channel, and both sites were not found in the same genus except for Anathallis. In Anathallis, the two groups that differ morphologically (formerly Pleurothallis subgen. Specklinia sect. Muscosae
    [Show full text]
  • The Seahorse Genome and the Evolution of Its Specialized
    OPEN ARTICLE doi:10.1038/nature20595 The seahorse genome and the evolution of its specialized morphology Qiang Lin1*§, Shaohua Fan2†*, Yanhong Zhang1*, Meng Xu3*, Huixian Zhang1,4*, Yulan Yang3*, Alison P. Lee4†, Joost M. Woltering2, Vydianathan Ravi4, Helen M. Gunter2†, Wei Luo1, Zexia Gao5, Zhi Wei Lim4†, Geng Qin1,6, Ralf F. Schneider2, Xin Wang1,6, Peiwen Xiong2, Gang Li1, Kai Wang7, Jiumeng Min3, Chi Zhang3, Ying Qiu8, Jie Bai8, Weiming He3, Chao Bian8, Xinhui Zhang8, Dai Shan3, Hongyue Qu1,6, Ying Sun8, Qiang Gao3, Liangmin Huang1,6, Qiong Shi1,8§, Axel Meyer2§ & Byrappa Venkatesh4,9§ Seahorses have a specialized morphology that includes a toothless tubular mouth, a body covered with bony plates, a male brood pouch, and the absence of caudal and pelvic fins. Here we report the sequencing and de novo assembly of the genome of the tiger tail seahorse, Hippocampus comes. Comparative genomic analysis identifies higher protein and nucleotide evolutionary rates in H. comes compared with other teleost fish genomes. We identified an astacin metalloprotease gene family that has undergone expansion and is highly expressed in the male brood pouch. We also find that the H. comes genome lacks enamel matrix protein-coding proline/glutamine-rich secretory calcium-binding phosphoprotein genes, which might have led to the loss of mineralized teeth. tbx4, a regulator of hindlimb development, is also not found in H. comes genome. Knockout of tbx4 in zebrafish showed a ‘pelvic fin-loss’ phenotype similar to that of seahorses. Members of the teleost family Syngnathidae (seahorses, pipefishes de novo. The H. comes genome assembly is of high quality, as > 99% and seadragons) (Extended Data Fig.
    [Show full text]
  • Polygynandry, Extra-Group Paternity and Multiple-Paternity Litters In
    Molecular Ecology (2007) 16, 5294–5306 doi: 10.1111/j.1365-294X.2007.03571.x Polygynandry,Blackwell Publishing Ltd extra-group paternity and multiple-paternity litters in European badger (Meles meles) social groups HANNAH L. DUGDALE,*† DAVID W. MACDONALD,* LISA C. POPE† and TERRY BURKE† *Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Tubney House, Abingdon Road, Tubney OX13 5QL, UK, †Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK Abstract The costs and benefits of natal philopatry are central to the formation and maintenance of social groups. Badger groups, thought to form passively according to the resource dispersion hypothesis (RDH), are maintained through natal philopatry and delayed dispersal; however, there is minimal evidence for the functional benefits of such grouping. We assigned parentage to 630 badger cubs from a high-density population in Wytham Woods, Oxford, born between 1988 and 2005. Our methodological approach was different to previous studies; we used 22 microsatellite loci to assign parent pairs, which in combination with sibship inference provided a high parentage assignment rate. We assigned both parents to 331 cubs at ≥ 95% confidence, revealing a polygynandrous mating system with up to five mothers and five fathers within a social group. We estimated that only 27% of adult males and 31% of adult females bred each year, suggesting a cost to group living for both sexes. Any strong motivation or selection to disperse, however, may be reduced because just under half of the paternities were gained by extra-group males, mainly from neighbouring groups, with males displaying a mixture of paternity strategies.
    [Show full text]
  • Central Respiratory Circuits That Control Diaphragm Function in Cat Revealed by Transneuronal Tracing
    CENTRAL RESPIRATORY CIRCUITS THAT CONTROL DIAPHRAGM FUNCTION IN CAT REVEALED BY TRANSNEURONAL TRACING by James H. Lois B. S. in Neuroscience, University of Pittsburgh, 2006 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of M. S. in Neuroscience University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH ARTS AND SCIENCES This thesis was presented by James H. Lois It was defended on July 30, 2008 and approved by J. Patrick Card, PhD Linda Rinaman, PhD Alan Sved, PhD Thesis Advisor: J. Patrick Card, PhD ii Copyright © by James H. Lois 2008 iii CENTRAL RESPIRATORY CIRCUITS THAT CONTROL DIAPHRAGM FUNCTION IN CAT REVEALED BY TRANSNEURONAL TRACING James H. Lois, M. S. University of Pittsburgh, 2008 Previous transneuronal tracing studies in the rat and ferret have identified regions throughout the spinal cord, medulla, and pons that are synaptically linked to the diaphragm muscle; however, the extended circuits that innervate the diaphragm of the cat have not been well defined. The N2C strain of rabies virus has been shown to be an effective transneuronal retrograde tracer of the polysynaptic circuits innervating a single muscle. Rabies was injected throughout the left costal region of the diaphragm in the cat to identify brain regions throughout the neuraxis that influence diaphragm function. Infected neurons were localized throughout the cervical and thoracic spinal cord with a concentration of labeling in the vicinity of the phrenic nucleus where diaphragm motoneurons are known to reside. Infection was also found throughout the medulla and pons particularly around the regions of the dorsal and ventral respiratory groups and the medial and lateral reticular formations but also in several other areas including the caudal raphe nuclei, parabrachial nuclear complex, vestibular nuclei, ventral paratrigeminal area, lateral reticular nucleus, and retrotrapezoid nucleus.
    [Show full text]
  • Basic Organization of Projections from the Oval and Fusiform Nuclei of the Bed Nuclei of the Stria Terminalis in Adult Rat Brain
    THE JOURNAL OF COMPARATIVE NEUROLOGY 436:430–455 (2001) Basic Organization of Projections From the Oval and Fusiform Nuclei of the Bed Nuclei of the Stria Terminalis in Adult Rat Brain HONG-WEI DONG,1,2 GORICA D. PETROVICH,3 ALAN G. WATTS,1 AND LARRY W. SWANSON1* 1Neuroscience Program and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520 2Institute of Neuroscience, The Fourth Military Medical University, Xi’an, Shannxi 710032, China 3Department of Psychology, Johns Hopkins University, Baltimore, Maryland 21218 ABSTRACT The organization of axonal projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis (BST) was characterized with the Phaseolus vulgaris-leucoagglutinin (PHAL) anterograde tracing method in adult male rats. Within the BST, the oval nucleus (BSTov) projects very densely to the fusiform nucleus (BSTfu) and also innervates the caudal anterolateral area, anterodorsal area, rhomboid nucleus, and subcommissural zone. Outside the BST, its heaviest inputs are to the caudal substantia innominata and adjacent central amygdalar nucleus, retrorubral area, and lateral parabrachial nucleus. It generates moderate inputs to the caudal nucleus accumbens, parasubthalamic nucleus, and medial and ventrolateral divisions of the periaqueductal gray, and it sends a light input to the anterior parvicellular part of the hypothalamic paraventricular nucleus and nucleus of the solitary tract. The BSTfu displays a much more complex projection pattern. Within the BST, it densely innervates the anterodorsal area, dorsomedial nucleus, and caudal anterolateral area, and it moderately innervates the BSTov, subcommissural zone, and rhomboid nucleus. Outside the BST, the BSTfu provides dense inputs to the nucleus accumbens, caudal substantia innominata and central amygdalar nucleus, thalamic paraventricular nucleus, hypothalamic paraventricular and periventricular nuclei, hypothalamic dorsomedial nucleus, perifornical lateral hypothalamic area, and lateral tegmental nucleus.
    [Show full text]
  • Table 1); Two in for Several Hours (Boccia Et Al., 2007)
    Hormones and Behavior 57 (2010) 255–262 Contents lists available at ScienceDirect Hormones and Behavior journal homepage: www.elsevier.com/locate/yhbeh Manipulation of the oxytocin system alters social behavior and attraction in pair-bonding primates, Callithrix penicillata Adam S. Smith a,⁎, Anders Ågmo b, Andrew K. Birnie a, Jeffrey A. French a,c a Department of Psychology and Callitrichid Research Facility, University of Nebraska at Omaha, Omaha, Nebraska, USA b Department of Psychology, University of Tromsø, Norway c Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA article info abstract Article history: The establishment and maintenance of stable, long-term male-female relationships, or pair-bonds, are Received 12 August 2009 marked by high levels of mutual attraction, selective preference for the partner, and high rates of sociosexual Revised 3 December 2009 behavior. Central oxytocin (OT) affects social preference and partner-directed social behavior in rodents, but Accepted 8 December 2009 the role of this neuropeptide has yet to be studied in heterosexual primate relationships. The present study Available online 16 December 2009 evaluated whether the OT system plays a role in the dynamics of social behavior and partner preference during the first 3 weeks of cohabitation in male and female marmosets, Callithrix penicillata. OT activity was Keywords: Central oxytocin activity stimulated by intranasal administration of OT, and inhibited by oral administration of a non-peptide OT- Pair-bonding behavior receptor antagonist (L-368,899; Merck). Social behavior throughout the pairing varied as a function of OT Sexual behavior treatment. Compared to controls, marmosets initiated huddling with their social partner more often after OT Partner preference treatments but reduced proximity and huddling after OT antagonist treatments.
    [Show full text]
  • This Article Was Originally Published in Hormones, Brain and Behavior 2Nd
    This article was originally published in Hormones, Brain and Behavior 2nd edition, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Gore A C and Crews D Environmental Endocrine Disruption of Brain and Behavior. In: Donald W. Pfaff, Arthur P. Arnold, Anne M. Etgen, Susan E. Fahrbach and Robert T. Rubin, editors. Hormones, Brain and Behavior, 2nd edition, Vol 3. San Diego: Academic Press; 2009. pp. 1789-1816. Author's personal copy 56 Environmental Endocrine Disruption of Brain and Behavior A C Gore and D Crews, University of Texas at Austin, Austin, TX, USA ß 2009 Elsevier Inc. All rights reserved. Chapter Outline 56.1 Introduction to Endocrine Disruption 1790 56.1.1 Critical Issues about Endocrine Disruption 1791 56.1.1.1 Life stage and timing 1791 56.1.1.2 Latency of effects 1791 56.1.1.3 Sensitivity to EDCs 1792 56.1.1.4 Degradation and metabolism,
    [Show full text]
  • Brain-Implantable Biomimetic Electronics As the Next Era in Neural Prosthetics
    Brain-Implantable Biomimetic Electronics as the Next Era in Neural Prosthetics THEODORE W. BERGER, MICHEL BAUDRY, ROBERTA DIAZ BRINTON, JIM-SHIH LIAW, VASILIS Z. MARMARELIS, FELLOW, IEEE, ALEX YOONDONG PARK, BING J. SHEU, FELLOW, IEEE, AND ARMAND R. TANGUAY, JR. Invited Paper An interdisciplinary multilaboratory effort to develop an im- has been developed—silicon-based multielectrode arrays that are plantable neural prosthetic that can coexist and bidirectionally “neuromorphic,” i.e., designed to conform to the region-specific communicate with living brain tissue is described. Although the final cytoarchitecture of the brain. When the “neurocomputational” and achievement of such a goal is many years in the future, it is proposed “neuromorphic” components are fully integrated, our vision is that that the path to an implantable prosthetic is now definable, allowing the resulting prosthetic, after intracranial implantation, will receive the problem to be solved in a rational, incremental manner.Outlined electrical impulses from targeted subregions of the brain, process in this report is our collective progress in developing the underlying the information using the hardware model of that brain region, and science and technology that will enable the functions of specific communicate back to the functioning brain. The proposed prosthetic brain damaged regions to be replaced by multichip modules con- microchips also have been designed with parameters that can be sisting of novel hybrid analog/digital microchips. The component optimized after implantation, allowing each prosthetic to adapt to a microchips are “neurocomputational” incorporating experimen- particular user/patient. tally based mathematical models of the nonlinear dynamic and adaptive properties of biological neurons and neural networks.
    [Show full text]