FAT File System

Total Page:16

File Type:pdf, Size:1020Kb

FAT File System FAT File System As mentioned earlier, the FAT file system is named for its method of organization—the file allocation table. This table of values provides links from one allocation unit (one or more sectors) to another, as shown in Figure 5.1. Figure 5.1 File Allocation Table This illustration includes three files. The file named FILE1.TXT is a file that is large enough to take the space of three allocation units. A small file, FILE3.TXT, takes space in only one allocation unit. The third file, FILE2.TXT, is a large, fragmented file. In each case, the directory entry points to the first allocation unit containing the file. If the file contents go beyond one allocation unit, the first allocation unit points to the next in the chain. FFF indicates the end of the chain. The FAT file system is a simple file system originally designed for small disks and simple directory structures. Its design has been improved over the years to work more effectively with larger disks and more powerful personal computers. With MS-DOS version 4.0, the FAT entries grew from 12 bits to 16 bits in size, thus allowing for partitions larger than 32 MB. Figure 5.2 illustrates how the FAT file system organizes the disk. Figure 5.2 FAT Disk Partition (Volume) The root directory has a fixed size and location on the disk. Directories are special files with 32-byte entries for each file contained in that directory. The entry for each file includes the following information: · Filename (eight-plus-three characters) · Attribute byte (8 bits worth of information, described below) · Modification time (16 bits) · Modification date (16 bits) · Starting allocation unit (16 bits) · File size (32 bits) This information is used by all operating systems that support the FAT file system. In addition, Windows NT can store additional time stamps in a FAT directory entry. These time stamps show when the file was created or last accessed and are used principally by POSIX applications. Bits in the attribute byte of the directory entry of a file indicate whether the file has certain attributes. One bit indicates that the file is a subdirectory, while another bit marks the file as a volume label. Normally, only the operating system controls the settings of these bits. In addition, a FAT files has four special attributes that can be turned on or off by the user — archive file, system file, hidden file, and read-only file. Windows NT versions 3.5 and later use these attribute bits to support long filenames up to 256 characters on FAT partitions in a way that does not interfere with how MS-DOS or OS/2 access the partition. Whenever a user creates a file with a long filename (that is, a filename that exceeds the eight-plus-three limits of the FAT file system on MS-DOS and OS/2 or that contains extended or mixed-case characters), Windows NT creates a conventional directory entry for the file, supplying an eight-plus-three name in the same manner as for a file on an NTFS volume. (For information about how Windows NT creates the short filename, see "Generating Short Filenames" later in this chapter.) In addition to this conventional entry, Windows NT creates one or more secondary directory entries for the file, one for each 13 characters in the long filename. Each of these secondary directory entries stores a corresponding part of the long filename in Unicode. Windows NT sets the volume, read-only, system, and hidden file attribute bits of the secondary directory entry to mark it as part of a long filename. MS-DOS and OS/2 generally ignore directory entries with all four of these attribute bits set, so these entries are effectively invisible to these operating systems. Instead, MS-DOS and OS/2 access the file using the eight-plus-three filename contained in the conventional directory entry for the file. Some third-party disk utilities that directly manipulate the FAT might regard the long-filename directory entries created by Windows NT as errors in the logical structure of the disk volume and so may damage the directory entries or even the file itself trying to correct the error. Do not use a third-party disk utility to repair or defragment a FAT partition used by Windows NT unless the disk utility has been certified as being compatible with Windows NT version 3.5 or later. You can, safely use the Scandisk and Chkdsk utilities supplied with MS-DOS version 6.0 and later to repair a damaged FAT partition, but do not use the Defrag utility to defragment a FAT partition containing long filenames because it tends to discard long filename information. By default, Windows NT 3.5 supports long filenames on FAT partitions. If you want to be able to use third- party disk utilities to repair or defragment FAT partitions used by Windows NT, set the Win31FileSystem parameter of the following Registry entry to 1: HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\FileSystem Setting this value will prevent Windows NT from creating new long filenames on all FAT partitions; it does not affect existing long filenames. See Chapter 10, "Overview of the Windows NT Registry," and Chapter 11, "Registry Editor and Registry Administration," for information about adding and changing entries in the Registry. Send feedback to MSDN. Look here for MSDN Online resources..
Recommended publications
  • Allgemeines Abkürzungsverzeichnis
    Allgemeines Abkürzungsverzeichnis L.
    [Show full text]
  • Active@ UNDELETE Documentation
    Active @ UNDELETE Users Guide | Contents | 2 Contents Legal Statement.........................................................................................................5 Active@ UNDELETE Overview............................................................................. 6 Getting Started with Active@ UNDELETE.......................................................... 7 Active@ UNDELETE Views And Windows...................................................................................................... 7 Recovery Explorer View.......................................................................................................................... 8 Logical Drive Scan Result View..............................................................................................................9 Physical Device Scan View......................................................................................................................9 Search Results View...............................................................................................................................11 File Organizer view................................................................................................................................ 12 Application Log...................................................................................................................................... 13 Welcome View........................................................................................................................................14 Using
    [Show full text]
  • Active @ UNDELETE Users Guide | TOC | 2
    Active @ UNDELETE Users Guide | TOC | 2 Contents Legal Statement..................................................................................................4 Active@ UNDELETE Overview............................................................................. 5 Getting Started with Active@ UNDELETE........................................................... 6 Active@ UNDELETE Views And Windows......................................................................................6 Recovery Explorer View.................................................................................................... 7 Logical Drive Scan Result View.......................................................................................... 7 Physical Device Scan View................................................................................................ 8 Search Results View........................................................................................................10 Application Log...............................................................................................................11 Welcome View................................................................................................................11 Using Active@ UNDELETE Overview................................................................. 13 Recover deleted Files and Folders.............................................................................................. 14 Scan a Volume (Logical Drive) for deleted files..................................................................15
    [Show full text]
  • MSD FATFS Users Guide
    Freescale MSD FATFS Users Guide Document Number: MSDFATFSUG Rev. 0 02/2011 How to Reach Us: Home Page: www.freescale.com E-mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 [email protected] Europe, Middle East, and Africa: Information in this document is provided solely to enable system and Freescale Halbleiter Deutschland GmbH software implementers to use Freescale Semiconductor products. There are Technical Information Center no express or implied copyright licenses granted hereunder to design or Schatzbogen 7 fabricate any integrated circuits or integrated circuits based on the 81829 Muenchen, Germany information in this document. +44 1296 380 456 (English) +46 8 52200080 (English) Freescale Semiconductor reserves the right to make changes without further +49 89 92103 559 (German) notice to any products herein. Freescale Semiconductor makes no warranty, +33 1 69 35 48 48 (French) representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability [email protected] arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or Japan: incidental damages. “Typical” parameters that may be provided in Freescale Freescale Semiconductor Japan Ltd. Semiconductor data sheets and/or specifications can and do vary in different Headquarters applications and actual performance may vary over time. All operating ARCO Tower 15F parameters, including “Typicals”, must be validated for each customer 1-8-1, Shimo-Meguro, Meguro-ku, application by customer’s technical experts.
    [Show full text]
  • IT Acronyms.Docx
    List of computing and IT abbreviations /.—Slashdot 1GL—First-Generation Programming Language 1NF—First Normal Form 10B2—10BASE-2 10B5—10BASE-5 10B-F—10BASE-F 10B-FB—10BASE-FB 10B-FL—10BASE-FL 10B-FP—10BASE-FP 10B-T—10BASE-T 100B-FX—100BASE-FX 100B-T—100BASE-T 100B-TX—100BASE-TX 100BVG—100BASE-VG 286—Intel 80286 processor 2B1Q—2 Binary 1 Quaternary 2GL—Second-Generation Programming Language 2NF—Second Normal Form 3GL—Third-Generation Programming Language 3NF—Third Normal Form 386—Intel 80386 processor 1 486—Intel 80486 processor 4B5BLF—4 Byte 5 Byte Local Fiber 4GL—Fourth-Generation Programming Language 4NF—Fourth Normal Form 5GL—Fifth-Generation Programming Language 5NF—Fifth Normal Form 6NF—Sixth Normal Form 8B10BLF—8 Byte 10 Byte Local Fiber A AAT—Average Access Time AA—Anti-Aliasing AAA—Authentication Authorization, Accounting AABB—Axis Aligned Bounding Box AAC—Advanced Audio Coding AAL—ATM Adaptation Layer AALC—ATM Adaptation Layer Connection AARP—AppleTalk Address Resolution Protocol ABCL—Actor-Based Concurrent Language ABI—Application Binary Interface ABM—Asynchronous Balanced Mode ABR—Area Border Router ABR—Auto Baud-Rate detection ABR—Available Bitrate 2 ABR—Average Bitrate AC—Acoustic Coupler AC—Alternating Current ACD—Automatic Call Distributor ACE—Advanced Computing Environment ACF NCP—Advanced Communications Function—Network Control Program ACID—Atomicity Consistency Isolation Durability ACK—ACKnowledgement ACK—Amsterdam Compiler Kit ACL—Access Control List ACL—Active Current
    [Show full text]
  • Wikipedia: Design of the FAT File System
    Design of the FAT file system A FAT file system is a specific type of computer file system architecture and FAT a family of industry-standard file systems utilizing it. Developer(s) Microsoft, SCP, IBM, [3] The FAT file system is a legacy file system which is simple and robust. It Compaq, Digital offers good performance even in very light-weight implementations, but Research, Novell, cannot deliver the same performance, reliability and scalability as some Caldera modern file systems. It is, however, supported for compatibility reasons by Full name File Allocation Table: nearly all currently developed operating systems for personal computers and FAT12 (12- many home computers, mobile devices and embedded systems, and thus is a bit version), well suited format for data exchange between computers and devices of almost FAT16 (16- any type and age from 1981 through the present. bit versions), Originally designed in 1977 for use on floppy disks, FAT was soon adapted and FAT32 (32-bit version used almost universally on hard disks throughout the DOS and Windows 9x with 28 bits used), eras for two decades. Today, FAT file systems are still commonly found on exFAT (64- floppy disks, USB sticks, flash and other solid-state memory cards and bit versions) modules, and many portable and embedded devices. DCF implements FAT as Introduced 1977 (Standalone the standard file system for digital cameras since 1998.[4] FAT is also utilized Disk BASIC-80) for the EFI system partition (partition type 0xEF) in the boot stage of EFI- FAT12: August 1980 compliant computers. (SCP QDOS) FAT16: August 1984 For floppy disks, FAT has been standardized as ECMA-107[5] and (IBM PC DOS 3.0) ISO/IEC 9293:1994[6] (superseding ISO 9293:1987[7]).
    [Show full text]
  • Commonly Used Acronyms
    Commonly Used Acronyms A Amperes AC Alternating Current CLA Carry Look-ahead Adder A/D Analog to Digital CMOS Complementary Metal-Oxide Semicon- ADC Analog to Digital Converter ductor AE Applications Engineer CP/M Control Program / Monitor AI Artificial Intelligence CPI Clocks Per Instruction ALU Arithmetic-Logic Unit CPLD Complex Programmable Logic Device AM Amplitude Modulation CPU Central Processing Unit AMD Advanced Micro Devices, Inc. CR Carriage Return ANSI American National Standards Institute CRC Cyclic Redundancy Code ARQ Automatic Retransmission reQuest CRQ Command Response Queue ASCII American Standard Code for Information CRT Cathode Ray Tube Interchange CS Chip Select / Check-Sum ASEE American Society for Engineering Educa- CSMA Carrier Sense Multiple-Access tion CSMA/CD Carrier Sense Multiple-Access with Colli- ASIC Application Specific Integrated Circuit sion Detect ASPI Advanced SCSI Programming Interface CSR Command Status Register ATDM Asynchronous Time Division Multiplexing CTS Clear To Send ATM Asynchronous Transfer Mode AUI Attached Unit Interface D Dissipation Factor D/A Digital to Analog B Magnetic Flux DAC Digital to Analog Converter BBS Bulletin Board System DAT Digital Audio Tape BCC Block Check Character dB (DB) deciBels BCD Binary Coded Decimal dBm dB referenced to 1 milliWatt BiCMOS Bipolar Complementary Metal-Oxide Semi- DC Direct Current conductor DCD Data Carrier Detect BIOS Basic Input / Output System DCE Data Circuit (Channel) Equipment BNC Bayonet Nut(?) Connector DD Double Density BPS/bps Bytes/bits
    [Show full text]
  • File Systems
    File Systems Tanenbaum Chapter 4 Silberschatz Chapters 10, 11, 12 1 File Systems Essential requirements for long-term information storage: • It must be possible to store a very large amount of information. • The information must survive the termination of the process using it. • Multiple processes must be able to access the information concurrently. 2 File Structure • None: – File can be a sequence of words or bytes • Simple record structure: – Lines – Fixed Length – Variable Length • Complex Structure: – Formatted documents – Relocatable load files • Who decides? 3 File Systems Think of a disk as a linear sequence of fixed-size blocks and supporting reading and writing of blocks. Questions that quickly arise: • How do you find information? • How do you keep one user from reading another’s data? • How do you know which blocks are free? 4 File Naming Figure 4-1. Some typical file extensions. 5 File Access Methods • Sequential Access – Based on a magnetic tape model – read next, write next – reset • Direct Access – Based on fixed length logical records – read n, write n – position to n – relative or absolute block numbers 6 File Structure Figure 4-2. Three kinds of files. (a) Byte sequence. (b) Record sequence. (c) Tree. 7 File Types • Regular Files: – ASCII files or binary files – ASCII consists of lines of text; can be displayed and printed – Binary, have some internal structure known to programs that use them • Directory – Files to keep track of files • Character special files (a character device file) – Related to I/O and model serial I/O devices • Block special files (a block device file) – Mainly to model disks File Types Figure 4-3.
    [Show full text]
  • File Systems: Semantics & Structure What Is a File
    5/15/2017 File Systems: Semantics & Structure What is a File 11A. File Semantics • a file is a named collection of information 11B. Namespace Semantics • primary roles of file system: 11C. File Representation – to store and retrieve data – to manage the media/space where data is stored 11D. Free Space Representation • typical operations: 11E. Namespace Representation – where is the first block of this file 11L. Disk Partitioning – where is the next block of this file 11F. File System Integration – where is block 35 of this file – allocate a new block to the end of this file – free all blocks associated with this file File Systems Semantics and Structure 1 File Systems Semantics and Structure 2 Data and Metadata Sequential Byte Stream Access • File systems deal with two kinds of information int infd = open(“abc”, O_RDONLY); int outfd = open(“xyz”, O_WRONLY+O_CREATE, 0666); • Data – the contents of the file if (infd >= 0 && outfd >= 0) { – e.g. instructions of the program, words in the letter int count = read(infd, buf, sizeof buf); Metadata – Information about the file • while( count > 0 ) { e.g. how many bytes are there, when was it created – write(outfd, buf, count); sometimes called attributes – count = read(infd, inbuf, BUFSIZE); • both must be persisted and protected } – stored and connected by the file system close(infd); close(outfd); } File Systems Semantics and Structure 3 File Systems Semantics and Structure 4 Random Access Consistency Model void *readSection(int fd, struct hdr *index, int section) { struct hdr *head = &hdr[section];
    [Show full text]
  • List of MS-DOS Commands - Wikipedia, the Free Encyclopedia Page 1 of 25
    List of MS-DOS commands - Wikipedia, the free encyclopedia Page 1 of 25 List of MS-DOS commands From Wikipedia, the free encyclopedia In the personal computer operating systems MS -DOS and PC DOS, a number of standard system commands were provided for common Contents tasks such as listing files on a disk or moving files. Some commands were built-in to the command interpreter, others existed as transient ■ 1 Resident and transient commands commands loaded into memory when required. ■ 2 Command line arguments Over the several generations of MS-DOS, ■ 3 Windows command prompt commands were added for the additional ■ 4 Commands functions of the operating system. In the current ■ 4.1 @ Microsoft Windows operating system a text- ■ 4.2 : mode command prompt window can still be ■ 4.3 ; used. Some DOS commands carry out functions ■ 4.4 /* equivalent to those in a UNIX system but ■ 4.5 ( ) always with differences in details of the ■ 4.6 append function. ■ 4.7 assign ■ 4.8 attrib ■ 4.9 backup and restore Resident and transient ■ 4.10 BASIC and BASICA commands ■ 4.11 call ■ 4.12 cd or chdir ■ 4.13 chcp The command interpreter for MS-DOS runs ■ 4.14 chkdsk when no application programs are running. ■ 4.15 choice When an application exits, if the command ■ 4.16 cls interpreter in memory was overwritten, MS- ■ 4.17 copy DOS will re-load it from disk. The command ■ 4.18 ctty interpreter is usually stored in a file called ■ 4.19 defrag "COMMAND.COM". Some commands are ■ 4.20 del or erase internal and built-into COMMAND.COM, ■ 4.21 deltree others are stored on disk in the same way as ■ 4.22 dir application programs.
    [Show full text]
  • Allegato 2 Formati Di File E Riversamento
    Formati di file e riversamento Allegato 2 al documento “Linee Guida sulla formazione, gestione e conservazione dei documenti informatici”. Sommario 1.1 Definizioni fondamentali 3 1.1.1 File, flussi digitali e buste-contenitori 4 1.1.2 Filesystem e metadati 5 1.1.3 Metadati e identificazione del formato 8 1. 2 Tassonomia 9 1.2.1 Tipologie di formati 9 1.2.2 Classificazione di formati 11 1.2.3 Formati generici e specifici 14 2.1 Documenti impaginati 21 2.1.1 Raccomandazioni per la produzione di documenti 33 2.2 Ipertesti 34 2.2.1 Raccomandazioni per la produzione di documenti 41 2.3 Dati strutturati 42 2.3.1 Raccomandazioni per la produzione di documenti 52 2.4 Posta elettronica 53 2.4.1 Raccomandazioni per la produzione di documenti 55 2.5 Fogli di calcolo e presentazioni multimediali 55 2.5.1 Raccomandazioni per la produzione di documenti 59 2.6 Immagini raster 60 2.6.1 Raccomandazioni per la produzione di documenti 74 2.7 Immagini vettoriali e modellazione digitale 77 2.7.1 Raccomandazioni per la produzione di documenti 84 2.8 Caratteri tipografici 84 2.8.1 Raccomandazioni per la produzione di documenti 86 2.9 Audio e musica 87 2.9.1 Raccomandazioni per la produzione di documenti 92 2.10 Video 93 2.10.1 Raccomandazioni per la produzione di documenti 102 2.11 Sottotitoli, didascalie e dialoghi 103 2.11.1 Raccomandazioni per la produzione di documenti 108 2.12 Contenitori e pacchetti di file multimediali 108 2.12.1 Raccomandazioni per la produzione di documenti 131 2.13 Archivi compressi 132 2.13.1 Raccomandazioni per la produzione di documenti 138 2.14 Documenti amministrativi 138 2.15 Applicazioni e codice sorgente 142 2.16 Applicazioni crittografiche 142 3.1 Valutazione di interoperabilità 147 3.2 Indice di interoperabilità 149 3.3 Riversamento 150 1 Introduzione 1.
    [Show full text]
  • Microsoft Windows for MS
    Month Year Version Major Changes or Remarks Microsoft buys non-exclusive rights to market Pattersons Quick & Dirty Operating System from December 1980 QDOS Seattle Computer Products (Developed as 86-DOS) (Which is a clone of Digital Researches C P/M in virtually every respect) Microsoft buys all rights to 86-DOS from Seattle Computer Products, and the name MS-DOS is July 1981 86-DOS adopted for Microsoft's purposes and IBM PC- DOS for shipment with IBM PCs (For Computers with the Intel 8086 Processor) Digital Research release CP/M 86 for the Intel Q3 1981 CP/M 86 8086 Processer Pre-Release PC-DOS produced for IBM Personal Mid 1981 PC-DOS 1.0 Computers (IBM PC) Supported 16K of RAM, ~ Single-sided 5.25" 160Kb Floppy Disk OEM PC-DOS for IBM Corporation. (First August 1982 PC-DOS 1.1 Release Version) OEM Version for Zenith Computer Corporation.. (Also known as Z-DOS) This added support for September 1982 MS-DOS 1.25 Double-Sided 5.25" 320Kb Floppy Disks. Previously the disk had to be turned over to use the other side Digital Research release CP/M Plus for the Q4 1982 CP/M Plus Intel 8086 Processer OEM Version For Zenith - This added support for IBM's 10 MB Hard Disk, Directories and Double- March 1983 MS-DOS 2.0 Density 5.25" Floppy Disks with capacities of 360 Kb OEM PC-DOS for IBM Corporation. - Released March 1983 PC-DOS 2.0 to support the IBM XT Microsoft first announces it intention to create a GUI (Graphical User Interface) for its existing MS-DOS Operating System.
    [Show full text]