The Resolution Phase of NK Cell Proliferation and IFN Production Following Viral Infection Are Highly Regulated Processes

Total Page:16

File Type:pdf, Size:1020Kb

The Resolution Phase of NK Cell Proliferation and IFN Production Following Viral Infection Are Highly Regulated Processes Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2016 The Resolution Phase of NK Cell Proliferation and IFN Production Following Viral Infection Are Highly Regulated Processes. Leslie Abigail Fogel Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons, and the Medical Immunology Commons Recommended Citation Fogel, Leslie Abigail, "The Resolution Phase of NK Cell Proliferation and IFN Production Following Viral Infection Are Highly Regulated Processes." (2016). Arts & Sciences Electronic Theses and Dissertations. 760. https://openscholarship.wustl.edu/art_sci_etds/760 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology & Biomedical Sciences Immunology Dissertation Examination Committee: Anthony French, Chair Paul Allen Marco Colonna Todd Fehniger John Russell Wayne Yokoyama The Resolution Phase of NK Cell Proliferation and IFNγ Production Following Viral Infection Are Highly Regulated Processes. by Leslie Abigail Fogel A dissertation presented to the Graduate School of Arts & Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2016 St. Louis, Missouri © 2016, Leslie Abigail Fogel Table of Contents List of Figures...............................................................................................................................iii List of Tables ................................................................................................................................ iv List of Abbreviations .................................................................................................................... v Acknowledgments ........................................................................................................................ ix Abstract......................................................................................................................................... xi Chapter 1: Introduction ............................................................................................................... 1 Figures....................................................................................................................................................... 9 References............................................................................................................................................... 11 Chapter 2: Markers of Nonselective and Specific NK Cell Activation.................................. 19 Abstract................................................................................................................................................... 19 Introduction............................................................................................................................................. 20 Materials and Methods............................................................................................................................ 23 Results..................................................................................................................................................... 26 Discussion............................................................................................................................................... 33 Figures..................................................................................................................................................... 37 References............................................................................................................................................... 50 Chapter 3: The resolution of NK cell proliferation depends on αβ and γδ T cells ............... 57 Abstract................................................................................................................................................... 57 Introduction............................................................................................................................................. 58 Materials and Methods............................................................................................................................ 59 Results..................................................................................................................................................... 66 Discussion............................................................................................................................................... 72 Figures..................................................................................................................................................... 76 Acknowledgments................................................................................................................................... 87 Supplemental Tables............................................................................................................................... 88 References............................................................................................................................................. 108 Chapter 4: Apoptosis mediates the resolution of NK cell production of IFNγ following infection...................................................................................................................................... 115 Abstract................................................................................................................................................. 115 Introduction........................................................................................................................................... 116 Materials and Methods.......................................................................................................................... 118 Results................................................................................................................................................... 121 Discussion............................................................................................................................................. 122 Figures................................................................................................................................................... 125 References............................................................................................................................................. 130 Chapter 5: Future Experiments .............................................................................................. 133 Curriculum vitae....................................................................................................................... 136 ii List of Figures Figure 1.1: The extrinsic and intrinsic pathways of apoptosis. 9 Figure 2.1: Sca-l is upregulated on NK cells 2 days p.i. MCMV to a greater extent than 37 other identified activation markers. Figure 2.2: Sca-1 and CD69 expression correlate with IFN-γ production. 39 Figure 2.3: Expression of KLRG1, CD27, and Sca-1 is differentially regulated on 40 Ly49H+ and Ly49H- NK cells during MCMV infection. Figure 2.4: Differential expression of KLRG1, CD27, and Sca-1 on Ly49H+ and Ly49H- 42 NK cells during MCMV infection depends on Ly49H recognition of m157 protein. Figure 2.5: Proliferation alone does not result in the differential expression of KLRG1, 44 CD27, or Sca-1. Supplemental Figure 2.1: Marker expression on and IFN-γ production by hepatic NK 45 cells following MCMV infection. Supplemental Figure 2.2: Viral load does not affect the differential expression of 47 KLRG1, CD27, and Sca-1 on Ly49H+ and Ly49H- NK cells during MCMV-Δm157 infection. Figure 3.1: There is prolonged proliferation of NK cells in RAG-/- mice. 76 Figure 3.2: Bim regulates contraction of NK cells but not the resolution of NK cell 78 proliferation. Figure 3.3: Both αβ and γδ T cells have a redundant ability to resolve NK cell 79 proliferation. Figure 3.4: NK/T cell co-culture confirms that activated T cells inhibit NK cell 81 proliferation. Figure 3.5: Adoptive transfer of T cells into TCRβ/δ-/- mice to determine the 82 requirements for the resolution of NK cell proliferation. Figure 3.6: Analysis of gene expression in naïve CD8+ T cells compared to CD8+ and γδ 84 T cells from mice 5 days p.i. with MCMV. Figure 3.7: Adoptive transfer of T cells into TCRβ/δ-/- mice to test the requirement of 86 genes identified in the microarray. Figure 4.1: Time course of NK cell responses to MCMV. 125 Figure 4.2: IFNγ production by NK cells is associated with apoptosis. 126 Figure 4.3: TRAIL-R, but not Fas, is required for the resolution of IFNγ production by 128 NK cells. iii List of Tables Table 2.1: Marker expression on NK cells from naïve mice or from mice 1.5 or 2 days 49 p.i. MCMV Supplemental Table 3.I: List of genes upregulated at least 3 fold in only MCMV- 88 specific CD8+ T cells and γδ T cells compared to naïve CD8+ T cells Supplemental Table 3.II: List of genes upregulated at least 3 fold in only MCMV- 92 specific
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Cytokine Nomenclature
    RayBiotech, Inc. The protein array pioneer company Cytokine Nomenclature Cytokine Name Official Full Name Genbank Related Names Symbol 4-1BB TNFRSF Tumor necrosis factor NP_001552 CD137, ILA, 4-1BB ligand receptor 9 receptor superfamily .2. member 9 6Ckine CCL21 6-Cysteine Chemokine NM_002989 Small-inducible cytokine A21, Beta chemokine exodus-2, Secondary lymphoid-tissue chemokine, SLC, SCYA21 ACE ACE Angiotensin-converting NP_000780 CD143, DCP, DCP1 enzyme .1. NP_690043 .1. ACE-2 ACE2 Angiotensin-converting NP_068576 ACE-related carboxypeptidase, enzyme 2 .1 Angiotensin-converting enzyme homolog ACTH ACTH Adrenocorticotropic NP_000930 POMC, Pro-opiomelanocortin, hormone .1. Corticotropin-lipotropin, NPP, NP_001030 Melanotropin gamma, Gamma- 333.1 MSH, Potential peptide, Corticotropin, Melanotropin alpha, Alpha-MSH, Corticotropin-like intermediary peptide, CLIP, Lipotropin beta, Beta-LPH, Lipotropin gamma, Gamma-LPH, Melanotropin beta, Beta-MSH, Beta-endorphin, Met-enkephalin ACTHR ACTHR Adrenocorticotropic NP_000520 Melanocortin receptor 2, MC2-R hormone receptor .1 Activin A INHBA Activin A NM_002192 Activin beta-A chain, Erythroid differentiation protein, EDF, INHBA Activin B INHBB Activin B NM_002193 Inhibin beta B chain, Activin beta-B chain Activin C INHBC Activin C NM005538 Inhibin, beta C Activin RIA ACVR1 Activin receptor type-1 NM_001105 Activin receptor type I, ACTR-I, Serine/threonine-protein kinase receptor R1, SKR1, Activin receptor-like kinase 2, ALK-2, TGF-B superfamily receptor type I, TSR-I, ACVRLK2 Activin RIB ACVR1B
    [Show full text]
  • Datasheet A02938-1 Anti-LGALS3BP Antibody
    Product datasheet Anti-LGALS3BP Antibody Catalog Number: A02938-1 BOSTER BIOLOGICAL TECHNOLOGY Special NO.1, International Enterprise Center, 2nd Guanshan Road, Wuhan, China Web: www.boster.com.cn Phone: +86 27 67845390 Fax: +86 27 67845390 Email: [email protected] Basic Information Product Name Anti-LGALS3BP Antibody Gene Name LGALS3BP Source Rabbit IgG Species Reactivity human,mouse Tested Application WB,IHC-P Contents 500ug/ml antibody with PBS ,0.02% NaN3 , 1mg BSA and 50% glycerol. Immunogen A synthetic peptide corresponding to a sequence of human LGALS3BP (HEALFQKKTLQALEFHTVPFQLLARYKGLNLTEDTYKPR). Purification Immunogen affinity purified. Observed MW 65KD Dilution Ratios Western blot: 1:500-2000 Immunohistochemistry in paraffin section: 1:50-400 (Boiling the paraffin sections in 10mM citrate buffer,pH6.0,or PH8.0 EDTA repair liquid for 20 mins is required for the staining of formalin/paraffin sections.) Optimal working dilutions must be determined by end user. Storage 12 months from date of receipt,-20℃ as supplied.6 months 2 to 8℃ after reconstitution. Avoid repeated freezing and thawing Background Information Galectin-3-binding protein is a protein that in humans is encoded by the LGALS3BP gene. The galectins are a family of beta-galactoside-binding proteins implicated in modulating cell-cell and cell-matrix interactions. LGALS3BP has been found elevated in the serum of patients with cancer and in those infected by the human immunodeficiency virus (HIV). It appears to be implicated in immune response associated with natural killer (NK) and lymphokine-activated killer (LAK) cell cytotoxicity. Using fluorescence in situ hybridization the full length 90K cDNA has been localized to chromosome 17q25.
    [Show full text]
  • Pancreatic Cancer Invasion of the Lymphatic Vasculature and Contributions of the Tumor Microenvironment: Roles for E- Selectin and CXCR4
    University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Fall 12-16-2016 Pancreatic Cancer Invasion of the Lymphatic Vasculature and Contributions of the Tumor Microenvironment: Roles for E- selectin and CXCR4 Maria M. Steele University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Recommended Citation Steele, Maria M., "Pancreatic Cancer Invasion of the Lymphatic Vasculature and Contributions of the Tumor Microenvironment: Roles for E-selectin and CXCR4" (2016). Theses & Dissertations. 166. https://digitalcommons.unmc.edu/etd/166 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. i PANCREATIC CANCER INVASION OF THE LYMPHATIC VASCULATURE AND CONTRIBUTIONS OF THE TUMOR MICROENVIRONMENT: ROLES FOR E-SELECTIN AND CXCR4 By Maria M. Steele A DISSERTATION Presented to the Faculty of the University of Nebraska Graduate College in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Cancer Research Graduate Program Under the Supervision of Professor Michael A. Hollingsworth University of Nebraska Medical Center Omaha, NE November, 2016 Supervisory Committee Michael A. Hollingsworth, Ph.D. Kaustubh Datta, Ph.D. Angie Rizzino, Ph.D. Joyce C. Solheim, Ph.D. ii PANCREATIC CANCER INVASION OF THE LYMPHATIC VASCULATURE AND CONTRIBUTIONS OF THE TUMOR MICROENVIRONMENT: ROLES FOR E-SELECTIN AND CXCR4 Maria M. Steele University of Nebraska, 2016 Advisor: Michael A. Hollingsworth ABSTRACT As the fourth leading cause of cancer-related deaths, pancreatic cancer is one of the most lethal forms of cancers in the United States.
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • King's Research Portal
    King’s Research Portal DOI: 10.3892/ijo.2016.3521 Document Version Peer reviewed version Link to publication record in King's Research Portal Citation for published version (APA): Woodman, N., Pinder, S. E., Tajadura, V., Le Bourhis, X., Gillett, C., Delannoy, P., Burchell, J. M., & Julien, S. (2016). Two E-selectin ligands, BST-2 and LGALS3BP, predict metastasis and poor survival of ER-negative breast cancer. International Journal of Oncology, 49(1), 265-275. https://doi.org/10.3892/ijo.2016.3521 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • LGALS3BP Rabbit Pab
    Leader in Biomolecular Solutions for Life Science LGALS3BP Rabbit pAb Catalog No.: A12005 Basic Information Background Catalog No. The galectins are a family of beta-galactoside-binding proteins implicated in A12005 modulating cell-cell and cell-matrix interactions. LGALS3BP has been found elevated in the serum of patients with cancer and in those infected by the human immunodeficiency Observed MW virus (HIV). It appears to be implicated in immune response associated with natural killer 70kDa (NK) and lymphokine-activated killer (LAK) cell cytotoxicity. Using fluorescence in situ hybridization the full length 90K cDNA has been localized to chromosome 17q25. The Calculated MW native protein binds specifically to a human macrophage-associated lectin known as 65kDa Mac-2 and also binds galectin 1. Category Primary antibody Applications WB Cross-Reactivity Human, Mouse Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 3959 Q08380 Immunogen Recombinant fusion protein containing a sequence corresponding to amino acids 6-221 of human LGALS3BP (NP_005558.1). Synonyms LGALS3BP;90K;BTBD17B;CyCAP;M2BP;MAC-2-BP;TANGO10B;gp90 Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using LGALS3BP antibody (A12005) at 1:3000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% nonfat dry milk in TBST. Detection: ECL Basic Kit (RM00020). Exposure time: 90s.
    [Show full text]
  • Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
    Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck.
    [Show full text]
  • Human Lectins, Their Carbohydrate Affinities and Where to Find Them
    biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body.
    [Show full text]
  • Down Syndrome Acute Lymphoblastic Leukemia, a Highly Heterogeneous
    Hertzberg, L; Vendramini, E; Ganmore, I; Cazzaniga, G; Schmitz, M; Chalker, J; Shiloh, R; Iacobucci, I; Shochat, C; Zeligson, S; Cario, G; Stanulla, M; Strehl, S; Russell, L J; Harrison, C J; Bornhauser, B; Yoda, A; Rechavi, G; Bercovich, D; Borkhardt, A; Kempski, H; te Kronnie, G; Bourquin, J P; Domany, E; Izraeli, S (2010). Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group. Blood, 115(5):1006-1017. University of Zurich Postprint available at: Zurich Open Repository and Archive http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Winterthurerstr. 190 Originally published at: CH-8057 Zurich Blood 2010, 115(5):1006-1017. http://www.zora.uzh.ch Year: 2010 Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group Hertzberg, L; Vendramini, E; Ganmore, I; Cazzaniga, G; Schmitz, M; Chalker, J; Shiloh, R; Iacobucci, I; Shochat, C; Zeligson, S; Cario, G; Stanulla, M; Strehl, S; Russell, L J; Harrison, C J; Bornhauser, B; Yoda, A; Rechavi, G; Bercovich, D; Borkhardt, A; Kempski, H; te Kronnie, G; Bourquin, J P; Domany, E; Izraeli, S Hertzberg, L; Vendramini, E; Ganmore, I; Cazzaniga, G; Schmitz, M; Chalker, J; Shiloh, R; Iacobucci, I; Shochat, C; Zeligson, S; Cario, G; Stanulla, M; Strehl, S; Russell, L J; Harrison, C J; Bornhauser, B; Yoda, A; Rechavi, G; Bercovich, D; Borkhardt, A; Kempski, H; te Kronnie, G; Bourquin, J P; Domany, E; Izraeli, S (2010).
    [Show full text]
  • Innate Lymphoid Cells: Transcriptional Profiles and Cytokine Developmental Requirements Michelle Lauren Robinette Washington University in St
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2018 Innate Lymphoid Cells: Transcriptional Profiles and Cytokine Developmental Requirements Michelle Lauren Robinette Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons, and the Medical Immunology Commons Recommended Citation Robinette, Michelle Lauren, "Innate Lymphoid Cells: Transcriptional Profiles and Cytokine Developmental Requirements" (2018). Arts & Sciences Electronic Theses and Dissertations. 1571. https://openscholarship.wustl.edu/art_sci_etds/1571 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Immunology Dissertation Examination Committee: Marco Colonna, Chair Maxim Artyomov Takeshi Egawa Gwen Randolph Wayne Yokoyama Innate Lymphoid Cells: Transcriptional Profiles and Cytokine Developmental Requirements by Michelle Lauren Robinette A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements
    [Show full text]
  • Supplementary Material Contents
    Supplementary Material Contents Immune modulating proteins identified from exosomal samples.....................................................................2 Figure S1: Overlap between exosomal and soluble proteomes.................................................................................... 4 Bacterial strains:..............................................................................................................................................4 Figure S2: Variability between subjects of effects of exosomes on BL21-lux growth.................................................... 5 Figure S3: Early effects of exosomes on growth of BL21 E. coli .................................................................................... 5 Figure S4: Exosomal Lysis............................................................................................................................................ 6 Figure S5: Effect of pH on exosomal action.................................................................................................................. 7 Figure S6: Effect of exosomes on growth of UPEC (pH = 6.5) suspended in exosome-depleted urine supernatant ....... 8 Effective exosomal concentration....................................................................................................................8 Figure S7: Sample constitution for luminometry experiments..................................................................................... 8 Figure S8: Determining effective concentration .........................................................................................................
    [Show full text]