Innate Lymphoid Cells: Transcriptional Profiles and Cytokine Developmental Requirements Michelle Lauren Robinette Washington University in St

Total Page:16

File Type:pdf, Size:1020Kb

Innate Lymphoid Cells: Transcriptional Profiles and Cytokine Developmental Requirements Michelle Lauren Robinette Washington University in St Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2018 Innate Lymphoid Cells: Transcriptional Profiles and Cytokine Developmental Requirements Michelle Lauren Robinette Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons, and the Medical Immunology Commons Recommended Citation Robinette, Michelle Lauren, "Innate Lymphoid Cells: Transcriptional Profiles and Cytokine Developmental Requirements" (2018). Arts & Sciences Electronic Theses and Dissertations. 1571. https://openscholarship.wustl.edu/art_sci_etds/1571 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Immunology Dissertation Examination Committee: Marco Colonna, Chair Maxim Artyomov Takeshi Egawa Gwen Randolph Wayne Yokoyama Innate Lymphoid Cells: Transcriptional Profiles and Cytokine Developmental Requirements by Michelle Lauren Robinette A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2018 St. Louis, Missouri © 2018, Michelle L. Robinette ii Table of Contents List of Figures………………….………………….………………….……………………...iv List of Abbreviations………………….………………….………………….……………….v Acknowledgments………………….………………….………………….………………...vii Abstract………………….………………….………………….……………………………xi CHAPTER 1: Introduction………………….………………….………………….………1 1.1 Innate and Adaptive Immunity in Lymphocytes…………….………………….……..2 1.2 ILCs: The New Kids on the Block…………….………………….…………………...6 1.3 Cytotoxicity…………….………………….………………….……………………...10 1.4 Module 1: Intracellular Pathogens and Viruses…………….………………….…….13 1.5 Module 2: Barrier Maintenance and Helminths…………….………………….…….15 1.6 Module 3: Extracellular Bacteria and Fungi….…………….………………….…….16 1.7 γc Cytokines and Lymphoid Development…………….………………….………….19 1.8 Perspectives…………….………………….……………….……………….………..21 CHAPTER 2: Transcriptional Programs Define Molecular Characteristics of ILC Subsets and Classes………………….………………….………………….…….………………...22 2.1 Abstract…………….………………….………………….……………….…………..23 2.2 PART 1: Mouse ILC Transcriptional Profiles …………….………………………...24 2.2.1 Introduction …………….…………..….………………………………………..24 2.2.2 Materials and Methods …………….…………..….…………………………… 26 2.2.3 Results …………….…………..….……………………………………………..31 2.2.4 Discussion …………….…………..….…………………………………………43 2.2.5 Figures …………….…………..….……………………………………………..46 2.3 PART 2: Human ILC Transcriptional Profiles …………….………………………..64 2.3.1 Introduction …………….…………..….………………………………………..64 2.3.2 Materials and Methods …………….…………..….…………………………… 66 2.3.3 Results …………….…………..….……………………………………………..68 2.3.4 Discussion.…………….…………..….…………………………………………73 2.3.5 Figures …………….…………..….……………………………………………..76 CHAPTER 3: Jak3 Deficiency Blocks ILC Development While Pharmacologic Inhibition Impairs Function ………………….………………….………………….…….………….84 3.1 Abstract…………….………………….………………….……………….…………85 3.2 Introduction…………….………………….………………….……………….……..86 ii 3.3 Materials and Methods…..…………….………………….……………….…………88 3.4 Results…..…………….………………….……………….………………………….91 3.5 Discussion………….………………….……………….…………………………….99 3.6 Figures…..…………….………………….……………….………………………...102 CHAPTER 4: IL-15 Sustains IL-7R-Independent ILC2 and ILC3 Development …..113 4.1 Abstract…………….………………….………………….……………….………..114 4.2 Introduction…………….………………….………………….……………….……115 4.3 Materials and Methods…..…………….………………….……………….………..117 4.4 Results…..…………….………………….……………….………………………...119 4.5 Discussion………….………………….……………….…………………………...126 4.6 Figures…..…………….………………….……………….………………………...131 CHAPTER 5: Concluding Remarks ………………….………………….……………..141 5.1 Brief Summary of Findings…………….………………….………………………..142 5.2 Modular Immunity Revisited…………….………………….………………………144 5.3 ILCs and Gamma Chain Cytokines …………….………………….……………….146 5.4 Innate and Adaptive Immunity in Lymphocytes Revisited …………….…………..148 5.5 Future Directions …………….……………………………………………………..149 References ………………….………………….………………….………………………151 APPENDIX 1: Transcriptional Analysis Extended Data ………………….………….164 1A Unique Transcripts of ILC Subsets…………….………………….………………..165 1B Spectrum of Shared Transcriptional Profiles Between siLP ILCs…………….……168 1C ILC3-Specific Transcriptional Programs…………….……………………………..174 1D ILC1 and NK cell Transcriptional Programs in Tissues…………….………………182 1E Transcripts Differentially Expressed Between NK cells and ILC1 …………….…...187 1F Generation of a Core ILC Signature …………….…………………………………..192 1G ILC3 Subset-Specific Transcriptional Signatures …………….…………………….195 APPENDIX 2: Wolverine Whole Exome Sequencing Results………………….……...198 CV………………….………………….………………….………………………………..205 iii List of Figures Figure 1: Sorting Strategy for Mouse ILC……………….………………………………….46 Figure 2: Mouse ILC Frequency Among Lymphocytes………………….…………………48 Figure 3: Mouse ILC Diversity.………………….………………….……………………....49 Figure 4: Unique Transcripts of Individual ILC Subsets..…………….………………….…50 Figure 5: Small Intestine Lamina Propria Gene Signature..…………….…………………..52 Figure 6: TFs, Cytokines, and Chemokines Expressed by ILCs..……….………………….53 Figure 7: Spectrum of Shared Transcriptional Profiles Between siLP ILCs………………..54 Figure 8: ILC3-Specific Transcriptional Programs and Cell Surface Markers ………….....55 Figure 9: Transcripts Differentially Expressed Between NK cells and ILC1………………57 Figure 10: Generation of a Core ILC Signature Distinct from NK Cells..…………….……59 Figure 11: ILCs lack TCRδ protein but express TCR-γ transcripts...……………………….60 Figure 12: ILCs Express CXCR6 at Higher Levels Than NK cells ………………………..62 Figure 13: IEL ILC1 Have Intermediate Characteristics Between ILC1 and NK cells ……63 Figure 14: Human ILCs Cluster Separately from Adaptive T cell Counterparts…..……….76 Figure 15: Tonsillar Subsets Cluster Separately from Circulating Blood NK cells ………..77 Figure 16: ILCs are Transcriptional Distinct from T helper cells…………………………..79 Figure 17: Unique and Overlapping Transcriptional Profiles Between ILCs and T helper Cells.…………….………………….………………….…………………………………...80 Figure 18: Pathway Analysis of Differentially Expressed ILC Transcripts…………………82 Figure 19: Identification of the Wolverine Phenotype ….………………………………….102 Figure 20: ILCs Fail to Develop in the Wolverine Mice.…………….…………………….103 Figure 21: Wolverine Mice Have Impaired Lymphocyte Generation……………………...104 Figure 22: Wolverine Mice Have Increased Myeloid Generation….……………………....105 Figure 23: Wolverine Lymphocyte Deficiency is Cell-Intrinsic …………….…………….106 Figure 24: Identification of Frameshift Mutations in the Nr1d1tm1Ven/LacZ Mouse Line.…107 Figure 25: Jak32067insC Causes the Wolverine Phenotype……………………….……….….108 Figure 26: Jak3 Deficiency Progressively Reduces Restricted Lymphoid Progenitors……110 Figure 27: JAK3 Inhibition Impairs Human ILC Cytokine Production…………….……...111 Figure 28: JAK3 Inhibition Impairs Human ILC Cytokine Production…………….……...112 –/– + Figure 29: Il7ra Mice Have Residual ILCs in siLP, Skewed to CCR6 ILC3…………...131 Figure 30: ILC2s are Not Substantially Preserved in Colon or Lung…………….………..132 –/– – Figure 31: Residual Il7ra ILC2 are Predominantly ST2 …………….…………………..133 + Figure 32: ST2 ILC2 Produce More Cytokines After Stimulation…………….………….134 –/– Figure 33: Il7ra ILC3s Produce IL-22 Normally…………….………………….……….136 –/– Figure 34: Il7ra ILC3s Partially Protect Mice from C. rodentium Infection…………….137 + Figure 35: CCR6 ILC3 are Transcriptionally Distinct…………….………………….…...138 + Figure 36: CCR6 ILC3 Highly Express Bcl-2, Enhanced by Lack of IL-7R……………...139 –/– –/– –/– Figure 37: Il7ra Il15 Mice Generate Significantly Fewer ILCs than Il7ra Mice……..140 iv List of Abbreviations AHR Aryl hydrocarbon receptor αLP Alpha-lymphoid progenitor AR Autosomal recessive BCR B cell receptor BMDM Bone marrow derived macrophages CHILP Common helper ILC precursor CLP Common lymphoid progenitor cNK (cell) Conventional natural killer cell DD Death domain DN Double Negative DTT Dithiothreitol EAE Experimental Autoimmune Encephalomyelitis EDTA Ethylenediaminetetraacetic acid EILP Early innate lymphoid progenitor Eomes Eomesodermin FasL Fas ligand γc IL-2rg common gamma chain HCT Hematopoeitic cell transplant IEL Intraepithelial lymphocyte IFN-γ Interferon gamma iILC1 Intraepithelial ILC1 ILC Innate lymphoid cell ILC1 Innate lymphoid cell group 1 ILC2 Innate lymphoid cell group 2 ILC2P Innate lymphoid cell group 2 precursor ILC3 Innate lymphoid cell group 3 ILCP Innate lymphoid cell precursor ILL Innate-like lymphocyte ImmGen Immunological Genome Consortium Indel Insertion/Deletion iNK immature NK IL- Interleukin- LP Lamina propria LTi (cell) Lymphoid tissue inducer cell LTin (cell) Lymphoid tissue initiator cell LTα1β2 Lymphotoxin α1β2 MAC Membrane attack complex MAIT (cell) Mucosal-associated invariant T cell MHC Major Histocompatiblitiy Complex MHC I Major Histocompatiblitiy Complex Class I MHC II Major Histocompatiblitiy Complex Class II v MZ Marginal zone NK (cell) Natural Killer cell NKT (cell) Natural Killer T cell PID Primary Immuodeficiency pre-NKP pre-NK precursor RA Rheumatoid
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Cytokine Nomenclature
    RayBiotech, Inc. The protein array pioneer company Cytokine Nomenclature Cytokine Name Official Full Name Genbank Related Names Symbol 4-1BB TNFRSF Tumor necrosis factor NP_001552 CD137, ILA, 4-1BB ligand receptor 9 receptor superfamily .2. member 9 6Ckine CCL21 6-Cysteine Chemokine NM_002989 Small-inducible cytokine A21, Beta chemokine exodus-2, Secondary lymphoid-tissue chemokine, SLC, SCYA21 ACE ACE Angiotensin-converting NP_000780 CD143, DCP, DCP1 enzyme .1. NP_690043 .1. ACE-2 ACE2 Angiotensin-converting NP_068576 ACE-related carboxypeptidase, enzyme 2 .1 Angiotensin-converting enzyme homolog ACTH ACTH Adrenocorticotropic NP_000930 POMC, Pro-opiomelanocortin, hormone .1. Corticotropin-lipotropin, NPP, NP_001030 Melanotropin gamma, Gamma- 333.1 MSH, Potential peptide, Corticotropin, Melanotropin alpha, Alpha-MSH, Corticotropin-like intermediary peptide, CLIP, Lipotropin beta, Beta-LPH, Lipotropin gamma, Gamma-LPH, Melanotropin beta, Beta-MSH, Beta-endorphin, Met-enkephalin ACTHR ACTHR Adrenocorticotropic NP_000520 Melanocortin receptor 2, MC2-R hormone receptor .1 Activin A INHBA Activin A NM_002192 Activin beta-A chain, Erythroid differentiation protein, EDF, INHBA Activin B INHBB Activin B NM_002193 Inhibin beta B chain, Activin beta-B chain Activin C INHBC Activin C NM005538 Inhibin, beta C Activin RIA ACVR1 Activin receptor type-1 NM_001105 Activin receptor type I, ACTR-I, Serine/threonine-protein kinase receptor R1, SKR1, Activin receptor-like kinase 2, ALK-2, TGF-B superfamily receptor type I, TSR-I, ACVRLK2 Activin RIB ACVR1B
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
    Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck.
    [Show full text]
  • Down Syndrome Acute Lymphoblastic Leukemia, a Highly Heterogeneous
    Hertzberg, L; Vendramini, E; Ganmore, I; Cazzaniga, G; Schmitz, M; Chalker, J; Shiloh, R; Iacobucci, I; Shochat, C; Zeligson, S; Cario, G; Stanulla, M; Strehl, S; Russell, L J; Harrison, C J; Bornhauser, B; Yoda, A; Rechavi, G; Bercovich, D; Borkhardt, A; Kempski, H; te Kronnie, G; Bourquin, J P; Domany, E; Izraeli, S (2010). Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group. Blood, 115(5):1006-1017. University of Zurich Postprint available at: Zurich Open Repository and Archive http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Winterthurerstr. 190 Originally published at: CH-8057 Zurich Blood 2010, 115(5):1006-1017. http://www.zora.uzh.ch Year: 2010 Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group Hertzberg, L; Vendramini, E; Ganmore, I; Cazzaniga, G; Schmitz, M; Chalker, J; Shiloh, R; Iacobucci, I; Shochat, C; Zeligson, S; Cario, G; Stanulla, M; Strehl, S; Russell, L J; Harrison, C J; Bornhauser, B; Yoda, A; Rechavi, G; Bercovich, D; Borkhardt, A; Kempski, H; te Kronnie, G; Bourquin, J P; Domany, E; Izraeli, S Hertzberg, L; Vendramini, E; Ganmore, I; Cazzaniga, G; Schmitz, M; Chalker, J; Shiloh, R; Iacobucci, I; Shochat, C; Zeligson, S; Cario, G; Stanulla, M; Strehl, S; Russell, L J; Harrison, C J; Bornhauser, B; Yoda, A; Rechavi, G; Bercovich, D; Borkhardt, A; Kempski, H; te Kronnie, G; Bourquin, J P; Domany, E; Izraeli, S (2010).
    [Show full text]
  • IL2RG Hypomorphic Mutation: Identifcation of a Novel Pathogenic Mutation in Exon 8 and a Review of the Literature Che Kang Lim1,2†, Hassan Abolhassani1,3†, Sofa K
    Lim et al. Allergy Asthma Clin Immunol (2019) 15:2 Allergy, Asthma & Clinical Immunology https://doi.org/10.1186/s13223-018-0317-y CASE REPORT Open Access IL2RG hypomorphic mutation: identifcation of a novel pathogenic mutation in exon 8 and a review of the literature Che Kang Lim1,2†, Hassan Abolhassani1,3†, Sofa K. Appelberg1, Mikael Sundin4,5 and Lennart Hammarström1,6* Abstract Background: Atypical X-linked severe combined immunodefciency (X-SCID) is a variant of cellular immunodefciency due to hypomorphic mutations in the interleukin 2 receptor gamma (IL2RG) gene. Due to a leaky clinical phenotype, diagnosis and appropriate treatment are challenging in these patients. low Case presentation: We report a 16-year-old patient with a ­T ­B+ ­NK+ cellular immunodefciency due to a novel nonsense mutation in exon 8 (p.R328X) of the IL2RG gene. Functional impairment of the IL2RG was confrmed by IL2-Janus kinase 3-signal transducer and activator of transcription signaling pathway investigation. In addition, the characteristics of the mutations previously described in 39 patients with an atypical phenotype were reviewed and analyzed from the literature. Conclusion: This is the frst report of an atypical X-SCID phenotype due to an exon 8 mutation in the IL2RG gene. The variability in the phenotypic spectrum of classic X-SCID associated gene highlights the necessity of multi-disciplinary cooperation vigilance for a more accurate diagnostic workup. Keywords: Interleukin 2 receptor gamma, Atypical severe combined immunodefciency, Hypomorphic mutations Background mutations lead to the production of a nonfunctional γC Interleukin 2 receptor gamma (IL2RG) is an important or prevent the protein from being produced, resulting in signaling component for IL2, IL4, IL7, IL9, IL15, and an arrest in lymphocyte development.
    [Show full text]
  • Immunity in the Developing Lung Foxa2 Programs Th2 Cell-Mediated
    Foxa2 Programs Th2 Cell-Mediated Innate Immunity in the Developing Lung Gang Chen, Huajing Wan, Fengming Luo, Liqian Zhang, Yan Xu, Ian Lewkowich, Marsha Wills-Karp and Jeffrey A. This information is current as Whitsett of September 27, 2021. J Immunol 2010; 184:6133-6141; Prepublished online 5 May 2010; doi: 10.4049/jimmunol.1000223 http://www.jimmunol.org/content/184/11/6133 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2010/05/05/jimmunol.100022 Material 3.DC1 http://www.jimmunol.org/ References This article cites 59 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/184/11/6133.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Foxa2 Programs Th2 Cell-Mediated Innate Immunity in the Developing Lung Gang Chen,* Huajing Wan,† Fengming Luo,‡ Liqian Zhang,* Yan Xu,* Ian Lewkowich,x Marsha Wills-Karp,x and Jeffrey A.
    [Show full text]
  • Recombinant Human CD132 Protein
    Leader in Biomolecular Solutions for Life Science Recombinant Human CD132 Protein Catalog No.: RP01031 Recombinant Sequence Information Background Species Gene ID Swiss Prot The gamma chain of the high affinity functional human IL-2 receptor complex Human 3561 P31785 belongs to the hematopoietin receptor family. The common gamma chain (γc) (or CD132), also known as interleukin-2 receptor subunit gamma or IL2RG, is a Tags member of the type I cytokine receptor family expressed on most lymphocyte C-Fc & 6×His (white blood cell) populations, and its gene is found on the X-chromosome of mammals. IL2RG is a 369 amino acid residue protein consisting of a 22 residue Synonyms signal sequence, a 232 residue extracellular domain, a 29 residue transmembrane CD132;CIDX;IL-2RG;IMD4;P64;SCIDX;SC domain and an 86 residue cytoplasmic domain. IL2RG is a cytokine receptor sub- IDX1 unit that is common to the receptor complexes for at least six different interleukin receptors: IL-2, IL-4, IL-7, IL-9, IL-15 and interleukin-21 receptor. It has been proposed that IL2RG be designated the common gamma chain ( gamma c). The site of molecular defects in X-linked SCID (severe combined immunodeficiency) Product Information has now been mapped to the IL-2 R gamma gene. Source Purification HEK293 cells > 95% by SDS- Basic Information PAGE. Description Endotoxin Recombinant Human CD132 Protein is produced by HEK293 cells expression < 0.1 EU/μg of the protein by LAL system. The target protein is expressed with sequence (Leu23-Asn254) of human method. CD132 (Accession #NP_000197.1) fused with an Fc, 6×His tag at the C-terminus.
    [Show full text]
  • Flip the Coin: IL-7 and IL-7R in Health and Disease
    Barata et al 2019 Flip the coin: IL-7 and IL-7R in health and disease João T. Barata1*, Scott K. Durum2, Benedict Seddon3 1Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; 2 Cancer and Inflammation Program, National Cancer Institute, Frederick MD USA; 3Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, UK. * Correspondence to: João T. Barata, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; Tel: +351217999524; e-mail: [email protected] 1 Barata et al 2019 Abstract Interleukin (IL)-7 and its receptor (IL-7R) are critical for T- and, in the mouse, B-cell development, as well as differentiation and survival of naïve T-cells, and generation and maintenance of memory T-cells. They are also required for innate lymphoid cell development and maintenance, and consequently for the generation of lymphoid structures and barrier defense. Here, we discuss the central role of IL-7 and IL-7R in the lymphoid system and highlight the impacts of its deregulation, placing a particular emphasis on its ‘dark side’ as a promoter of cancer development. We also explore therapeutic implications and opportunities associated with either positive or negative modulation of the IL-7/IL-7R signaling axis. 2 Barata et al 2019 Introduction Interleukin (IL)-7 is a 25 kDa secreted soluble globular protein encoded by the IL7 gene. Its receptor (IL-7R) is a heterodimeric complex consisting of IL-7Rα (encoded by IL7R) and the common gamma chain (encoded by IL2RG), shared with the receptors for IL-2,-4,-7,-9,-15 and - 21.
    [Show full text]
  • JAK3 Specific Kinase Inhibitors
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Chemistry & Biology Previews JAK3 Specific Kinase Inhibitors: When Specificity Is Not Enough Luk Cox1,2 and Jan Cools1,2,* 1Center for Human Genetics, K.U.Leuven, Leuven, B-3000, Belgium 2Department of Molecular and Developmental Genetics, VIB, Leuven, B-3000, Belgium *Correspondence: [email protected] DOI 10.1016/j.chembiol.2011.03.002 Janus kinases are important signaling proteins implicated in cytokine signaling. In particular, Janus kinase 3 (JAK3) has gained attention as a target for inhibition of the immune system, due to its importance for T and B cell development and function. In this issue however, Haan et al. (2011) show that inhibition of JAK3 activity may not be sufficient for this purpose. Janus kinases (JAKs) are cytosolic tyro- inactivating mutations in JAK1 or JAK2 compound revealed it is also a potent sine kinases that associate with cytokine have not been identified in immunodefi- inhibitor of the other JAKs, including receptors. Since cytokine receptor pro- ciency patients, most likely because the JAK1 (Karaman et al., 2008). NIBR3049, teins lack any enzymatic activity, they loss of these kinases would cause a a novel JAK inhibitor recently described are completely dependent on the tyrosine plethora of severe defects that would be to be more specific for JAK3, could be kinase activity of the JAKs to initiate incompatible with life (Ghoreschi et al., a JAK3-specific inhibitor, as it has shown signaling upon binding of the cytokines. 2009). more than 100-fold lower activity on the Based on different properties, domains, From these insights in the role of JAK3 other JAKs, based on in vitro kinase and motifs, the cytokine receptors are for the development and functioning of assays (Thoma et al., 2011).
    [Show full text]
  • Oncogenic KRAS-Driven Metabolic Reprogramming in Pancreatic Cancer Cells Utilizes Cytokines from the Tumor Microenvironment
    Published OnlineFirst February 11, 2020; DOI: 10.1158/2159-8290.CD-19-0297 RESEARCH ARTICLE Oncogenic KRAS-Driven Metabolic Reprogramming in Pancreatic Cancer Cells Utilizes Cytokines from the Tumor Microenvironment Prasenjit Dey1, Jun Li2, Jianhua Zhang2, Surendra Chaurasiya3, Anders Strom3, Huamin Wang4, Wen-Ting Liao1, Frederick Cavallaro1, Parker Denz5, Vincent Bernard6, Er-Yen Yen2, Giannicola Genovese7, Pat Gulhati1, Jielin Liu8, Deepavali Chakravarti1, Pingna Deng1, Tingxin Zhang1, Federica Carbone7, Qing Chang2, Haoqiang Ying8, Xiaoying Shang1, Denise J. Spring1, Bidyut Ghosh6, Nagireddy Putluri9, Anirban Maitra6, Y. Alan Wang1, and Ronald A. DePinho1 Downloaded from cancerdiscovery.aacrjournals.org on September 27, 2021. © 2020 American Association for Cancer Research. Published OnlineFirst February 11, 2020; DOI: 10.1158/2159-8290.CD-19-0297 ABSTRACT A hallmark of pancreatic ductal adenocarcinoma (PDAC) is an exuberant stroma comprised of diverse cell types that enable or suppress tumor progression. Here, we explored the role of oncogenic KRAS in protumorigenic signaling interactions between cancer cells and host cells. We show that KRAS mutation (KRAS*) drives cell-autonomous expression of type I cytokine receptor complexes (IL2rγ –IL4rα and IL2rγ –IL13rα 1) in cancer cells that in turn are capable of receiving cytokine growth signals (IL4 or IL13) provided by invading Th2 cells in the microenvironment. Early neoplastic lesions show close proximity of cancer cells harboring KRAS* and Th2 cells producing IL4 and IL13. Activated IL2rγ –IL4rα and IL2rγ –IL13rα 1 receptors signal primarily via JAK1–STAT6. Integrated transcriptomic, chromatin occupancy, and metabolomic studies identifi ed MYC as a direct target of activated STAT6 and that MYC drives glycolysis. Thus, paracrine signaling in the tumor micro- environment plays a key role in the KRAS*-driven metabolic reprogramming of PDAC.
    [Show full text]
  • The Diverse Functions of the Ubiquitous Fc Receptors and Their
    pathogens Review The Diverse Functions of the Ubiquitous Fcγ Receptors and Their Unique Constituent, FcRγ Subunit Thamer A. Hamdan 1,*, Philipp A. Lang 2 and Karl S. Lang 1 1 Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany 2 Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany * Correspondence: [email protected] Received: 8 December 2019; Accepted: 17 February 2020; Published: 20 February 2020 Abstract: Fc gamma receptors (FcγRs) are widely expressed on a variety of immune cells and play a myriad of regulatory roles in the immune system because of their structural diversity. Apart from their indispensable role in specific binding to the Fc portion of antibody subsets, FcγRs manifest diverse biological functions upon binding to their putative ligands. Examples of such manifestation include phagocytosis, presentation of antigens, mediation of antibody-dependent cellular cytotoxicity, anaphylactic reactions, and the promotion of apoptosis of T cells and natural killer cells. Functionally, the equilibrium between activating and inhibiting FcγR maintains the balance between afferent and efferent immunity. The γ subunit of the immunoglobulin Fc receptor (FcRγ) is a key component of discrete immune receptors and Fc receptors including the FcγR family. Furthermore, FcγRs exert a key role in terms of crosslinking the innate and adaptive workhorses of immunity. Ablation of one of these receptors might positively or negatively influence the immune response. Very recently, we discovered that FcRγ derived from natural cytotoxicity triggering receptor 1 (NCR1) curtails CD8+ T cell expansion and thereby turns an acute viral infection into a chronic one.
    [Show full text]