The Diverse Functions of the Ubiquitous Fc Receptors and Their
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antibody-Dependent Cellular Cytotoxicity in HIV Infection
CE: Namrta; QAD/AIDS-D-18-00733; Total nos of Pages: 13; AIDS-D-18-00733 EDITORIAL REVIEW Antibody-dependent cellular cytotoxicity in HIV infection Donald N. Forthala,b and Andres Finzic,d Interactions between the Fc segment of IgG and its receptors (FcgRs) found on cells such as natural killer cells, monocytes, macrophages and neutrophils can potentially mediate antiviral effects in the setting of HIV and related infections. We review the potential role of Fc-FcR interactions in HIV, SIV and SHIV infections, with an emphasis on antibody- dependent cellular cytotoxicity (ADCC). Notably, these viruses employ various strate- gies, including CD4 down-regulation and BST-2/tetherin antagonism to limit the effect of ADCC. Although correlative data suggest that ADCC participates in both protection and control of established infection, there is little direct evidence in support of either role. Direct evidence does, however, implicate an FcgR-dependent function in aug- menting the beneficial in-vivo activity of neutralizing antibodies. Copyright ß 2018 Wolters Kluwer Health, Inc. All rights reserved. AIDS 2018, 32:000–000 Keywords: antibody-dependent cellular cytotoxicity, CD4, Fc receptor, HIV, natural killer cell, phagocytosis, simian immunodeficiency virus, simian/human immunodeficiency virus Introduction antibody-dependent enhancement, the interested reader is directed elsewhere [1,2]. In addition, detailed Much of the antiviral activity of antibody is mediated by treatments of FcR biology can be found in recent interactions between the Fc segment of immunoglobulin reviews [3,4]. and Fc receptors (FcRs) present on many different cell types. Such interactions could have a beneficial impact on ADCC occurs when antibody forms a bridge between a viral infection through, for example, antibody-dependent target cell bearing foreign antigens on its surface and an cellular cytotoxicity (ADCC), phagocytosis, or trogocy- effector cell, typically a natural killer cell expressing FcRs. -
The Ligands for Human Igg and Their Effector Functions
antibodies Review The Ligands for Human IgG and Their Effector Functions Steven W. de Taeye 1,2,*, Theo Rispens 1 and Gestur Vidarsson 2 1 Sanquin Research, Dept Immunopathology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; [email protected] 2 Sanquin Research, Dept Experimental Immunohematology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; [email protected] * Correspondence: [email protected] Received: 26 March 2019; Accepted: 18 April 2019; Published: 25 April 2019 Abstract: Activation of the humoral immune system is initiated when antibodies recognize an antigen and trigger effector functions through the interaction with Fc engaging molecules. The most abundant immunoglobulin isotype in serum is Immunoglobulin G (IgG), which is involved in many humoral immune responses, strongly interacting with effector molecules. The IgG subclass, allotype, and glycosylation pattern, among other factors, determine the interaction strength of the IgG-Fc domain with these Fc engaging molecules, and thereby the potential strength of their effector potential. The molecules responsible for the effector phase include the classical IgG-Fc receptors (FcγR), the neonatal Fc-receptor (FcRn), the Tripartite motif-containing protein 21 (TRIM21), the first component of the classical complement cascade (C1), and possibly, the Fc-receptor-like receptors (FcRL4/5). Here we provide an overview of the interactions of IgG with effector molecules and discuss how natural variation on the antibody and effector molecule side shapes the biological activities of antibodies. The increasing knowledge on the Fc-mediated effector functions of antibodies drives the development of better therapeutic antibodies for cancer immunotherapy or treatment of autoimmune diseases. -
Human CD64 / FCGR1A Protein (His Tag), Biotinylated
Human CD64 / FCGR1A Protein (His Tag), Biotinylated Catalog Number: 10256-H08S-B General Information SDS-PAGE: Gene Name Synonym: CD64; Fc gamma RI Protein Construction: A DNA sequence encoding the human FCGR1A (NP_000557.1) (Met1- Pro288) was expressed with a polyhistidine tag at the C-terminus. The purified protein was biotinylated in vitro. Source: Human Expression Host: CHO Stable Cells QC Testing Purity: > 95 % as determined by SDS-PAGE. Bio Activity: Protein Description Measured by its binding ability in a functional ELISA.Immobilized High affinity immunoglobulin gamma Fc receptor I, also known as FCGR1 biotinylated Human CD64 Protein (Cat:10256-H08S-B)at 10 μg/mL can and CD64, is an integral membraneglycoprotein and a member of the bind human IgG1,The EC50 of human IgG1 is 6-14 ng/mL. immunoglobulin superfamily. CD64 is a high affinity receptor for the Fc region of IgG gamma and functions in both innate and adaptive immune Endotoxin: responses. Receptors that recognize the Fc portion of IgG function in the regulation of immune response and are divided into three classes < 1.0 EU per μg protein as determined by the LAL method. designated CD64, CD32, and CD16. CD64 is structurally composed of asignal peptidethat allows its transport to the surface of a cell, Stability: threeextracellularimmunoglobulin domainsof the C2-type that it uses to Samples are stable for up to twelve months from date of receipt at -70 ℃ bind antibody, a hydrophobictransmembrane domain, and a short cytoplasmic tail. CD64 isconstitutivelyfound on only macrophages and Predicted N terminal: Gln 16 monocytes, but treatment of polymorphonuclear leukocyteswith cytokines likeIFNγandG-CSFcan induce CD64 expression on these cells. -
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
Antibody-Dependent Cellular Cytotoxicity Riiia and Mediate Γ
Effector Memory αβ T Lymphocytes Can Express Fc γRIIIa and Mediate Antibody-Dependent Cellular Cytotoxicity This information is current as Béatrice Clémenceau, Régine Vivien, Mathilde Berthomé, of September 27, 2021. Nelly Robillard, Richard Garand, Géraldine Gallot, Solène Vollant and Henri Vié J Immunol 2008; 180:5327-5334; ; doi: 10.4049/jimmunol.180.8.5327 http://www.jimmunol.org/content/180/8/5327 Downloaded from References This article cites 43 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/180/8/5327.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Effector Memory ␣ T Lymphocytes Can Express Fc␥RIIIa and Mediate Antibody-Dependent Cellular Cytotoxicity1 Be´atrice Cle´menceau,*† Re´gine Vivien,*† Mathilde Berthome´,*† Nelly Robillard,‡ Richard Garand,‡ Ge´raldine Gallot,*† Sole`ne Vollant,*† and Henri Vie´2*† Human memory T cells are comprised of distinct populations with different homing potential and effector functions: central memory T cells that mount recall responses to Ags in secondary lymphoid organs, and effector memory T cells that confer immediate protection in peripheral tissues. -
Epha Receptors and Ephrin-A Ligands Are Upregulated by Monocytic
Mukai et al. BMC Cell Biology (2017) 18:28 DOI 10.1186/s12860-017-0144-x RESEARCHARTICLE Open Access EphA receptors and ephrin-A ligands are upregulated by monocytic differentiation/ maturation and promote cell adhesion and protrusion formation in HL60 monocytes Midori Mukai, Norihiko Suruga, Noritaka Saeki and Kazushige Ogawa* Abstract Background: Eph signaling is known to induce contrasting cell behaviors such as promoting and inhibiting cell adhesion/ spreading by altering F-actin organization and influencing integrin activities. We have previously demonstrated that EphA2 stimulation by ephrin-A1 promotes cell adhesion through interaction with integrins and integrin ligands in two monocyte/ macrophage cell lines. Although mature mononuclear leukocytes express several members of the EphA/ephrin-A subclass, their expression has not been examined in monocytes undergoing during differentiation and maturation. Results: Using RT-PCR, we have shown that EphA2, ephrin-A1, and ephrin-A2 expression was upregulated in murine bone marrow mononuclear cells during monocyte maturation. Moreover, EphA2 and EphA4 expression was induced, and ephrin-A4 expression was upregulated, in a human promyelocytic leukemia cell line, HL60, along with monocyte differentiation toward the classical CD14++CD16− monocyte subset. Using RT-PCR and flow cytometry, we have also shown that expression levels of αL, αM, αX, and β2 integrin subunits were upregulated in HL60 cells along with monocyte differentiation while those of α4, α5, α6, and β1 subunits were unchanged. Using a cell attachment stripe assay, we have shown that stimulation by EphA as well as ephrin-A, likely promoted adhesion to an integrin ligand- coated surface in HL60 monocytes. Moreover, EphA and ephrin-A stimulation likely promoted the formation of protrusions in HL60 monocytes. -
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. -
T Cells the Usual Subsets
T cells: the usual subsets Chen Dong and Gustavo J. Martinez T cells have important roles in immune responses and function by directly secreting soluble mediators or important for adaptation of immune responses in different microenvironments and might be particularly through cell contact-dependent mechanisms. Many T cell subsets have been characterized. Although relevant for host defence against pathogens that colonize different tissues. Distinct T cell subsets, or effector T cells were originally considered to be terminally differentiated, a growing body of evidence has differentiation states, can be identified based on the cell surface markers expressed and/or the effector challenged this view and suggested that the phenotype of effector T cells is not completely fixed but is molecules produced by a particular T cell population. This Poster summarizes our current understanding of more flexible or plastic. T cells can have ‘mixed’ phenotypes (that is, have characteristics usually the surface markers, transcriptional regulators, effector molecules and functions of the different T cell associated with more than one T cell subset) and can interconvert from one subset phenotype to another, subsets that participate in immune responses. Further knowledge of how these T cell subsets are regulated IMMUNOLOGY although instructive signalling can lead to long-term fixation of cytokine memory. T cell plasticity can be and cooperate with each other will provide us with better tools to treat immune-related diseases. Cytotoxic T cell Exhausted T cell -
Cytokine Nomenclature
RayBiotech, Inc. The protein array pioneer company Cytokine Nomenclature Cytokine Name Official Full Name Genbank Related Names Symbol 4-1BB TNFRSF Tumor necrosis factor NP_001552 CD137, ILA, 4-1BB ligand receptor 9 receptor superfamily .2. member 9 6Ckine CCL21 6-Cysteine Chemokine NM_002989 Small-inducible cytokine A21, Beta chemokine exodus-2, Secondary lymphoid-tissue chemokine, SLC, SCYA21 ACE ACE Angiotensin-converting NP_000780 CD143, DCP, DCP1 enzyme .1. NP_690043 .1. ACE-2 ACE2 Angiotensin-converting NP_068576 ACE-related carboxypeptidase, enzyme 2 .1 Angiotensin-converting enzyme homolog ACTH ACTH Adrenocorticotropic NP_000930 POMC, Pro-opiomelanocortin, hormone .1. Corticotropin-lipotropin, NPP, NP_001030 Melanotropin gamma, Gamma- 333.1 MSH, Potential peptide, Corticotropin, Melanotropin alpha, Alpha-MSH, Corticotropin-like intermediary peptide, CLIP, Lipotropin beta, Beta-LPH, Lipotropin gamma, Gamma-LPH, Melanotropin beta, Beta-MSH, Beta-endorphin, Met-enkephalin ACTHR ACTHR Adrenocorticotropic NP_000520 Melanocortin receptor 2, MC2-R hormone receptor .1 Activin A INHBA Activin A NM_002192 Activin beta-A chain, Erythroid differentiation protein, EDF, INHBA Activin B INHBB Activin B NM_002193 Inhibin beta B chain, Activin beta-B chain Activin C INHBC Activin C NM005538 Inhibin, beta C Activin RIA ACVR1 Activin receptor type-1 NM_001105 Activin receptor type I, ACTR-I, Serine/threonine-protein kinase receptor R1, SKR1, Activin receptor-like kinase 2, ALK-2, TGF-B superfamily receptor type I, TSR-I, ACVRLK2 Activin RIB ACVR1B -
ORIGINAL ARTICLE Flow Cytometric Protein Expression Profiling As a Systematic Approach for Developing Disease-Specific Assays
Leukemia (2006) 20, 2102–2110 & 2006 Nature Publishing Group All rights reserved 0887-6924/06 $30.00 www.nature.com/leu ORIGINAL ARTICLE Flow cytometric protein expression profiling as a systematic approach for developing disease-specific assays: identification of a chronic lymphocytic leukaemia-specific assay for use in rituximab-containing regimens AC Rawstron, R de Tute, AS Jack and P Hillmen Haematological Malignancy Diagnostic Service (HMDS), Leeds Teaching Hospitals, Leeds, UK Depletion of disease below the levels detected by sensitive sustained remissions only occur in patients achieving an MRD- minimal residual disease (MRD) assays is associated with negative complete response.12 Therefore MRD is increasingly prolonged survival in chronic lymphocytic leukaemia (CLL). being used as an end point for therapeutic trials, and several Flow cytometric MRD assays are now sufficiently sensitive and rapid to guide the duration of therapy in CLL, but generally rely studies are now using the assessment of MRD to define the on assessment of CD20 expression, which cannot be accurately duration of therapy. measured during and after therapeutic approaches containing Approaches using allele-specific oligonucleotide polymerase rituximab. The aim of this study was to use analytical software chain reaction (ASO-PCR) to the immunoglobulin gene of the developed for microarray analysis to provide a systematic B-CLL cell are generally accepted to show the highest sensitivity approach for MRD flow assay development. Samples from CLL for MRD detection. However, more recent four-colour ap- patients (n ¼ 49), normal controls (n ¼ 21) and other B-lympho- proaches show sensitivities nearing that of ASO-PCR6,11,13 with proliferative disorders (n ¼ 12) were assessed with a panel of 66 antibodies. -
New Advances in Leukaemia Immunotherapy by the Use of Chimeric Artificial Antigen Receptors
Biagi et al. Italian Journal of Pediatrics 2011, 37:46 http://www.ijponline.net/content/37/1/46 ITALIAN JOURNAL OF PEDIATRICS REVIEW Open Access New advances in leukaemia immunotherapy by the use of Chimeric Artificial Antigen Receptors (CARs): state of the art and perspectives for the near future Ettore Biagi*, Virna Marin, Greta Maria Paola Giordano Attianese, Irene Pizzitola, Sarah Tettamanti, Elisabetta Cribioli and Andrea Biondi Abstract Leukaemia immunotherapy represents a fascinating and promising field of translational research, particularly as an integrative approach of bone marrow transplantation. Adoptive immunotherapy by the use of donor-derived expanded leukaemia-specific T cells has showed some kind of clinical response, but the major advance is nowadays represented by gene manipulation of donor immune cells, so that they acquire strict specificity towards the tumour target and potent lytic activity, followed by significant proliferation, increased survival and possibly anti- tumour memory state. This is achieved by gene insertion of Chimeric T-cell Antigen Receptors (CARs), which are artificial molecules containing antibody-derived fragments (to bind the specific target), joined with potent signalling T-Cell Receptor (TCR)-derived domains that activate the manipulated cells. This review will discuss the main application of this approach particularly focusing on the paediatric setting, raising advantages and disadvantages and discussing relevant perspectives of use in the nearest future. Keywords: Leukaemia immunotherapy, -
T Lymphocytes + and CD8 +CD4 TCR/CD3 Complex in Immortalized Mature -Deficient Γ Signaling Through A
Signaling Through a CD3γ-Deficient TCR/CD3 Complex in Immortalized Mature CD4+ and CD8+ T Lymphocytes This information is current as Alberto Pacheco-Castro, David Alvarez-Zapata, Pilar of September 25, 2021. Serrano-Torres and José R. Regueiro J Immunol 1998; 161:3152-3160; ; http://www.jimmunol.org/content/161/6/3152 Downloaded from References This article cites 47 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/161/6/3152.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 25, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Signaling Through a CD3g-Deficient TCR/CD3 Complex in Immortalized Mature CD41 and CD81 T Lymphocytes1 Alberto Pacheco-Castro,2 David Alvarez-Zapata,2 Pilar Serrano-Torres, and Jose´R. Regueiro3 The biologic role of each CD3 chain and their relative contribution to the signals transduced through the TCR/CD3 complex and to downstream activation events are still controversial: they may be specialized or redundant.