14 Airplane Takeoff Speeds Are Designed to Ensure the Liftoff Speed Does Not Exceed the Tire Speed Rating
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Soaring Weather
Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven contributions to meteorology. For example, soar tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft. -
Guidance for the Implementation of Fdm Precursors
EUROPEAN OPERATORS FLIGHT DATA MONITORING WORKING GROUP B SAFETY PROMOTION Good Practice document GUIDANCE FOR THE IMPLEMENTATION OF FDM PRECURSORS June 2019 Rev 02 Guidance for the Implementation of FDM Precursors | Rev 02 Contents Table of Revisions .............................................................................................................................5 Introduction ......................................................................................................................................6 Occurrence Reporting and FDM interaction ............................................................................................ 6 Precursor Description ................................................................................................................................ 6 Methodology for Flight Data Monitoring ................................................................................................. 9 Runway Excursions (RE) ..................................................................................................................11 RE01 – Incorrect Performance Calculation ............................................................................................. 12 RE02 – Inappropriate Aircraft Configuration .......................................................................................... 14 RE03 – Monitor CG Position .................................................................................................................... 16 RE04 – Reduced Elevator Authority ....................................................................................................... -
Constraints for STOL Operations in South Florida Conurbation Cedric Y
Constraints for STOL Operations in South Florida Conurbation Cedric Y. Justin June 2021 Based on research previously published: Development of a Methodology for Parametric Analysis of STOL Airpark Geo-Density, Robinson et al. AIAA AVIATION 2018 Door-to-Door Travel Time Comparative Assessment for Conventional Transportation Methods and Short Takeoff and Landing On Demand Mobility Concepts, Wei et al. AIAA AVIATION 2018 Wind and Obstacles Impact on Airpark Placement for STOL-based Sub-Urban Air Mobility, Somers et al., AIAA AVIATION 2019 Optimal Siting of Sub-Urban Air Mobility (sUAM) Ground Architectures using Network Flow Formulation, Venkatesh et al, AIAA AVIATION 2020 Comparative Assessment of STOL-based Sub-Urban Air Mobility Operations in Massachusetts and South Florida, Justin et al. AIAA AVIATION 2020 Current Market Segmentation ? VTOL CTOL CTOL CTOL CTOL Capacity ? 200-400+ pax Twin Aisle Are there 120-210 pax scenarios where Single Aisle an intermediate solution using 50-90 pax STOL vehicles and Regional Aircraft sitting in- Design range below 300 nm Commuters between UAM 9-50 pax Flight time below 1.5 hours Thin-Haul and thin-haul 9 to 50 seat capacity operations exists? 4-9 pax Sub-Urban Missions 50-150 nm Air Mobility 4 to 9 revenue-seats Missions below 50 nm Urban Air Mobility 1-4 pax 1 to 4 revenue-seats 50 nm 300 nm 500 nm 3000 nm 6000+ nm Artwork Credit Uber Design Range 2 Introduction • Population, urbanization, and congestion Atlanta, GA Miami, FL Dallas, TX Los Angeles, CA have increased steadily over the past several decades • Increasing delays damage the environment and substantially impact the economy Driving time: 8 min. -
16.00 Introduction to Aerospace and Design Problem Set #3 AIRCRAFT
16.00 Introduction to Aerospace and Design Problem Set #3 AIRCRAFT PERFORMANCE FLIGHT SIMULATION LAB Note: You may work with one partner while actually flying the flight simulator and collecting data. Your write-up must be done individually. You can do this problem set at home or using one of the simulator computers. There are only a few simulator computers in the lab area, so not leave this problem to the last minute. To save time, please read through this handout completely before coming to the lab to fly the simulator. Objectives At the end of this problem set, you should be able to: • Take off and fly basic maneuvers using the flight simulator, and describe the relationships between the control yoke and the control surface movements on the aircraft. • Describe pitch - airspeed - vertical speed relationships in gliding performance. • Explain the difference between indicated and true airspeed. • Record and plot airspeed and vertical speed data from steady-state flight conditions. • Derive lift and drag coefficients based on empirical aircraft performance data. Discussion In this lab exercise, you will use Microsoft Flight Simulator 2000/2002 to become more familiar with aircraft control and performance. Also, you will use the flight simulator to collect aircraft performance data just as it is done for a real aircraft. From your data you will be able to deduce performance parameters such as the parasite drag coefficient and L/D ratio. Aircraft performance depends on the interplay of several variables: airspeed, power setting from the engine, pitch angle, vertical speed, angle of attack, and flight path angle. -
Arkansas Aviation Operation Plan Glossary of Terms A
Arkansas Aviation Operations –March 2014 Glossary of Terms Glossary v1.r1 Arkansas Aviation Operation Plan Glossary of Terms A ABORT To terminate a preplanned aircraft maneuver; e.g. an aborted takeoff 29 ADVISORY FREQUENCY The appropriate frequency to be used for Airport Advisory Service 29 AIR CARRIER A person who undertakes directly by lease, or other arrangement, to engage in air transportation.30 AIRCRAFT CATERGORY The term “category,” as used with respect to the certification of aircraft, means a grouping of aircraft based on their intended use or operating limitations, for example, normal, utility, acrobatic, or primary. For purposes of this order, gliders and balloons will be referred to as categories rather than classifications.30 AIR TRAFFIC Aircraft operating in the air or on an airport surface, exclusive of loading ramps and parking areas 29 AIR TRAFFIC CLEARANCE An authorization by air traffic control for the purpose of preventing collision between known aircraft, for an aircraft to proceed under specified traffic conditions within controlled airspace. The pilot-in-command of an aircraft may not deviate from the provisions of a visual flight rules (VFR) or instrument flight rules (IFR) air traffic clearance except in an emergency or unless an amended clearance has been obtained 29 AIR TRAFFIC CONTROL A service operated by appropriate authority to promote the safe, orderly and expeditious flow of air traffic 29 AIRPORT MARKING AID Markings used on runway and taxiway surfaces to identify a specific runway, a runway threshold, a centerline, a hold line, etc. A runway should be marked in accordance with its present usage such as: a. -
The Discovery of the Sea
The Discovery of the Sea "This On© YSYY-60U-YR3N The Discovery ofthe Sea J. H. PARRY UNIVERSITY OF CALIFORNIA PRESS Berkeley • Los Angeles • London Copyrighted material University of California Press Berkeley and Los Angeles University of California Press, Ltd. London, England Copyright 1974, 1981 by J. H. Parry All rights reserved First California Edition 1981 Published by arrangement with The Dial Press ISBN 0-520-04236-0 cloth 0-520-04237-9 paper Library of Congress Catalog Card Number 81-51174 Printed in the United States of America 123456789 Copytightad material ^gSS3S38SSSSSSSSSS8SSgS8SSSSSS8SSSSSS©SSSSSSSSSSSSS8SSg CONTENTS PREFACE ix INTROn ilCTION : ONE S F A xi PART J: PRE PARATION I A RELIABLE SHIP 3 U FIND TNG THE WAY AT SEA 24 III THE OCEANS OF THE WORI.n TN ROOKS 42 ]Jl THE TIES OF TRADE 63 V THE STREET CORNER OF EUROPE 80 VI WEST AFRICA AND THE ISI ANDS 95 VII THE WAY TO INDIA 1 17 PART JJ: ACHJF.VKMKNT VIII TECHNICAL PROBL EMS AND SOMITTONS 1 39 IX THE INDIAN OCEAN C R O S S T N C. 164 X THE ATLANTIC C R O S S T N C 1 84 XJ A NEW WORT D? 20C) XII THE PACIFIC CROSSING AND THE WORI.n ENCOMPASSED 234 EPILOC.IJE 261 BIBLIOGRAPHIC AI. NOTE 26.^ INDEX 269 LIST OF ILLUSTRATIONS 1 An Arab bagMa from Oman, from a model in the Science Museum. 9 s World map, engraved, from Ptolemy, Geographic, Rome, 1478. 61 3 World map, woodcut, by Henricus Martellus, c. 1490, from Imularium^ in the British Museum. -
A Conceptual Design of a Short Takeoff and Landing Regional Jet Airliner
A Conceptual Design of a Short Takeoff and Landing Regional Jet Airliner Andrew S. Hahn 1 NASA Langley Research Center, Hampton, VA, 23681 Most jet airliner conceptual designs adhere to conventional takeoff and landing performance. Given this predominance, takeoff and landing performance has not been critical, since it has not been an active constraint in the design. Given that the demand for air travel is projected to increase dramatically, there is interest in operational concepts, such as Metroplex operations that seek to unload the major hub airports by using underutilized surrounding regional airports, as well as using underutilized runways at the major hub airports. Both of these operations require shorter takeoff and landing performance than is currently available for airliners of approximately 100-passenger capacity. This study examines the issues of modeling performance in this now critical flight regime as well as the impact of progressively reducing takeoff and landing field length requirements on the aircraft’s characteristics. Nomenclature CTOL = conventional takeoff and landing FAA = Federal Aviation Administration FAR = Federal Aviation Regulation RJ = regional jet STOL = short takeoff and landing UCD = three-dimensional Weissinger lifting line aerodynamics program I. Introduction EMAND for air travel over the next fifty to D seventy-five years has been projected to be as high as three times that of today. Given that the major airport hubs are already congested, and that the ability to increase capacity at these airports by building more full- size runways is limited, unconventional solutions are being considered to accommodate the projected increased demand. Two possible solutions being considered are: Metroplex operations, and using existing underutilized runways at the major hub airports. -
United States Rocket Research and Development During World War II
United States Rocket Research and Development During World War II Unidentified U.S. Navy LSM(R) (Landing Ship Medium (Rocket)) launching barrage rockets during a drill late in the Second World War. Image courtesy of the U.S. National Archives and Records Administration. and jet-assisted takeoff (JATO) units for piston-pow- Over the course of the Second World War, rockets ered attack fighters and bombers. Wartime American evolved from scientific and technical curiosities into rocket research evolved along a number of similar and practical weapons with specific battlefield applications. overlapping research trajectories. Both the U.S. Navy The Allied and Axis powers both pursued rocket re- and Army (which included the Army Air Forces) devel- search and development programs during the war. Brit- oped rockets for ground bombardment purposes. The ish and American rocket scientists and engineers (and services also fielded aerial rockets for use by attack their Japanese adversaries) mainly focused their efforts aircraft. The Navy worked on rocket-powered bombs on tactical applications using solid-propellant rockets, for antisubmarine warfare, while the Army developed while the Germans pursued a variety of strategic and the handheld bazooka antitank rocket system. Lastly, tactical development programs primarily centered on both the Army and Navy conducted research into JATO liquid-propellant rockets. German Army researchers units for use with bombers and seaplanes. Throughout led by Wernher von Braun spent much of the war de- the war, however, limited coordination between the veloping the A-4 (more popularly known as the V-2), armed services and federal wartime planning bodies a sophisticated long-range, liquid-fueled rocket that hampered American rocket development efforts and led was employed to bombard London and Rotterdam late to duplicated research and competition amongst pro- in the war. -
Tail Strikes: Prevention Regardless of Airplane Model, Tail Strikes Can Have a Number of Causes, Including Gusty Winds and Strong Crosswinds
Tail Strikes: Prevention Regardless of airplane model, tail strikes can have a number of causes, including gusty winds and strong crosswinds. But environmental factors such as these can often be overcome by a well-trained and knowledgeable flight crew following prescribed procedures. Boeing conducts extensive research into the causes of tail strikes and continually looks for design solutions to prevent them, such as an improved elevator feel system. Enhanced preventive measures, such as the tail strike protection feature in some by Capt. Dave Carbaugh, Chief Pilot, Boeing 777 models, further reduce the probability of incidents. Flight Operations Safety Tail strikes can cause significant damage and cost taiL strikes: an overview a constant feel elevator pressure, which has operators millions of dollars in repairs and lost reduced the potential of varied feel pressure revenue. In the most extreme scenario, a tail strike A tail strike occurs when the tail of an airplane on the yoke contributing to a tail strike. The can cause pressure bulkhead failure, which can strikes the ground during takeoff or landing. 747-400 has a lower rate of tail strikes than ultimately lead to structural failure; however, long Although many tail strikes occur on takeoff, most the 747-100/-200/-300. shallow scratches that are not repaired correctly occur on landing. Tail strikes are often due to In addition, some 777 models incorporate a tail can also result in increased risks. Yet tail strikes can human error. strike protection system that uses a combination be prevented when flight crews understand their Tail strikes can cause significant damage to of software and hardware to protect the airplane. -
United Nations Aviation Standards for Peacekeeping and Humanitarian Air Transport Operations
UNITED NATIONS AVIATION STANDARDS FOR PEACEKEEPING AND HUMANITARIAN AIR TRANSPORT OPERATIONS (SEPTEMBER 2012) UNITED NATIONS AVIATION STANDARDS FOR PEACEKEEPING AND HUMANITARIAN AIR TRANSPORT OPERATIONS Table of Contents LIST OF EFFECTIVE PAGES SECTION 1: INTRODUCTION 1.1 Background 1.2 Applicability 1.3 Rules of Construction 1.4 Administration and Organization SECTION 2: DEFINITIONS SECTION 3: UN ORGANIZATION AND ADMINISTRATION OF AIR TRANSPORT OPERATIONS 3.1 Organization Structure 3.2 Personnel Requirements 3.3 Personnel Qualification Requirements for Air Transport Management 3.4 Personnel Qualification Requirements for Aviation Safety Management 3.5 Personnel Qualification Requirements for Aviation Quality Assurance Management 3.6 UN Call Signs 3.7 Insurance SECTION 4: AIRCRAFT OPERATOR REQUIREMENTS 4.1 Participation in UN Charter Contracts 4.2 Crew Member Training, Qualifications and Experience 4.3 Operational Control Functions 4.4 Flight Time, Flight Duty Periods and Rest Periods 4.5 The Air Operator Certificate 4.6 AOC Holder’s Operations Management 4.7 AOC Holder’s Maintenance Requirements 4.8 AOC Holder’s Security Management 4.9 Other Requirements 4.10 Crew Member Duties and Responsibilities 4.11 Flight Rules 4.12 Carriage of Passengers and Cargo — — — — — — — — (i) LIST OF EFFECTIVE PAGES Section Page Date Amended Section Page Date Amended by by 1 I‐1 September 2012 IV‐24 November 2007 I‐2 November 2007 2 II‐1 September 2012 II‐2 November 2007 II‐3 September 2012 II‐4 September 2012 II‐5 September 2012 II‐6 November 2007 3 III‐1 -
The Future of the Knot As a Unit of Speed
FORUM The Future of the Knot as a Unit of Speed Oliver Stewart FEW will deny the merits of the knot as a unit of speed. It does in one syllable what all other units of speed take three or more to do. It is accepted and used by a great many countries, including those like France which show a general pre- ference for the metric system. Aviation has taken to it as well as shipping. It is not therefore surprising that the full acceptance of the Systeme International d'Unitis (or S.I.) is meeting with some opposition when it offers to supplant the knot. At present the situation is that the knot is to continue for a 'limited time' as a speed unit for use in aviation and shipping. Just how limited the time will be has not been revealed, but the member countries of the European Economic Com- munity have set i January 1978 as the date after which 'only a prescribed system of metric units may be used'. Strictly interpreted the S.I. admits one and only one speed unit, the metre per second; if the minute or the hour were to be intro- duced in place of the second, decimalization would break down. This would mean that the familiar kilometre per hour would be inadmissible as a substitute for the knot, although the present trend is in that direction. Both the metre and the second are now denned in terms of atomic radiation with a precision far ahead of anything previously known and give the measurer the highest attainable accuracy. -
Mind Your Aviation Language – What Knot Mark Twain!
Mind Your (Aviation) Language…. What Knot? Mark Twain! As aviators we are all familiar with keeping an eye on our airspeed – and that we measure airspeed in knots. Many will also know that a knot is 1 nautical mile per hour. And some will know that a nautical mile is one minute (one sixtieth) of a degree of latitude, or even 1,852 metres. But why do we use the word ‘knot’ and does it have any connection to knots in ropes? Until the mid-19th century, vessel speed at sea was measured using a chip log. This consisted of a wooden panel, attached by line to a reel, and weighted on one edge to float perpendicularly to the water surface and thus present substantial resistance to the water moving around it. The chip log was cast over the stern of the moving vessel and the line allowed to pay out. Knots placed at a distance of 47 feet 3 inches (14.4018 m) from each other, passed through a sailor's fingers, while another sailor used a 30-second sand- glass (28-second sand-glass is the currently accepted timing) to time the operation. The knot count would be reported and used in the sailing master's dead reckoning and navigation. This method gives a value for the knot of 20.25 in/s, or 1.85166 km/h. The difference from the modern definition is less than 0.02%. And in both today’s pilothouse and cockpit, the speed equal to one nautical mile an hour is still called a knot, and pilots still record details of the journey in the ship’s log - terms that echo of the days when crewmembers got creative with a few simple materials and produced an essential and significant little gadget.