Guidelines for Conducting Birth Defects Surveillance

Total Page:16

File Type:pdf, Size:1020Kb

Guidelines for Conducting Birth Defects Surveillance NATIONAL BIRTH DEFECTS PREVENTION NETWORK HTTP://WWW.NBDPN.ORG Guidelines for Conducting Birth Defects Surveillance Edited By Lowell E. Sever, Ph.D. June 2004 Support for development, production, and distribution of these guidelines was provided by the Birth Defects State Research Partnerships Team, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention Copies of Guidelines for Conducting Birth Defects Surveillance can be viewed or downloaded from the NBDPN website at http://www.nbdpn.org/bdsurveillance.html. Comments and suggestions on this document are welcome. Submit comments to the Surveillance Guidelines and Standards Committee via e-mail at [email protected]. You may also contact a member of the NBDPN Executive Committee by accessing http://www.nbdpn.org and then selecting Network Officers and Committees. Suggested citation according to format of Uniform Requirements for Manuscripts ∗ Submitted to Biomedical Journals:∗ National Birth Defects Prevention Network (NBDPN). Guidelines for Conducting Birth Defects Surveillance. Sever, LE, ed. Atlanta, GA: National Birth Defects Prevention Network, Inc., June 2004. National Birth Defects Prevention Network, Inc. Web site: http://www.nbdpn.org E-mail: [email protected] ∗International Committee of Medical Journal Editors. Uniform requirements for manuscripts submitted to biomedical journals. Ann Intern Med 1988;108:258-265. We gratefully acknowledge the following individuals and organizations who contributed to developing, writing, editing, and producing this document. NBDPN SURVEILLANCE GUIDELINES AND STANDARDS COMMITTEE STEERING GROUP Carol Stanton, Committee Chair (CO) Larry Edmonds (CDC) F. John Meaney (AZ) Glenn Copeland (MI) Lisa Miller-Schalick (MA) Peter Langlois (TX) Leslie O’Leary (CDC) Cara Mai (CDC) EDITOR Lowell E. Sever Battelle Centers for Public Health Research and Evaluation and University of Texas School of Public Health TECHNICAL EDITOR Joanne Abed Battelle Centers for Public Health Research and Evaluation SURVEILLANCE GUIDELINES AND STANDARDS COMMITTEE AND OTHER NBDPN MEMBERS Lisa Allen-Durham (AK) Rose Marie Farias (TX) Bradley McDowell (IA) Marlene Anderka (MA) Marcia Feldkamp (UT) Ruth Merz (HI) Janice Bakewell (MO) Timothy Flood (AZ) Robert Meyer (NC) Sandra Baxter (NM) Jane Fornoff (IL) Lisa Miller (CO) Carla Becker (NE) Mathias Forrester (TX) Julienne Moore (SC) Leslie Beres (NJ) Pete Grasso (TX) Kathy Niffenegger (IA) Cindy Bolton (TX) Susan Griffiths (UT) Ann F. Phelps (TX) Cynthia Cassell (NC) Kim Hauser (FL) Leah Randolph (NC) Guadalupe Castaneda (TX) Peg Hilliard (AL) Russel Rickard (CO) Jean Clark (IA) Alton Hiscox (AZ) Joyce Robl (AR) Pamela Cline (NC) Steven Horner (PA) Angela Scheuerle (TX) Julianne Collins (SC) Linda Jackson (AR) Josefa Schlottman (FL) Elia Correa (PR) John P. Johnson (MT) Laurie Seaver (SC) Jane Correia (FL) Hyrum Kanady (TX) Bonnie Silverman (CT) Philip Cross (NY) Russell Kirby (AL) Lorrie Simmons (MI) Michael DeVoe (TN) Mary Knapp (NJ) Rickey Tolliver (CO) Gloria Deyhle (NV) Miriam Levitt (Canada) Allison Varga (AZ) Dennis Dodson (MI) Victor Limon (TX) Samara Viner-Brown (RI) Daniel Driggers (TX) Angela Lin (MA) Alison Wall (NC) Charlotte Druschel (NY) Sharon Linard (OH) Barbara Warmerdam (CA) Taherah Duncan (TX) Lynne MacLeod (UT) Wladimir Wertelecki (AL) Trish Egler (IL) Sharon Majchrowicz (NY) Civillia Winslow-Hill (WA) Nicole Esquivel (TX) Judy Major (NC) JiQiang Xu (MI) Mary K. Ethen (TX) Russell Mardon (FL) MARCH OF DIMES BIRTH DEFECTS FOUNDATION Melanie Lockhart TRUST FOR AMERICA’S HEALTH Paul A. Locke CENTERS FOR DISEASE CONTROL AND PREVENTION Janet D. Cragan Cynthia Moore Quanhe Yang Beverly Dozier Richard Olney Lee-Yang Wong Kenya Ford Sonja Rasmussen BATTELLE CENTERS FOR PUBLIC HEALTH RESEARCH AND EVALUATION Echika Agugua Karen Kroeger Jennifer Plummer Jane Schulman NBDPN Guidelines for Conducting Birth Defects Surveillance rev. 06/04 Introduction In January of 1999, the National Birth Defects Prevention Network (NBDPN) established a Surveillance Guidelines and Standards Committee (SGSC) in order to develop and promote the use of standards and guidelines for birth defects surveillance programs in the United States. This set of guidelines is designed to serve as an important first step in the documentation of this process and as the vehicle for dissemination of the committee’s findings. The Guidelines for Conducting Birth Defects Surveillance (henceforth referred to as The Surveillance Guidelines) were developed with three major long-term objectives in mind: ¾ To improve the quality of state birth defects surveillance data, including accuracy, comparability, completeness, and timeliness. ¾ To enhance the utility of state birth defects surveillance data for research on the distribution and etiology of birth defects. ¾ To encourage and promote the use of state birth defects surveillance data for the purposes of linking affected children with services and evaluation of those services. The technical guidelines that make up this document provide a way of improving the quality of birth defects surveillance data, which in turn enhances their use in support of the latter two objectives. Fundamental to quality is ensuring that procedures for all aspects of data definition, collection, management, and analysis are established and followed. Because state-based surveillance systems operate with different objectives and data needs, it is clear that, with respect to procedures and standards, “one size does not fit all.” It is also clear, however, that common guidelines can provide a basis for the development of system-specific operating procedures and supporting manuals. Variation among surveillance programs is manifest along several dimensions. These include: ¾ Objectives, which can be very diverse but commonly include: • Providing baseline data on occurrence • Identifying populations at increased risk • Monitoring changes in occurrence • Investigating clusters • Collaborating with research • Estimating service needs • Referring affected children to services • Evaluating prevention programs ¾ Case ascertainment methods • Active – case finding • Passive – case reporting • Combined i Introduction NBDPN Guidelines for Conducting Birth Defects Surveillance rev. 06/04 ¾ Organizational location • Health department • University • Other The first two dimensions – objectives and case ascertainment methods – are of particular significance in attempting to develop guidelines that have the breadth to be useful (i.e., universality), while at the same time making clear that there is not necessarily a common denominator across programs. Thus most of the guidelines in this volume are phrased as recommendations or “shoulds,” as opposed to standards, which could be interpreted as “musts.” The exception to the latter is Chapter 10, which refers the reader to information on how data are to be reported to NBDPN for the Annual Report. The relevance of organizational location to the guidelines is probably restricted to legislative issues, which are addressed in Chapter 2. The Surveillance Guidelines consist of a series of chapters covering the fundamental aspects of developing, planning, implementing, and conducting surveillance for birth defects and using the resulting data. Although the focus is on birth defects, most of the principles described are relevant and applicable to surveillance for any health outcome. Just as the methods and strategies developed for birth defects in the Metropolitan Atlanta Congenital Defects Program provided a blueprint for the subsequent development of the Metropolitan Atlanta Developmental Disabilities Surveillance Program, the information included in these guidelines can provide a blueprint for the development of surveillance for developmental disabilities among the states. On reviewing the guidelines, the reader will note that a number of the chapters are supported by appendices. In many instances these appendices are designed to provide additional information on technical issues considered. In some cases they provide extensive detail on procedures that are currently being used by surveillance programs. Because of their size, three documents cited as appendices will only be available in electronic format. These are the NBDPN Abstractor’s Instructions (Chapter 3, Appendix 3.2) and the Texas Disease Index and the CDC Six-digit Codes (Chapter 5, Appendices 5.1 and 5.2, respectively). Information on how to access the electronic format is included in each appendix. The Surveillance Guidelines are being published in two formats: as print copy and through the NBDPN website. The Surveillance Guidelines and Standards Committee anticipates updating and revising the guidelines over time. Whenever a revision is published, a revision date will appear in the chapter header to distinguish that page or pages from previous versions. Because we anticipate this will be a living document, we encourage comments, suggestions, and corrections. If you have such, please submit them through the link to the Surveillance Guidelines and Standards Committee on the NBDPN website. This set of guidelines represents a great deal of work by a large number of individuals. The development of the document was carried out by the NBDPN Surveillance Guidelines and Standards Committee. A working group for each of the chapters did most of the writing. When chapters were completed in draft form, they were submitted to the SGSC Steering Group for review and suggested revisions. When a draft was considered
Recommended publications
  • Massachusetts Birth Defects 2002-2003
    Massachusetts Birth Defects 2002-2003 Massachusetts Birth Defects Monitoring Program Bureau of Family Health and Nutrition Massachusetts Department of Public Health January 2008 Massachusetts Birth Defects 2002-2003 Deval L. Patrick, Governor Timothy P. Murray, Lieutenant Governor JudyAnn Bigby, MD, Secretary, Executive Office of Health and Human Services John Auerbach, Commissioner, Massachusetts Department of Public Health Sally Fogerty, Director, Bureau of Family Health and Nutrition Marlene Anderka, Director, Massachusetts Center for Birth Defects Research and Prevention Linda Casey, Administrative Director, Massachusetts Center for Birth Defects Research and Prevention Cathleen Higgins, Birth Defects Surveillance Coordinator Massachusetts Department of Public Health 617-624-5510 January 2008 Acknowledgements This report was prepared by the staff of the Massachusetts Center for Birth Defects Research and Prevention (MCBDRP) including: Marlene Anderka, Linda Baptiste, Elizabeth Bingay, Joe Burgio, Linda Casey, Xiangmei Gu, Cathleen Higgins, Angela Lin, Rebecca Lovering, and Na Wang. Data in this report have been collected through the efforts of the field staff of the MCBDRP including: Roberta Aucoin, Dorothy Cichonski, Daniel Sexton, Marie-Noel Westgate and Susan Winship. We would like to acknowledge the following individuals for their time and commitment to supporting our efforts in improving the MCBDRP. Lewis Holmes, MD, Massachusetts General Hospital Carol Louik, ScD, Slone Epidemiology Center, Boston University Allen Mitchell,
    [Show full text]
  • Diseases of the Digestive System (KOO-K93)
    CHAPTER XI Diseases of the digestive system (KOO-K93) Diseases of oral cavity, salivary glands and jaws (KOO-K14) lijell Diseases of pulp and periapical tissues 1m Dentofacial anomalies [including malocclusion] Excludes: hemifacial atrophy or hypertrophy (Q67.4) K07 .0 Major anomalies of jaw size Hyperplasia, hypoplasia: • mandibular • maxillary Macrognathism (mandibular)(maxillary) Micrognathism (mandibular)( maxillary) Excludes: acromegaly (E22.0) Robin's syndrome (087.07) K07 .1 Anomalies of jaw-cranial base relationship Asymmetry of jaw Prognathism (mandibular)( maxillary) Retrognathism (mandibular)(maxillary) K07.2 Anomalies of dental arch relationship Cross bite (anterior)(posterior) Dis to-occlusion Mesio-occlusion Midline deviation of dental arch Openbite (anterior )(posterior) Overbite (excessive): • deep • horizontal • vertical Overjet Posterior lingual occlusion of mandibular teeth 289 ICO-N A K07.3 Anomalies of tooth position Crowding Diastema Displacement of tooth or teeth Rotation Spacing, abnormal Transposition Impacted or embedded teeth with abnormal position of such teeth or adjacent teeth K07.4 Malocclusion, unspecified K07.5 Dentofacial functional abnormalities Abnormal jaw closure Malocclusion due to: • abnormal swallowing • mouth breathing • tongue, lip or finger habits K07.6 Temporomandibular joint disorders Costen's complex or syndrome Derangement of temporomandibular joint Snapping jaw Temporomandibular joint-pain-dysfunction syndrome Excludes: current temporomandibular joint: • dislocation (S03.0) • strain (S03.4) K07.8 Other dentofacial anomalies K07.9 Dentofacial anomaly, unspecified 1m Stomatitis and related lesions K12.0 Recurrent oral aphthae Aphthous stomatitis (major)(minor) Bednar's aphthae Periadenitis mucosa necrotica recurrens Recurrent aphthous ulcer Stomatitis herpetiformis 290 DISEASES OF THE DIGESTIVE SYSTEM Diseases of oesophagus, stomach and duodenum (K20-K31) Ill Oesophagitis Abscess of oesophagus Oesophagitis: • NOS • chemical • peptic Use additional external cause code (Chapter XX), if desired, to identify cause.
    [Show full text]
  • R J M E ASE EPORT Romanian Journal of C R Morphology & Embryology
    Rom J Morphol Embryol 2016, 57(4):1403–1408 R J M E ASE EPORT Romanian Journal of C R Morphology & Embryology http://www.rjme.ro/ Ovarian teratomas in a patient with Bardet–Biedl syndrome, a rare association IRINA TICA1), OANA-SORINA TICA2), ALINA DOINA NICOARĂ1), VLAD IUSTIN TICA3), ANDREI-ADRIAN TICA4) 1)Medical Department, Faculty of Medicine, “Ovidius” University, Constanta, Romania 2)Department of Mother and Child, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania 3)Department of Obstetrics and Gynecology, Faculty of Medicine, “Ovidius” University, Constanta, Romania 4)Research Center for Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Romania Abstract Bardet–Biedl syndrome (BBS) represents a rare ciliopathy recessive autosomal inherited. The main clinical features are retinal dystrophy, postaxial polydactyly, obesity, different degrees of cognitive deficit, renal impairment, hypogonadism and genital malformations. The genetic explanation consists in BBS genes mutations, which encode modified proteins, altering the function of the immotile cilia. As a multitude of BBS genes mutations were described, the phenotypic aspect of these disorders varies according to that. We present the case of a 22 years old female patient, known with BBS since the age of 11 and which was diagnosed and operated for bilateral ovarian dermoid cysts, at the age of 21. We did not find a similar case in literature, regarding the association between the two disorders. We consider that our case points towards the importance of periodic imagistic evaluations [magnetic resonance imaging (MRI), computed tomography (CT) or ultrasound] of these patients, not only clinical and biological.
    [Show full text]
  • Information About Pierre Robin Sequence/Complex
    Information about Pierre Robin Sequence/Complex What is Pierre Robin Sequence/Complex? How common is this condition? Pierre Robin Sequence or Complex (pronounced “Roban”) is the name given to a birth condition that Robin Sequence/Complex is rather uncommon. involves the lower jaw being either small in size Frequency estimates range from 1 in 2,000 to 30,000 (micrognathia) or set back from the upper jaw births, based on how strictly the condition is defined. (retrognathia). As a result, the tongue tends to be In contrast, cleft lip and/or palate occurs once in displaced back towards the throat, where it can fall every 700 live births. back and obstruct the airway (glossoptosis). Most infants, but not all, will also have a cleft palate, but Will future children be affected? none will have a cleft lip. It is important to understand that Robin Over the years, there have been several names given Sequence/Complex can occur by itself (described as to the condition, including Pierre Robin Syndrome, “isolated”) or as a feature of another syndrome. Pierre Robin Triad, and Robin Anomalad. Based on Parents who have had one child with isolated Robin the varying features and causes of the condition, Sequence probably have between 1 and 5% chance either “Robin Sequence” or “Robin Complex” may of having another child with this condition. There be an appropriate description for a specific patient. have not yet been enough large-scale studies to make Pierre Robin was a French physician who first more accurate predictions. reported the combination of small lower jaw, cleft palate, and tongue displacement in 1923.
    [Show full text]
  • Lieshout Van Lieshout, M.J.S
    EXPLORING ROBIN SEQUENCE Manouk van Lieshout Van Lieshout, M.J.S. ‘Exploring Robin Sequence’ Cover design: Iliana Boshoven-Gkini - www.agilecolor.com Thesis layout and printing by: Ridderprint BV - www.ridderprint.nl ISBN: 978-94-6299-693-9 Printing of this thesis has been financially supported by the Erasmus University Rotterdam. Copyright © M.J.S. van Lieshout, 2017, Rotterdam, the Netherlands All rights reserved. No parts of this thesis may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without permission of the author or when appropriate, the corresponding journals Exploring Robin Sequence Verkenning van Robin Sequentie Proefschrift ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof.dr. H.A.P. Pols en volgens besluit van het College voor Promoties. De openbare verdediging zal plaatsvinden op woensdag 20 september 2017 om 09.30 uur door Manouk Ji Sook van Lieshout geboren te Seoul, Korea PROMOTIECOMMISSIE Promotoren: Prof.dr. E.B. Wolvius Prof.dr. I.M.J. Mathijssen Overige leden: Prof.dr. J.de Lange Prof.dr. M. De Hoog Prof.dr. R.J. Baatenburg de Jong Copromotoren: Dr. K.F.M. Joosten Dr. M.J. Koudstaal TABLE OF CONTENTS INTRODUCTION Chapter I: General introduction 9 Chapter II: Robin Sequence, A European survey on current 37 practice patterns Chapter III: Non-surgical and surgical interventions for airway 55 obstruction in children with Robin Sequence AIRWAY OBSTRUCTION Chapter IV: Unravelling Robin Sequence: Considerations 79 of diagnosis and treatment Chapter V: Management and outcomes of obstructive sleep 95 apnea in children with Robin Sequence, a cross-sectional study Chapter VI: Respiratory distress following palatal closure 111 in children with Robin Sequence QUALITY OF LIFE Chapter VII: Quality of life in children with Robin Sequence 129 GENERAL DISCUSSION AND SUMMARY Chapter VIII: General discussion 149 Chapter IX: Summary / Nederlandse samenvatting 169 APPENDICES About the author 181 List of publications 183 Ph.D.
    [Show full text]
  • Lingual Agenesis: a Case Report and Review of Literature
    Research Article Clinics in Surgery Published: 09 Mar, 2018 Lingual Agenesis: A Case Report and Review of Literature Mark Enverga, Ibrahim Zakhary* and Abraham Khanafer Department of Oral and Maxillofacial Surgery, University of Detroit Mercy, School of Dentistry, USA Abstract Aglossia is a rare condition characterized by the complete absence of the tongue. Its etiology is still unknown. The underlying pathophysiology involves disruption of the development of the lateral lingual swellings and tuberculum impar during the second month of gestation. In this case report, a 26-year old African American female with aglossia presented to the Detroit Mercy Oral Surgery Clinic. The patient presented for extraction of tooth #28, which was located within a fused bony plate at the floor of the mandible. This study presents a case of aglossia, as well as a critical review of aglossia in current literature. Introduction Aglossia is a rare condition characterized by the complete absence of the tongue. The exact etiology of aglossia is still unknown. Possible etiologic factors during embryogenesis include maternal febrile illness, drug ingestion, hypothyroidism, and cytomegalovirus infection. Heat-induced vascular disruption in the fourth embryonic week and chronic villous sampling performed before 10 weeks of amenorrhea, also called the disruptive vascular hypothesis, may be another possible cause of aglossia [1,2]. The underlying pathophysiology involves disruption of the normal embryogenic development of the lateral lingual swellings and tuberculum impar during the second month of gestation [3]. Most cases of aglossia are associated with other congenital limb malformations and craniofacial abnormalities, such as hypodactyly, adactyly, cleft palate, Pierre Robin sequence, Hanhart syndrome, Moebius syndrome, and facial nerve palsy.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub
    US 2010O2.10567A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub. Date: Aug. 19, 2010 (54) USE OF ATUFTSINASATHERAPEUTIC Publication Classification AGENT (51) Int. Cl. A638/07 (2006.01) (76) Inventor: Dorian Bevec, Germering (DE) C07K 5/103 (2006.01) A6IP35/00 (2006.01) Correspondence Address: A6IPL/I6 (2006.01) WINSTEAD PC A6IP3L/20 (2006.01) i. 2O1 US (52) U.S. Cl. ........................................... 514/18: 530/330 9 (US) (57) ABSTRACT (21) Appl. No.: 12/677,311 The present invention is directed to the use of the peptide compound Thr-Lys-Pro-Arg-OH as a therapeutic agent for (22) PCT Filed: Sep. 9, 2008 the prophylaxis and/or treatment of cancer, autoimmune dis eases, fibrotic diseases, inflammatory diseases, neurodegen (86). PCT No.: PCT/EP2008/007470 erative diseases, infectious diseases, lung diseases, heart and vascular diseases and metabolic diseases. Moreover the S371 (c)(1), present invention relates to pharmaceutical compositions (2), (4) Date: Mar. 10, 2010 preferably inform of a lyophilisate or liquid buffersolution or artificial mother milk formulation or mother milk substitute (30) Foreign Application Priority Data containing the peptide Thr-Lys-Pro-Arg-OH optionally together with at least one pharmaceutically acceptable car Sep. 11, 2007 (EP) .................................. O7017754.8 rier, cryoprotectant, lyoprotectant, excipient and/or diluent. US 2010/0210567 A1 Aug. 19, 2010 USE OF ATUFTSNASATHERAPEUTIC ment of Hepatitis BVirus infection, diseases caused by Hepa AGENT titis B Virus infection, acute hepatitis, chronic hepatitis, full minant liver failure, liver cirrhosis, cancer associated with Hepatitis B Virus infection. 0001. The present invention is directed to the use of the Cancer, Tumors, Proliferative Diseases, Malignancies and peptide compound Thr-Lys-Pro-Arg-OH (Tuftsin) as a thera their Metastases peutic agent for the prophylaxis and/or treatment of cancer, 0008.
    [Show full text]
  • Pierre Robin Sequence
    a guide to understanding pierre robin sequence a publication of children’s craniofacial association a guide to understanding pierre robin sequence his parent’s guide to Pierre Robin Sequence is t designed to answer questions that are frequently asked by parents of a child with Pierre Robin Sequence . It is intended to provide a clearer under - standing of the condition for patients, parents and others. The information provided here was written by Richard J. Redett, MD This booklet is intended for information purposes only. It is not a recommendation for treatment. Decisions for treatment should be based on mutual agreement with the craniofacial team. Possible complications should be discussed with the physician prior to and throughout treatment. Design and Production by Robin Williamson, Williamson Creative Services, Inc., Carrollton, TX. ©2008 Children’s Craniofacial Association, Dallas, TX what is pierre robin sequence? n 1923, a physician named Pierre Robin described ia newborn child with an abnormally small lower jaw (mandible), large tongue and breathing problems. Today, Pierre Robin Sequence (PRS) is a condition of facial difference characterized by severe underdevelopment of the lower jaw (retrognathia), a downward or backward-positioned tongue (glossoptosis), respiratory obstruction, and usually a cleft palate (opening in the roof of the mouth). Normally, between nine to eleven weeks of gestation, the tongue moves down and away from the roof of the mouth. This allows space for the sides of the palate to shift to the midline and close. However, in PRS the small lower jaw keeps the tongue positioned higher in the mouth than normal, thereby interfering with the normal closure of the palate.
    [Show full text]
  • Sirenomelia in a Cameroonian Woman
    F1000Research 2012, 1:6 Last updated: 16 MAY 2019 CASE REPORT Sirenomelia in a Cameroonian woman: a case report and review of the literature [version 2; peer review: 2 approved] Frederick LI Morfaw, Philip N Nana Department of Obstetrics and Gynaecology, Faculty of Medicines and Biomedical Sciences, University of Yaoundé, Yaoundé, Cameroon First published: 26 Jul 2012, 1:6 ( Open Peer Review v2 https://doi.org/10.12688/f1000research.1-6.v1) Latest published: 06 Sep 2012, 1:6 ( https://doi.org/10.12688/f1000research.1-6.v2) Reviewer Status Abstract Invited Reviewers Sirenomelia is a rare congenital malformative disorder characterized by 1 2 fusion of the lower limbs giving a characteristic mermaid-like appearance to the affected foetus. We report a case of sirenomelia occurring in a 19 year old Cameroonian woman following premature rupture of membranes and version 2 report associated cord prolapse. This is the first documented case in this country. published We highlight some of the cultural myths associated with this disorder and 06 Sep 2012 discuss our findings relative to the present literature and related controversies on its etiopathogenesis. version 1 published report report 26 Jul 2012 1 Laxmi Baxi, Columbia University Medical Center, New York, NY, USA 2 John Svigos, University of Adelaide, Adelaide, Australia Any reports and responses or comments on the article can be found at the end of the article. Corresponding author: Frederick LI Morfaw ([email protected]) Competing interests: The authors do not declare any competing interests. Grant information: The author(s) declared that no grants were involved in supporting this work.
    [Show full text]
  • Malformation Syndromes: a Review of Mouse/Human Homology
    J Med Genet: first published as 10.1136/jmg.25.7.480 on 1 July 1988. Downloaded from Joalrn(ll of Medical Genetics 1988, 25, 480-487 Malformation syndromes: a review of mouse/human homology ROBIN M WINTER Fromii the Kennetivdy Galton Centre, Clinlicail Research Centre, Northiwick Park Hospital, Harrow, Middlesex HAI 3UJ. SUMMARY The purpose of this paper is to review the known and possible homologies between mouse and human multiple congenital anomaly syndromes. By identifying single gene defects causing similar developmental abnormalities in mouse and man, comparative gene mapping can be carried out, and if the loci in mouse and man are situated in homologous chromosome segments, further molecular studies can be performed to show that the loci are identical. This paper puts forward tentative homologies in the hope that some will be investigated and shown to be true homologies at the molecular level, thus providing mouse models for complex developmental syndromes. The mouse malformation syndromes are reviewed according to their major gene effects. X linked syndromes are reviewed separately because of the greater ease of establishing homology for these conditions. copyright. The purpose of this paper is to review the known even phenotypic similarity would be no guarantee and possible homologies between mouse and human that such genes in man and mouse are homologous". genetic malformation syndromes. Lalley and By identifying single gene defects causing similar following criteria for developmental abnormalities in mouse and man, McKusick' recommend the http://jmg.bmj.com/ identifying gene homologies between species: comparative gene mapping can be carried out, and if (1) Similar nucleotide or amino acid sequence.
    [Show full text]
  • The Genetics of Canine Skull Shape Variation
    PERSPECTIVES The Genetics of Canine Skull Shape Variation Jeffrey J. Schoenebeck and Elaine A. Ostrander1 Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892 ABSTRACT A dog’s craniofacial diversity is the result of continual human intervention in natural selection, a process that began tens of thousands of years ago. To date, we know little of the genetic underpinnings and developmental mechanisms that make dog skulls so morphologically plastic. In this Perspectives, we discuss the origins of dog skull shapes in terms of history and biology and highlight recent advances in understanding the genetics of canine skull shapes. Of particular interest are those molecular genetic changes that are associated with the development of distinct breeds. OMETIME during the Paleolithic, a remarkable transfor- Variation in Skull Shape and Dog Domestication mation occurred. Small numbers of gray wolves adopted S Molecular clock estimates from mitochondrial DNA suggest a new pack master—humans. Through the process of do- domestication started as early as 135,000 years ago (Vilà mestication, the modern dog emerged. Today most dogs et al. 1997). More conservative estimates are based on ar- share little resemblance to their lupine ancestors. As a result chaeological records, which indicate that dog domestication of artificial selection, dogs radiated to fill niches in our lives, began somewhere between 15,000 and 36,000 years ago becoming our herders, guardians, hunters, rescuers, and com- (see summary by Larson et al. 2012). Current archaeologi- panions (Wilcox and Walkowicz 1995). The range of sizes cal estimates depend on carbon dating of bones, whose among dogs extends beyond that of wolves, giving dogs the morphologies appear distinct from that of contemporary distinction of being the most morphologically diverse terres- wolves.
    [Show full text]
  • Haploinsufficiency of BMP4 and OTX2 in the Foetus with an Abnormal
    Capkova et al. Molecular Cytogenetics (2017) 10:47 DOI 10.1186/s13039-017-0351-3 CASEREPORT Open Access Haploinsufficiency of BMP4 and OTX2 in the Foetus with an abnormal facial profile detected in the first trimester of pregnancy Pavlina Capkova1* , Alena Santava1, Ivana Markova2, Andrea Stefekova1, Josef Srovnal3, Katerina Staffova3 and Veronika Durdová2 Abstract Background: Interstitial microdeletion 14q22q23 is a rare chromosomal syndrome associated with variable defects: microphthalmia/anophthalmia, pituitary anomalies, polydactyly/syndactyly of hands and feet, micrognathia/ retrognathia. The reports of the microdeletion 14q22q23 detected in the prenatal stages are limited and the range of clinical features reveals a quite high variability. Case presentation: We report a detection of the microdeletion 14q22.1q23.1 spanning 7,7 Mb and involving the genes BMP4 and OTX2 in the foetus by multiplex ligation-dependent probe amplification (MLPA) and verified by microarray subsequently. The pregnancy was referred to the genetic counselling for abnormal facial profile observed in the first trimester ultrasound scan and micrognathia (suspicion of Pierre Robin sequence), hypoplasia nasal bone and polydactyly in the second trimester ultrasound scan. The pregnancy was terminated on request of the parents. Conclusion: An abnormal facial profile detected on prenatal scan can provide a clue to the presence of rare chromosomal abnormalities in the first trimester of pregnancy despite the normal result of the first trimester screening test. The patients should be provided with genetic counselling. Usage of quick and sensitive methods (MLPA, microarray) is preferable for discovering a causal aberration because some of the CNVs cannot be detected with conventional karyotyping in these cases.
    [Show full text]