Dopamine D1 and D3 Receptor Polypharmacology in Cocaine Reward and Cocaine Seeking

Total Page:16

File Type:pdf, Size:1020Kb

Dopamine D1 and D3 Receptor Polypharmacology in Cocaine Reward and Cocaine Seeking City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2017 Dopamine D1 and D3 Receptor Polypharmacology in Cocaine Reward and Cocaine Seeking Ewa J. Galaj The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/1844 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] DOPAMINE D1 AND D3 RECEPTOR POLYPHARMACOLOGY IN COCAINE REWARD AND COCAINE SEEKING by EWA GALAJ A dissertation submitted to the Graduate Faculty in Psychology in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York, 2017 ii © 2017 Ewa Galaj All Rights Reserved iii D1 AND D3 RECEPTOR POLYPHARMACOLOGY IN COCAINE REWARD AND COCAINE SEEKING by EWA GALAJ This manuscript has been read and accepted for the Graduate Faculty in Psychology in satisfaction of the dissertation requirements for the degree of Doctor of Philosophy. _____________Date Dr. Robert Ranaldi________________________ Chair of Examining Committee _____________Date Dr. Richard Bodnar_________________________ Executive Officer Supervisory Committee Dr. Richard Bodnar_________________________________ Dr. Carolyn Pytte___________________________________ Dr. Kenneth Carr___________________________________ Dr. Grace Rossi____________________________________ THE CITY UNIVERSITY OF NEW YORK iv ACKNOWLEDGEMENTS I would like to express my deep appreciation and gratitude to my advisor, Dr. Robert Ranaldi, for his patience and mentorship. I am truly fortunate to have had the opportunity to work with him and to learn what good science is. I would like to thank him for his patient teaching on how to think critically and to write in clear, focused manner. I am very grateful for his confidence and continuous support, especially in times of discouragement and doubt. Without his guidance and help this dissertation would not have been possible. I also want to thank the members of my dissertation committee: Drs. Carolyn Pytte, Richard Bodnar, Kenneth Carr and Grace Rossi for their guidance on this project. I am very thankful to Dr. Rossi for the support and encouragement that she gave me on pursuing a doctoral degree. Very special thanks go to Monica Manuszak who provided exceptional dedication and assistance on many projects that we worked on together. I also would like to acknowledge other students in Dr. Ranaldi’s laboratory who provided technical support in various ways: Sandra Babic, Neal Suppersaad, Ali Shukur, Jordan Schachar, David Arastehmanesh, Joseph Haynes and Ivonne Cruz. Lastly, I want to thank my siblings, Beata Arnold and Marek Galaj, for their endless support in this challenging process. This dissertation is dedicated to my mother, Rozalia Galaj. v PREFACE Portions of this dissertation have been accepted for publication. Chapters 2 and 3 consist of text and data that have been accepted for publication by the peer-review journal Psychopharmacology in August of 2016. The manuscript titled “Dopamine D1 and D3 receptor interaction in cocaine reward and seeking in rats” was co-authored with Drs. Wayne Harding and Robert Ranaldi. vi Dopamine D1 and D3 receptor polypharmacology in cocaine reward and cocaine seeking ABSTRACT Advisor: Professor Robert Ranaldi Background: In the search for efficacious pharmacotherapies to treat cocaine addiction much attention has been given to agents targeting D1 or D3 receptors because of the involvement of these receptors in cocaine-related behaviors. D1 and D3 receptor partial agonists and antagonists have been shown to reduce cocaine reward, reinstatement of cocaine seeking and conditioned place preference (CPP) in rodents and non-human primates. However, translation of these encouraging results with selective D1 or D3 receptor agents has been limited due to a number of factors including toxicity, poor pharmacokinetic properties and extrapyramidal and sedative side effects. Purpose: Given the role of D1 and D3 receptors in cocaine-related behaviors and the urgent need for effective anti-cocaine treatments, it is important that we continue to pursue new pharmacological approaches such as the combinations of compounds that have differential functions at multiple dopamine receptors. The aims of this dissertation were to evaluate the effects of the novel strategy of simultaneous treatments with a D3 receptor antagonist (NGB 2904) and D1 receptor partial agonist (SKF 77434) in animal models of drug addiction, including cue-induced reinstatement of cocaine seeking, cocaine conditioned place preference (CPP) and cocaine self-administration in rats. vii Methods: In the reinstatement experiment, rats underwent cocaine self-administration training followed by extinction and a cue-induced reinstatement test. Prior to the reinstatement test rats were treated with one of several doses of NGB 2904, SKF 77434 or the combination of the two and their lever presses were measured. In the CPP experiment rats were conditioned to experience cocaine in one compartment of a CPP apparatus and saline in the other. After conditioning rats were treated with the same compounds alone or combined prior to the CPP test. The time spent in the cocaine-paired compartment prior to and after conditioning was measured as an indication of cocaine CPP. In the self-administration experiment, rats were trained to self-administer cocaine under a progressive ratio (PR) schedule of reinforcement. After demonstrating stable baseline break points (BPs) rats were treated repeatedly with NGB 2904 or SKF 77434 alone or the combination of the two. Results: The co-administration of NGB 2904 and SKF 77434, at doses which when administered individually produced no significant effects, prior to reinstatement or CPP tests significantly reduced lever pressing and time spent in the cocaine-paired environment, suggesting synergistic effects of the combined compounds on their abilities to reduce cocaine seeking. When administered to rats self-administering cocaine under a PR schedule of reinforcement doses of NGB 2904 which were ineffective alone significantly potentiated the break point-reducing effects of SKF 77434. Conclusions: The results of this study indicate that the combined treatment with a D1 receptor partial agonist and D3 receptor antagonist produces robust decreases in cocaine seeking and reward. These effects provide insight into a novel therapeutic approach to treat cocaine addiction. viii TABLE OF CONTENTS List of Figures.………………………………………………………..……….……..xi 1. Chapter 1- General Introduction …………………………………………………......1 1.1. Understanding drug abuse and addiction…………………………………………......1 1.2. Dopamine and drug reward…………………………………………………………...3 1.3. Dopamine receptors: subtypes, signaling and location…………………………..…...9 1.4. D1 receptors in reward ……………………………………………………………...13 1.5. The role of D1 receptors in conditioned place preference…………………………..18 1.6. D1 receptors and reinstatement of drug seeking…………………………………….21 1.7. D3 receptors in drug reward………………………………………….…...………...24 1.8. D3 receptors and CPP……………………………………………………………….30 1.9. D3 receptors and drug seeking………………………………………………………32 1.10. D1-D3 receptor interactions at the physical, biochemical and functional levels…..35 1.11. D1-D2 receptor heteromers……………………………………………………...…39 1.12. Current pharmacological strategies and possible directions in drug addiction treatment………………………………………………………………………...…..43 1.13. Specific Aims………………...…………………………………………………….45 2. Chapter 2. Simultaneous D1 receptor partial agonism and D3 receptor antagonism reduce cue-induced reinstatement of cocaine seeking and conditioned place preference……………………………………………………………………………46 2.1. Introduction………………………………………………………………………….46 2.2. Methods………...……………………………………………………………………48 2.2.1. Subjects……………………………………………………………………………48 ix 2.2.2. Surgery…………………………………………………………………………….49 2.2.3. Apparatus………………………………………………………………………….50 2.2.4. Drugs………………………………………………………………………………51 2.2.5. Procedure………………………………………………………………………….51 Experiment 1: Cue-induced reinstatement of cocaine seeking……………………51 Experiment 2: Cocaine conditioned place preference…………………………….52 2.2.6. Data analysis………………………………………………………………………53 2.3. Results...………………………………………………………………...…………..54 Experiment 1: Cue-induced reinstatement of cocaine seeking……………….……54 Experiment 2: Cocaine conditioned place preference…………………………......56 2.4. Discussion…………………………...……………………………………………...61 3. Chapter 3. Interaction of D1 and D3 receptors in cocaine reward ……….....……...63 3.1. Introduction………………………………………...……………………………….63 3.2. Methods……………………………………………………...……………………..65 3.2.1. Subjects……………………………………………………………………………65 3.2.2. Surgery…………………………………………………………………………….65 3.2.3. Apparatus………………………………………………………………………….66 3.2.4. Drugs………………………………………………………………………………66 3.2.5. Procedure……………………………………………………………………….....67 Experiment 3: Cocaine self-administration under the PR schedule (cocaine reward)………………………………………………………………………….…67 3.2.6. Data analysis………………………………………………………………………68 x 3.3. Results of Experiment 3: Cocaine self-administration under a PR schedule of reinforcement (cocaine reward)……………………………………………….…..68 3.4. Discussion…………………………………………………………………...……....71 4. Chapter 4. General Discussion…………………………………………...……….…72 4.1. Conclusions……………………………………………………………………….…81 4.2. Implications and
Recommended publications
  • Inhibition of 50-Khz Ultrasonic Vocalizations by Dopamine Receptor Subtype-Selective Agonists and Antagonists in Adult Rats
    Psychopharmacology (2013) 226:589–600 DOI 10.1007/s00213-012-2931-6 ORIGINAL INVESTIGATION Inhibition of 50-kHz ultrasonic vocalizations by dopamine receptor subtype-selective agonists and antagonists in adult rats Tina Scardochio & Paul B. S. Clarke Received: 6 September 2012 /Accepted: 13 November 2012 /Published online: 29 November 2012 # Springer-Verlag Berlin Heidelberg 2012 Abstract calling. The D4 agonist and antagonist did not significantly Rationale Adult rats emit ultrasonic calls at around 22 and affect 50-kHz call rates. Twenty-two-kilohertz calls oc- 50 kHz, which are often elicited by aversive and rewarding curred infrequently under all drug conditions. stimuli, respectively. Dopamine (DA) plays a role in aspects Conclusion Following systemic drug administration, tonic of both reward and aversion. pharmacological activation of D1-like or D2-like DA recep- Objective The purpose of this study is to investigate the tors, either alone or in combination, does not appear suffi- effects of DA receptor subtype-selective agonists on 22- cient to induce 50-kHz calls. Dopaminergic transmission and 50-kHz call rates. through D1, D2, and D3 receptors appears necessary for Methods Ultrasonic calls were recorded in adult male rats spontaneous calling. that were initially screened with amphetamine to eliminate low 50-kHz callers. The remaining subjects were tested after Keywords Vocalization . Dopamine receptor . Reward . acute intraperitoneal or subcutaneous injection of the fol- Aversion . Agonist . Antagonist . Reinforcement . lowing DA receptor-selective agonists and antagonists: Behavior . D1 [D-1] . D2 [D-2] A68930 (D1-like agonist), quinpirole (D2-like agonist), PD 128907 (D3 agonist), PD 168077 (D4 agonist), SCH 39166 (D1-like antagonist), L-741,626 (D2 antagonist), Introduction NGB 2904 (D3 antagonist), and L-745,870 (D4 antagonist).
    [Show full text]
  • Sex Differences in Nicotine-Conditioned Hyperactivity in a Model of Dopamine D2 Receptor Priming: Roles of Dopamine D2 and D3 Receptor Subtypes
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2008 Sex Differences in Nicotine-Conditioned Hyperactivity in a Model of Dopamine D2 Receptor Priming: Roles of Dopamine D2 and D3 Receptor Subtypes. Ashley Brianna Sheppard East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Hormones, Hormone Substitutes, and Hormone Antagonists Commons Recommended Citation Sheppard, Ashley Brianna, "Sex Differences in Nicotine-Conditioned Hyperactivity in a Model of Dopamine D2 Receptor Priming: Roles of Dopamine D2 and D3 Receptor Subtypes." (2008). Electronic Theses and Dissertations. Paper 1978. https://dc.etsu.edu/etd/ 1978 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Sex Differences in Nicotine-conditioned Hyperactivity in a Model of Dopamine D2 Receptor Priming: Roles of Dopamine D2 and D3 Receptor Subtypes A thesis presented to the faculty of the Department of Psychology East Tennessee State University In partial fulfillment of the requirements for the degree of Master of Arts in Psychology by Ashley Brianna Sheppard August 2008 Russell Brown, PhD., Chair Michael Woodruff, PhD., Committee member Otto Zinser,
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Pharmacological Stimulation of Brain Dopamine D3 Receptors Induced
    ABSTRACT Pharmacological stimulation of brain dopamine D3 receptors induced ejaculation in anaesthetised rats # 163 Pierre Clément 1, Jacques Bernabé 1, Laurent Alexandre 1, François Giuliano 1,2 * 1PELVIPHARM Laboratories, Gif-sur-Yvette, France 2Raymond Poincaré Hospital, Neuro-Urology Unit, Garches, France * e-mail address: [email protected] ABSTRACT INTRODUCTION & OBJECTIVE RESULTS Introduction and Objective : We have previously found that intracerebroventricular (i.c.v.) Ejaculation consists in two distinct and successive phases i.e. emission and expulsion with the latter caused Figure 1 . Sample of EMG recording of the injection of the non selective dopamine D2/D3 receptors agonist by rhythmic contractions of pelvic floor striated muscles; the primary role being played by bulbospongiosus 7-OH-DPAT i.c.v. bulbospongiosus (BS) muscles obtained in quinelorane induced rhythmic (BS) muscles (Gerstenberg et al., 1990). (1 µg) anaesthetised rats after i.c.v. delivery of 7- contractions of bulbospongiosus 10 s (BS) muscles, which is key for OH-DPAT (1 µg). expelling semen out the urethra, in anaesthetised rats. In the present We have previously reported that the dopamine D2-like receptor agonist quinelorane delivered in cerebral A magnification of the tracing of BS-EMG is study we aimed at demonstrating ventricle was capable to elicit rhythmic BS muscles contractions in anaesthetised rats (Clement et al., 2006; displayed in the inset and allows to see the which of these dopamine receptor subtypes is involved in triggering BS EAU 2006, poster #164). In addition it has been shown that the preferential D3 receptor agonist 7-OH-DPAT V unitary events (i.e.
    [Show full text]
  • Subject Index
    Subject Index A 68930 130 appetitive Conditions 81 A 86929 130 arachidonic acid 185,223 acetylcholine (ACh) 9 arcuate nucleus 89,97 acoustic neurinoma 227 aripiprazole 36 ACTH, see Adrenocortcotropic asynaptic release 100 hormone 173 ATF1, see Activating transcription factor activating transcription factor 1 (ATF 1) 1 326 attention 276 adaptive reponses 321 attention deficit hyperactivity disorder adenosine A2A receptor 164 (ADHD) 278 adenosine triphosphatase 269, 306 autism 128 adenylyl cyclase 11, 121, 163, 185, 236 autoreceptor 34 ADHD, see attention deficit aversive conditions 81 hyperactivity disorder adrenal gland 173 basal ganglia 31,166,310 adrenal medullary hormones 25 bed nucleus 55 adrenocorticotropic hormone (ACTH) benzazepine 130, 140 173 benzonaphtazepine 131 aggression 276 benztropine 270 akinesia 167 beta (~) adrenoreceptor 10, 238 alcohol 33, 169,203 beta (~)-arrestin 135 alpha (a)olf protein 237 beta (~)-endorphin 173 alpha (a)receptor adrenergic 10 biogenic amines 29 alpha's protein 237 bipolar cell 92 alpha-(a) melanocyte stimulating bipolar disorder 127,227 hormone (a-MSH) 171 bradykinesia 167 alpha-(a) methyltyrosine 33 brain development 201 amacrine cells 92 brain-derived neurotrophic factor amineptine 206 (BDNF) 187 aminotetralin 195 bromocriptine 12, 171, 309 amisulpride 196 brown adipose tissue 243 amitriptyline 206 buproprion 206 AMPA receptor channels 333 butaclamol 125,131 amperozide 196 amphetamine 12,33,135, 169,270,276, calbindin (CaBP) 44,87 325 calcineurin 244 amphetamine stereoselectivity 262 calcium
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0052435 A1 Van Der Graaf Et Al
    US 20060052435A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0052435 A1 Van der Graaf et al. (43) Pub. Date: Mar. 9, 2006 (54) SELECTIVE DOPAMIN D3 RECEPTOR (86) PCT No.: PCT/GB02/05595 AGONSTS FOR THE TREATMENT OF SEXUAL DYSFUNCTION (30) Foreign Application Priority Data (76) Inventors: Pieter Hadewijn Van der Graaf, Dec. 18, 2001 (GB) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - O1302199 County of Kent (GB); Christopher Peter Wayman, County of Kent (GB); Publication Classification Andrew Douglas Baxter, Bury St. Edmunds (GB); Andrew Simon Cook, (51) Int. Cl. County of Kent (GB); Stephen A6IK 31/405 (2006.01) Kwok-Fung Wong, Guilford, CT (US) (52) U.S. Cl. .............................................................. 514/419 Correspondence Address: (57) ABSTRACT PFIZER INC. PATENT DEPARTMENT, MS8260-1611 The use of a composition comprising a Selective dopamine EASTERN POINT ROAD D3 receptor agonist, wherein Said dopamine D3 receptor GROTON, CT 06340 (US) agonist is at least about 15-times more functionally Selective for a dopamine D3 receptor as compared with a dopamine (21) Appl. No.: 10/499,210 D2 receptor when measured using the same functional assay, in the preparation of a medicament for the treatment and/or (22) PCT Filed: Dec. 10, 2002 prevention of Sexual dysfunction. Patent Application Publication Mar. 9, 2006 Sheet 1 of 2 US 2006/0052435 A1 Figure 1 A Selective D3 agonist provides a significant therapeutic window between prosexual and dose-limitind side effects Apomorphine EHV VE - vomiterection D27.2nMD33.9nM E HV H - hypotension O3 0.56nM Log Free plasma O. 1.0 O 1OO 1OOO conc (nM) D3D24973M agonist E noH noV D2 adOnist D2 ag Conclusion D3 No effect D2 & D3 mediates erection D2 mediates vomiting/hypotension Patent Application Publication Mar.
    [Show full text]
  • L-Tetrahydropalmatine Reduces Nicotine Self-Administration and Reinstatement in Rats
    Faison et al. BMC Pharmacology and Toxicology (2016) 17:49 DOI 10.1186/s40360-016-0093-6 RESEARCH ARTICLE Open Access l-tetrahydropalmatine reduces nicotine self- administration and reinstatement in rats Shamia L. Faison1,2, Charles W. Schindler2, Steven R. Goldberg2ˆ and Jia Bei Wang1* Abstract Background: The negative consequences of nicotine use are well known and documented, however, abstaining from nicotine use and achieving abstinence poses a major challenge for the majority of nicotine users trying to quit. l-Tetrahydropalmatine (l-THP), a compound extracted from the Chinese herb Corydalis, displayed utility in the treatment of cocaine and heroin addiction via reduction of drug-intake and relapse. The present study examined the effects of l-THP on abuse-related effects of nicotine. Methods: Self-administration and reinstatement testing was conducted. Rats trained to self-administer nicotine (0.03 mg/kg/injection) under a fixed-ratio 5 schedule (FR5) of reinforcement were pretreated with l-THP (3 or 5 mg/kg), varenicline (1 mg/kg), bupropion (40 mg/kg), or saline before daily 2-h sessions. Locomotor, food, and microdialysis assays were also conducted in separate rats. Results: l-THP significantly reduced nicotine self-administration (SA). l-THP’s effect was more pronounced than the effect of varenicline and similar to the effect of bupropion. In reinstatement testing, animals were pretreated with the same compounds, challenged with nicotine (0.3 mg/kg, s.c.), and reintroduced to pre-extinction conditions. l-THP blocked reinstatement of nicotine seeking more effectively than either varenicline or bupropion. Locomotor data revealed that therapeutic doses of l-THP had no inhibitory effects on ambulatory ability and that l-THP (3 and 5 mg/kg) significantly blocked nicotine induced hyperactivity when administered before nicotine.
    [Show full text]
  • Up-Regulation on Cytochromes P450 in Rat Mediated by Total Alkaloid Extract from Corydalis Yanhusuo
    Yan et al. BMC Complementary and Alternative Medicine 2014, 14:306 http://www.biomedcentral.com/1472-6882/14/306 RESEARCH ARTICLE Open Access Up-regulation on cytochromes P450 in rat mediated by total alkaloid extract from Corydalis yanhusuo Jingjing Yan1, Xin He1,2*, Shan Feng1, Yiran Zhai1, Yetao Ma1, Sheng Liang1 and Chunhuan Jin1 Abstract Background: Yanhusuo (Corydalis yanhusuo W.T. Wang; YHS), is a well-known traditional Chinese herbal medicine, has been used in China for treating pain including chest pain, epigastric pain, and dysmenorrhea. Its alkaloid ingredients including tetrahydropalmatine are reported to inhibit cytochromes P450 (CYPs) activity in vitro. The present study is aimed to assess the potential of total alkaloid extract (TAE) from YHS to effect the activity and mRNA levels of five cytochromes P450 (CYPs) in rat. Methods: Rats were administered TAE from YHS (0, 6, 30, and 150 mg/kg, daily) for 14 days, alanine aminotransferase (ALT) levels in serum were assayed, and hematoxylin and eosin-stained sections of the liver were prepared for light microscopy. The effects of TAE on five CYPs activity and mRNA levels were quantitated by cocktail probe drugs using a rapid chromatography/tandem mass spectrometry (LC-MS/MS) method and reverse transcription-polymerase chain reaction (RT-PCR), respectively. Results: In general, serum ALT levels showed no significant changes, and the histopathology appeared largely normal compared with that in the control rats. At 30 and 150 mg/kg TAE dosages, an increase in liver CYP2E1 and CYP3A1 enzyme activity were observed. Moreover, the mRNA levels of CYP2E1 and CYP3A1 in the rat liver, lung, and intestine were significantly up-regulated with TAE from 6 and 30 mg/kg, respectively.
    [Show full text]
  • Antipsychotic Drugs Influence Dopamine Neuron Terminals Via Action on D2‐Receptors and Vesicles
    Antipsychotic Drugs Influence Dopamine Neuron Terminals via Action on D2‐receptors and Vesicles Alex Klausing Honors Thesis in the Pharmaceutical Sciences Major College of Pharmacy The Ohio State University Advisor: Lane J. Wallace Spring 2013 Abstract Dopamine D2 antagonist antipsychotic drugs share the effects of increasing dopamine synthesis, dopamine neuron firing rate, and dopamine and DOPAC levels. These antagonists all raise extracellular dopamine to approximately 163% of control and DOPAC levels to approximately 200% of control without changing tissue level of dopamine. Variability in striatal tissue DOPAC level (190 – 350% of control) and rates of dopamine synthesis (190‐378% of control) reported after administration of various antipsychotic drugs gives evidence that these parameters are influenced by factors besides the antagonism of the D2 receptor. We used a computational model of dopaminergic terminals in the striatum to determine what parameters other than D2 receptors might be targets for the drugs. Simulation model results suggest that D2 receptor antagonism results in a slight increase in rate of dopamine exocytosis accompanied by a small increase in rate of dopamine synthesis needed to maintain the increase in rate of exocytosis and a small increase in rate of dopamine synthesis specifically dedicated to DOPAC secretion. Simulation model results also suggest that variable increases in levels of tissue DOPAC result from increases in passive diffusion of dopamine out from vesicles coupled with an increase in rate of dopamine synthesis required to maintain tissue levels of dopamine. Biochemical data reported in the literature suggests changes in passive diffusion depend on the ability of the antipsychotic drug to diffuse into and alkalinize vesicles.
    [Show full text]
  • Parkinson's Disease Quality Measurement Set Update
    Parkinson’s Disease Quality Measurement Set Update Approved by the Parkinson’s Disease Update Quality Measurement Development Work Group on September 3, 2015, by the AAN Quality and Safety Subcommittee on September 23, 2015; by the AAN Practice Committee on October 19, 2015; and by the AANI Board of Directors on November 5, 2015. ©2015. American Academy of Neurology. All Rights Reserved. 1 CPT Copyright 2004-2013 American Medical Association. Disclaimer Performance Measures (Measures) and related data specifications developed by the American Academy of Neurology (AAN) are intended to facilitate quality improvement activities by providers. AAN Measures: 1) are not clinical guidelines and do not establish a standard of medical care, and have not been tested for all potential applications; 2) are not continually updated and may not reflect the most recent information; and 3) are subject to review and may be revised or rescinded at any time by the AAN. The measures, while copyrighted, can be reproduced and distributed, without modification, for noncommercial purposes (e.g., use by health care providers in connection with their practices); they must not be altered without prior written approval from the AAN. Commercial use is defined as the sale, license, or distribution of the measures for commercial gain, or incorporation of the measures into a product or service that is sold, licensed, or distributed for commercial gain. Commercial uses of the measures require a license agreement between the user and the AAN. Neither the AAN nor its members are responsible for any use of the measures. AAN Measures and related data specifications do not mandate any particular course of medical care and are not intended to substitute for the independent professional judgment of the treating provider, as the information does not account for individual variation among patients.
    [Show full text]
  • Comprehensive Review on the Interaction Between Natural Compounds and Brain Receptors: Benefits and Toxicity
    European Journal of Medicinal Chemistry 174 (2019) 87e115 Contents lists available at ScienceDirect European Journal of Medicinal Chemistry journal homepage: http://www.elsevier.com/locate/ejmech Review article Comprehensive review on the interaction between natural compounds and brain receptors: Benefits and toxicity * Ana R. Silva a, Clara Grosso b, , Cristina Delerue-Matos b,Joao~ M. Rocha a, c a Centre of Molecular and Environmental Biology (CBMA), Department of Biology (DB), University of Minho (UM), Campus Gualtar, P-4710-057, Braga, Portugal b REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politecnico do Porto, Rua Dr. Antonio Bernardino de Almeida, 431, P-4249-015, Porto, Portugal c REQUIMTE/LAQV, Grupo de investigaçao~ de Química Organica^ Aplicada (QUINOA), Laboratorio de polifenois alimentares, Departamento de Química e Bioquímica (DQB), Faculdade de Ci^encias da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n, P-4169-007, Porto, Portugal article info abstract Article history: Given their therapeutic activity, natural products have been used in traditional medicines throughout the Received 6 December 2018 centuries. The growing interest of the scientific community in phytopharmaceuticals, and more recently Received in revised form in marine products, has resulted in a significant number of research efforts towards understanding their 10 April 2019 effect in the treatment of neurodegenerative diseases, such as Alzheimer's (AD), Parkinson (PD) and Accepted 11 April 2019 Huntington (HD). Several studies have shown that many of the primary and secondary metabolites of Available online 17 April 2019 plants, marine organisms and others, have high affinities for various brain receptors and may play a crucial role in the treatment of diseases affecting the central nervous system (CNS) in mammalians.
    [Show full text]
  • NIDA Drug Supply Program Catalog, 25Th Edition
    RESEARCH RESOURCES DRUG SUPPLY PROGRAM CATALOG 25TH EDITION MAY 2016 CHEMISTRY AND PHARMACEUTICS BRANCH DIVISION OF THERAPEUTICS AND MEDICAL CONSEQUENCES NATIONAL INSTITUTE ON DRUG ABUSE NATIONAL INSTITUTES OF HEALTH DEPARTMENT OF HEALTH AND HUMAN SERVICES 6001 EXECUTIVE BOULEVARD ROCKVILLE, MARYLAND 20852 160524 On the cover: CPK rendering of nalfurafine. TABLE OF CONTENTS A. Introduction ................................................................................................1 B. NIDA Drug Supply Program (DSP) Ordering Guidelines ..........................3 C. Drug Request Checklist .............................................................................8 D. Sample DEA Order Form 222 ....................................................................9 E. Supply & Analysis of Standard Solutions of Δ9-THC ..............................10 F. Alternate Sources for Peptides ...............................................................11 G. Instructions for Analytical Services .........................................................12 H. X-Ray Diffraction Analysis of Compounds .............................................13 I. Nicotine Research Cigarettes Drug Supply Program .............................16 J. Ordering Guidelines for Nicotine Research Cigarettes (NRCs)..............18 K. Ordering Guidelines for Marijuana and Marijuana Cigarettes ................21 L. Important Addresses, Telephone & Fax Numbers ..................................24 M. Available Drugs, Compounds, and Dosage Forms ..............................25
    [Show full text]