Sfn2015 Items of Interest
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) Patent Application Publication (10) Pub. No.: US 2004/0224020 A1 Schoenhard (43) Pub
US 2004O224020A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0224020 A1 Schoenhard (43) Pub. Date: Nov. 11, 2004 (54) ORAL DOSAGE FORMS WITH (22) Filed: Dec. 18, 2003 THERAPEUTICALLY ACTIVE AGENTS IN CONTROLLED RELEASE CORES AND Related U.S. Application Data IMMEDIATE RELEASE GELATIN CAPSULE COATS (60) Provisional application No. 60/434,839, filed on Dec. 18, 2002. (76) Inventor: Grant L. Schoenhard, San Carlos, CA (US) Publication Classification Correspondence Address: (51) Int. Cl. ................................................... A61K 9/24 Janet M. McNicholas (52) U.S. Cl. .............................................................. 424/471 McAndrews, Held & Malloy, Ltd. 34th Floor (57) ABSTRACT 500 W. Madison Street Chicago, IL 60661 (US) The present invention relates to oral dosage form with active agents in controlled release cores and in immediate release (21) Appl. No.: 10/742,672 gelatin capsule coats. Patent Application Publication Nov. 11, 2004 Sheet 1 of 3 US 2004/0224020 A1 r N 2.S Hr s Patent Application Publication Nov. 11, 2004 Sheet 2 of 3 US 2004/0224020 A1 r CN -8 e N va N . t Cd NOLLYRILNONOO Patent Application Publication Nov. 11, 2004 Sheet 3 of 3 US 2004/0224020 A1 US 2004/0224020 A1 Nov. 11, 2004 ORAL DOSAGE FORMS WITH released formulations, a long t is particularly disadvan THERAPEUTICALLY ACTIVE AGENTS IN tageous to patients Seeking urgent treatment and to maintain CONTROLLED RELEASE CORES AND MEC levels. A second difference in the pharmacokinetic IMMEDIATE RELEASE GELATIN CAPSULE profiles of controlled release in comparison to immediate COATS release drug formulations is that the duration of Sustained plasma levels is longer in the controlled release formula CROSS REFERENCED APPLICATIONS tions. -
Pipeline of Medications to Treat Substance Use Disorders
Pipeline of Medications to Treat Substance Use Disorders Iván D. Montoya, M.D., M.P.H. Clinical Director and Deputy Director Division of Therapeutics and Medical Consequences NIDA • Cocaine Outline • Methamphetamine • Cannabis Past-Year Prevalence Per 1,000 1,000 People Per NSDUH, 2018 Past-Year Prevalence Per 1,000 1,000 People Per NSDUH, 2018 Number of Overdose Deaths CDC, 2018 Molecular Neurobiology of Stimulant Use Disorders Glutamate Enkephalin or Excitatory Input Dynorphin Inhibitory Neuron k Opioid Dopamine Receptors Enkephalin Receptors Inhibitory Dopamine Neuron GABA Neuron Neuron m Opioid REWARD Receptors GABA-A Receptors GABA Inhibitory Feedback GABA Presynaptic Inhibitory Opioid Neuron Receptors (m, d?) Ventral Tegmental Area Nucleus Accumbens (VTA) (NAc) Adapted from Koop, 2016 • 5HT2c Agonist - Lorcaserin (Belviq XR®) • Orexin 1 antagonists Cocaine • EMB-101 (Oxazepam + Metyrapone) • Buprenorphine + Opioid Antagonist – Clinical Studies • Ketamine • Oxytocin • L-Tetrahydropalmatine (L-THP) 5-HT2C Agonist - Lorcaserin • Clinically available • Selective agonist • Modulate mesolimbic dopamine, decreasing dopamine release • FDA-approved for weight loss • Lorcaserin (Belviq®)10 mg bid • Lorcaserin XR (Belviq XR®) 20 mg qd • Schedule IV • Arena Pharmaceuticals - Eisai Inc. Lorcaserin Pre-clinical Studies - Stimulants • Decrease cocaine self-administration and the reinstatement of responding for cocaine (Grottick et al., 2000; Burmeister et al., 2004; Burbassi and Cervo 2008; Cunningham et al., 2011; Manvich et al., 2012; RüediBettschen -
TABLE 1 Studies of Antagonist Activity in Constitutively Active
TABLE 1 Studies of antagonist activity in constitutively active receptors systems shown to demonstrate inverse agonism for at least one ligand Targets are natural Gs and constitutively active mutants (CAM) of GPCRs. Of 380 antagonists, 85% of the ligands demonstrate inverse agonism. Receptor Neutral Antagonist Inverse Agonist Reference Human β2-adrenergic Dichloroisoproterenol, pindolol, labetolol, timolol, Chidiac et al., 1996; Azzi et alprenolol, propranolol, ICI 118,551, cyanopindolol al., 2001 Turkey erythrocyte β-adrenergic Propranolol, pindolol Gotze et al., 1994 Human β2-adrenergic (CAM) Propranolol Betaxolol, ICI 118,551, sotalol, timolol Samama et al., 1994; Stevens and Milligan, 1998 Human/guinea pig β1-adrenergic Atenolol, propranolol Mewes et al., 1993 Human β1-adrenergic Carvedilol CGP20712A, metoprolol, bisoprolol Engelhardt et al., 2001 Rat α2D-adrenergic Rauwolscine, yohimbine, WB 4101, idazoxan, Tian et al., 1994 phentolamine, Human α2A-adrenergic Napthazoline, Rauwolscine, idazoxan, altipamezole, levomedetomidine, Jansson et al., 1998; Pauwels MPV-2088 (–)RX811059, RX 831003 et al., 2002 Human α2C-adrenergic RX821002, yohimbine Cayla et al., 1999 Human α2D-adrenergic Prazosin McCune et al., 2000 Rat α2-adrenoceptor MK912 RX821002 Murrin et al., 2000 Porcine α2A adrenoceptor (CAM- Idazoxan Rauwolscine, yohimbine, RX821002, MK912, Wade et al., 2001 T373K) phentolamine Human α2A-adrenoceptor (CAM) Dexefaroxan, (+)RX811059, (–)RX811059, RS15385, yohimbine, Pauwels et al., 2000 atipamezole fluparoxan, WB 4101 Hamster α1B-adrenergic -
D2 Receptors in the Paraventricular Nucleus Regulate Genital Responses and Copulation in Male Rats
Pharmacology Biochemistry & Behavior, Vol. 39, pp. 177-181. ~ Pergamon Press plc, 1991. Printed in the U.S.A. 00914057/91 $3.00 + .00 D2 Receptors in the Paraventricular Nucleus Regulate Genital Responses and Copulation in Male Rats ROBERT C. EATON, VINCENT P, MARKOWSKI, LUCILLE A. LUMLEY, JAMES T. THOMPSON, JASON MOSES AND ELAINE M. HULL 1 Department of Psychology, State University of New York at Buffalo, Amherst, NY 14260 Received 30 April 1990 EATON, R. C., V. P. MARKOWSKI, L. A. LUMLEY, J. T. THOMPSON, J. MOSES AND E. M. HULL. D2 receptors in the paraventricular nucleus regulate genital responses and copulation in male rats. PHARMACOL BIOCHEM BEHAV 39(1) 177- 181, 1991.--The D2 dopamine receptor agonist quinelorane (LY-163502), microinjected into the paraventricular nucleus (PVN), affected genital responses of restrained supine male rats in a biphasic dose-dependent fashion. A moderate dose (1 Ixg) facilitated penile responses (intense erections and penile movements), and decreased the latency to the first response. A high dose of quinelorane (10 Ixg) facilitated seminal emission while inhibiting penile responses. The addition of the D1 antagonist SCH-23390 to the 1 ixg dose of quinelorane potentiated quinelorane's increase in seminal emission. We suggest that D1 receptors in the PVN may be antagonistic to D2 receptor-mediated seminal emission, and possibly also penile responses. In copulation tests 1 ~g quinelorane decreased mount latency, whereas 10 ixg quinelorane increased mount and intromission latencies and slowed copula- tory rate. Both 1 and 10 Ixg quinelorane, and also 1 and 10 Ixg of the mixed D1 and D2 agonist apomorphine, decreased the number of intromissions preceding ejaculation. -
309 Molecular Role of Dopamine in Anhedonia Linked to Reward
[Frontiers In Bioscience, Scholar, 10, 309-325, March 1, 2018] Molecular role of dopamine in anhedonia linked to reward deficiency syndrome (RDS) and anti- reward systems Mark S. Gold8, Kenneth Blum,1-7,10 Marcelo Febo1, David Baron,2 Edward J Modestino9, Igor Elman10, Rajendra D. Badgaiyan10 1Department of Psychiatry, McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA, 2Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of South- ern California, Los Angeles, CA, USA, 3Global Integrated Services Unit University of Vermont Center for Clinical and Translational Science, College of Medicine, Burlington, VT, USA, 4Department of Addiction Research, Dominion Diagnostics, LLC, North Kingstown, RI, USA, 5Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purbe Medinpur, West Bengal, India, 6Division of Neuroscience Research and Therapy, The Shores Treatment and Recovery Center, Port St. Lucie, Fl., USA, 7Division of Nutrigenomics, Sanus Biotech, Austin TX, USA, 8Department of Psychiatry, Washington University School of Medicine, St. Louis, Mo, USA, 9Depart- ment of Psychology, Curry College, Milton, MA USA,, 10Department of Psychiatry, Wright State University, Boonshoft School of Medicine, Dayton, OH ,USA. TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Anhedonia and food addiction 4. Anhedonia in RDS Behaviors 5. Anhedonia hypothesis and DA as a “Pleasure” molecule 6. Reward genes and anhedonia: potential therapeutic targets 7. Anti-reward system 8. State of At of Anhedonia 9. Conclusion 10. Acknowledgement 11. References 1. ABSTRACT Anhedonia is a condition that leads to the loss like “anti-reward” phenomena. These processes of feelings pleasure in response to natural reinforcers may have additive, synergistic or antagonistic like food, sex, exercise, and social activities. -
Trace Amine-Associated Receptor 1 Activation Regulates Glucose-Dependent
Trace amine-associated receptor 1 activation regulates glucose-dependent insulin secretion in pancreatic beta cells in vitro by ©Arun Kumar A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science Department of Biochemistry, Faculty of Science Memorial University of Newfoundland FEBRUARY 2021 St. John’s, Newfoundland and Labrador i Abstract Trace amines are a group of endogenous monoamines which exert their action through a family of G protein-coupled receptors known as trace amine-associated receptors (TAARs). TAAR1 has been reported to regulate insulin secretion from pancreatic beta cells in vitro and in vivo. This study investigates the mechanism(s) by which TAAR1 regulates insulin secretion. The insulin secreting rat INS-1E -cell line was used for the study. Cells were pre-starved (30 minutes) and then incubated with varying concentrations of glucose (2.5 – 20 mM) or KCl (3.6 – 60 mM) for 2 hours in the absence or presence of various concentrations of the selective TAAR1 agonist RO5256390. Secreted insulin per well was quantified using ELISA and normalized to the total protein content of individual cultures. RO5256390 significantly (P < 0.0001) increased glucose- stimulated insulin secretion in a dose-dependent manner, with no effect on KCl-stimulated insulin secretion. Affymetrix-microarray data analysis identified genes (Gnas, Gng7, Gngt1, Gria2, Cacna1e, Kcnj8, and Kcnj11) whose expression was associated with changes in TAAR1 in response to changes in insulin secretion in pancreatic beta cell function. The identified potential links to TAAR1 supports the regulation of glucose-stimulated insulin secretion through KATP ion channels. -
Orexin Receptor Antagonists As Therapeutic Agents for Insomnia
REVIEW ARTICLE published: 25 December 2013 doi: 10.3389/fphar.2013.00163 Orexin receptor antagonists as therapeutic agents for insomnia Ana C. Equihua 1, Alberto K. De La Herrán-Arita 2 and Rene Drucker-Colin 1* 1 Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, México 2 Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA Edited by: Insomnia is a common clinical condition characterized by difficulty initiating or maintaining Christopher J. Winrow, Merck, USA sleep, or non-restorative sleep with impairment of daytime functioning. Currently, Reviewed by: treatment for insomnia involves a combination of cognitive behavioral therapy (CBTi) Matthew R. Ebben, Weill Medical and pharmacological therapy. Among pharmacological interventions, the most evidence College of Cornell University, USA Gabriella Gobbi, McGill University, exists for benzodiazepine (BZD) receptor agonist drugs (GABAA receptor), although Canada concerns persist regarding their safety and their limited efficacy. The use of these Matt Carter, University of hypnotic medications must be carefully monitored for adverse effects. Orexin (hypocretin) Washington, USA neuropeptides have been shown to regulate transitions between wakefulness and Michihiro Mieda, Kanazawa University, Japan sleep by promoting cholinergic/monoaminergic neural pathways. This has led to the *Correspondence: development of a new class of pharmacological agents that antagonize the physiological Rene Drucker-Colin, Departamento effects of orexin. The development of these agents may lead to novel therapies for de Neurociencias, Instituto de insomnia without the side effect profile of hypnotics (e.g., impaired cognition, disturbed Fisiología Celular, Universidad arousal, and motor balance difficulties). However, antagonizing a system that regulates Nacional Autónoma de México, Circuito exterior S/N, Apdo. -
Supporting Online Material
1 2 3 4 5 6 7 Supplementary Information for 8 9 Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic 10 retinopathy 11 12 *Samuel A. Mills, *Andrew I. Jobling, *Michael A. Dixon, Bang V. Bui, Kirstan A. Vessey, Joanna A. Phipps, 13 Ursula Greferath, Gene Venables, Vickie H.Y. Wong, Connie H.Y. Wong, Zheng He, Flora Hui, James C. 14 Young, Josh Tonc, Elena Ivanova, Botir T. Sagdullaev, Erica L. Fletcher 15 * Joint first authors 16 17 Corresponding author: 18 Prof. Erica L. Fletcher. Department of Anatomy & Neuroscience. The University of Melbourne, Grattan St, 19 Parkville 3010, Victoria, Australia. 20 Email: [email protected] ; Tel: +61-3-8344-3218; Fax: +61-3-9347-5219 21 22 This PDF file includes: 23 24 Supplementary text 25 Figures S1 to S10 26 Tables S1 to S7 27 Legends for Movies S1 to S2 28 SI References 29 30 Other supplementary materials for this manuscript include the following: 31 32 Movies S1 to S2 33 34 35 36 1 1 Supplementary Information Text 2 Materials and Methods 3 Microglial process movement on retinal vessels 4 Dark agouti rats were anaesthetized, injected intraperitoneally with rhodamine B (Sigma-Aldrich) to label blood 5 vessels and retinal explants established as described in the main text. Retinal microglia were labelled with Iba-1 6 and imaging performed on an inverted confocal microscope (Leica SP5). Baseline images were taken for 10 7 minutes, followed by the addition of PBS (10 minutes) and then either fractalkine or fractalkine + candesartan 8 (10 minutes) using concentrations outlined in the main text. -
The Impact of the Nonpeptide Corticotropin-Releasing Hormone Antagonist Antalarmin on Behavioral and Endocrine Responses to Stress*
0013-7227/99/$03.00/0 Vol. 140, No. 1 Endocrinology Printed in U.S.A. Copyright © 1999 by The Endocrine Society The Impact of the Nonpeptide Corticotropin-Releasing Hormone Antagonist Antalarmin on Behavioral and Endocrine Responses to Stress* TERRENCE DEAK, KIEN T. NGUYEN, ANDREA L. EHRLICH, LINDA R. WATKINS, ROBERT L. SPENCER, STEVEN F. MAIER, JULIO LICINIO, MA-LI WONG, GEORGE P. CHROUSOS, ELIZABETH WEBSTER, AND PHILIP W. GOLD Department of Psychology (T.D., K.T.N., A.L.E., L.R.W., R.L.S., S.F.M.), University of Colorado, Boulder, Colorado 80309-0345; Clinical Neuroendocrinology Branch (J.L., M.-L.W., P.W.G.), National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1284; and Developmental Neuroendocrinology Branch (G.P.C., E.W.), National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1284 ABSTRACT Furthermore, because rats previously exposed to inescapable shock The nonpeptide CRH antagonist antalarmin has been shown to (IS; 100 shocks, 1.6 mA, 5 sec each), demonstrate enhanced fear block both behavioral and endocrine responses to CRH. However, it’s conditioning, we investigated whether this effect would be blocked by potential activity in blunting behavioral and endocrine sequelae of antalarmin. Antalarmin (20 mg/kgz2 ml ip) impaired both the induc- stressor exposure has not been assessed. Because antagonism of cen- tion and expression of conditioned fear. In addition, antalarmin tral CRH by a-helical CRH attenuates conditioned fear responses, we blocked the enhancement of fear conditioning produced by prior ex- sought to test antalarmin in this regard. -
Adverse Effects of Stress on Drug Addiction
Making a bad thing worse: adverse effects of stress on drug addiction Jessica N. Cleck, Julie A. Blendy J Clin Invest. 2008;118(2):454-461. https://doi.org/10.1172/JCI33946. Review Series Sustained exposure to various psychological stressors can exacerbate neuropsychiatric disorders, including drug addiction. Addiction is a chronic brain disease in which individuals cannot control their need for drugs, despite negative health and social consequences. The brains of addicted individuals are altered and respond very differently to stress than those of individuals who are not addicted. In this Review, we highlight some of the common effects of stress and drugs of abuse throughout the addiction cycle. We also discuss both animal and human studies that suggest treating the stress- related aspects of drug addiction is likely to be an important contributing factor to a long-lasting recovery from this disorder. Find the latest version: https://jci.me/33946/pdf Review series Making a bad thing worse: adverse effects of stress on drug addiction Jessica N. Cleck and Julie A. Blendy Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA. Sustained exposure to various psychological stressors can exacerbate neuropsychiatric disorders, including drug addiction. Addiction is a chronic brain disease in which individuals cannot control their need for drugs, despite negative health and social consequences. The brains of addicted individuals are altered and respond very differently to stress than those of individuals who are not addicted. In this Review, we highlight some of the common effects of stress and drugs of abuse throughout the addiction cycle. -
Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation
www.sciencemag.org/cgi/content/full/327/5963/348/DC1 Supporting Online Material for Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation Jason Rihel,* David A. Prober, Anthony Arvanites, Kelvin Lam, Steven Zimmerman, Sumin Jang, Stephen J. Haggarty, David Kokel, Lee L. Rubin, Randall T. Peterson, Alexander F. Schier* *To whom correspondence should be addressed. E-mail: [email protected] (A.F.S.); [email protected] (J.R.) Published 15 January 2010, Science 327, 348 (2010) DOI: 10.1126/science.1183090 This PDF file includes: Materials and Methods SOM Text Figs. S1 to S18 Table S1 References Supporting Online Material Table of Contents Materials and Methods, pages 2-4 Supplemental Text 1-7, pages 5-10 Text 1. Psychotropic Drug Discovery, page 5 Text 2. Dose, pages 5-6 Text 3. Therapeutic Classes of Drugs Induce Correlated Behaviors, page 6 Text 4. Polypharmacology, pages 6-7 Text 5. Pharmacological Conservation, pages 7-9 Text 6. Non-overlapping Regulation of Rest/Wake States, page 9 Text 7. High Throughput Behavioral Screening in Practice, page 10 Supplemental Figure Legends, pages 11-14 Figure S1. Expanded hierarchical clustering analysis, pages 15-18 Figure S2. Hierarchical and k-means clustering yield similar cluster architectures, page 19 Figure S3. Expanded k-means clustergram, pages 20-23 Figure S4. Behavioral fingerprints are stable across a range of doses, page 24 Figure S5. Compounds that share biological targets have highly correlated behavioral fingerprints, page 25 Figure S6. Examples of compounds that share biological targets and/or structural similarity that give similar behavioral profiles, page 26 Figure S7. -
NINDS Custom Collection II
ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC