Ancient Binding Materiais, Mortars and Concrete Technoiogy: History and Durability Aspects

Total Page:16

File Type:pdf, Size:1020Kb

Ancient Binding Materiais, Mortars and Concrete Technoiogy: History and Durability Aspects Structural Analysis of Historical Constructions - Modena, Lourenço & Roca (eds) © 2005 Taylor & Francis Group, London, ISBN 04 1536 379 9 Ancient binding materiaIs, mortars and concrete technoIogy: history and durability aspects 6. Klrca ÇimSA Cement Produclion and Trading Company. Mersin, Turkey ABSTRACT: This paper deals with the history of technology related with binding materiais. Lime, gypsum, and hydraulic binders, i.e. lime-pozzolan mixture have been the major types of binding materiais survived in different regions ofthe world for 8000 years. Whatever type ofbinding materiais the ancient civilizations used, it can be seen that those structures built by ancient binders, particularly !ime-pozzolan mixture have survived for several hundred years. It can be claimed that even at that time architects were aware of the importance of the durability of binding materiais. However, those structures belonging to modem civilizations and made by using modem binders, i.e. portland cement have experienced significant deterioration throughout their service life, generally lesser than 100 years. In this research, the object of the study is to investigate the historical time!ine of binding materiais and to focus on their durability aspects by comparing the traditional technologies with modem ones. rNTRODUCTION to make hydraulic binder, i.e. lime-pozzolan cement by adding materiais, such as volcanic ash or powdered Binding material or cementing material in the gen­ bricks, tiles and pottery to lime. eral sense of the world can be described as a material The modem cement, i.e. portland cement was with adhesive and cohesive properties, which make it invented by Joseph Aspdin in England in 1824. Afier capable ofbonding mineral fragments into a compact that time, modem Portland cement and concrete tech­ whole. For constructional purposes, the meaning of nology has proceeded till today by invention of new the term "cement" is restricted to the bonding materi­ chemical and mineral admixtures and additions. ais used with stones, sand, building blocks, etc (Neville Although radical advances in cement and concrete 1989). technology have been observed for two centuries, The use of cementing materiais is very old. The there are still problems related with lhe endurance of first evidence of its existence dates back to 12000 cement and concrete. Many modem structures expe­ BC in Israel. Reactions between limestone and oil rienced significant deterioration within their service shale during spontaneous combustion occurred in !ife, which is generally lesser than 100 years. Yet, many Israel to form a natural deposit of cement compounds. ancient Roman concrete buildings or slructures are still Another example of ancient binder from the history in use afier more than 2000 years. According to the of the human being is the use of naturally occurring Vitruvius's book De Architectura, the magnificent bitumen by the Babylonians and Assyrians in their quality of Roman concrete resulted from the exten­ brick and gypsum plaster construction. The Egyplians sive use of artificial pozzolanic mortars and concretes improved the technology of lime and gypsum mortar (Vitruvius 1960). In addition, placement, compaction, and builded the pyramids by the use of such mortars. workability properties of ancient Roman concrete The Greeks made furlher improvements and finally the contributed to its magnificent survivability. Romans developed a cement lhat produced structures of remarkable durability and that can sei and harden even under waler. 2 CHRONOLOGICAL SUMMARY OF Lime was known to the Greeks and was widely used BINDING MATERIALS AND MORTARS by the Romans. The Roman architect and engineer Vitruvius published the first specification for the use The nature and usefulness of cement as a kind of of lime in building in his celebrated work De Archi­ artificial stone was probably first understood by the tectura (Vitruvius 1960). The Romans also knew how Romans; but it seems likely that they copied the 87 technology from Etruscans and Greeks and improved in order to be used in construction it must be mixed it drastically. with water to form a lime paste, which is defined as Concrete and/or cement itself is actually a phe­ "hydration" or "slaki ng". nomenon of nature, with the first evidence of its To produce dry powdered hydrated lime just suf­ existence in Israel dating back to 12 000 BC, when nat­ ficient water is added for the quicklime lumps to ural deposits of cement compounds were said to have break down to a fine powder. This material would formed due to reactions between limestone and oi l have a "shelflife" of only a number ofweeks, depend­ shale, employing spontaneous combustion. However, ing on storage conditions. "Old" hydrated lime would the earliest known concrete produced intentionally by have partially carbonated and become a less effective human beings was discovered in th e fl oor of a crude binder. Iftoo little or toa much water is added, the prop­ shelter built about 5600 BC on the banks of the river erties ofthe slaked lime will be spoil ed; the slaked lime Donube in Yugoslavia. The floor was made from mix­ will not harden and the paste will not be as plastic as ture of sand, gravei and red lime. That concrete was it should be (Erdogan 2002). manufactured deliberately, rather than w1intentionally However, if qui cklime is hydrated with a proper by util izing the red lime from a site 320 km away. For amount of water and well agitated, it forms a milky some reason, it appears that the technique for using suspension known as milk oflime, which can be easily lime-based cements was lost for at least 2500 years, used in building applications. until indications of use by the ancient Assyrians and Limestone containing a proportion of clay is Babylonian civilizations around 3000 BC. They used ofien seen as an advantage in building as they pro­ bitumen to bind stones and bricks. About the same duce hydraulic limes. In fact, limes do not possess time Egyptians used mud bricks mixed wi th straw to hydraulicity, si nce it needs carbon dioxide for its hard­ bind dried bricks and also th is phenomenon furthered ening reaction (Erdogan 2002). However, in the case the discovery oflime and gypsum mortars as a binding of hydraulic limes, as the name implies, they can set agent for building the pyramids. Even at that time, th e and harden even under water and will produce stronger ancient Chinese people used cementitious materiais to mortars. hold bamboo together in their boats and in the Great In the construction industry, usually lime, in its Wall, one of the Wonders of the world. By 500 BC hydrated or putty fo rm, is mixed with aggregate and the art of making concrete had spread to the Mediter­ water to produce concrete or mortar for different ranean island of Crete, and from there to the ancient purposes such as plastering sand-lime brick produc­ Etruscans and Greeks. tion etc. Plai n lime-sand mortars are quite weak; Yet, it was the Romans who brought the manufacture any early adhesive strength results from drying out and use of li me-based cement to an art form o 300 BC whereas longer-term hardening occurs as a result of saw the Romans employing slaked lime and volcanic carbonation ofthe lime. ash called pozzolan, named afier the town of Pozzuoli, Traditionallime plasters were ofien mixed with ani­ near Mt Vesuvius. This was a hydrauli c cement that mal hair to improve cohesion and adhesion. Today can set harden when mixed with water in ai r as well addition of gypsum or portland cement and/or poz­ as under the water. Moreover, some natural additions zolans to increase durability and give faster setting such as animal fats, milk, and blood were also used times is more common. throughout this era. Afier the fali of the Roman Empire, knowledge of cement was lost till the 18th century. 3.2 Ancient lime technology The whole historical timeline of cement and con­ Quarrying: The first step of lime production required crete is summarised in Table I, where the develop­ finding a suitable raw material which was generally ments in modem era are also outlined. calcium carbonate based stones such as limestone and marble. Quarrying techniques had become well advanced during construction of the great Egypti an 3 TECHNOLOGY OF ANCIENT LIME pyramids and further advanced during the Roman AND LIME MORTARS building era. The determination of raw material involved trial and error, as well as ages of experi­ 3. 1 Properties o.flime mentai attempts. Once workable quarries and materiais There are two forms of lime: quicklime and hydrated were located, workmen acquired skills for identifying lime. and extracting suitable calcium carbonate raw mate­ Quicklime is produced by heating rock or stone con­ riais. Then such materiais had to be transported to taining calcium carbonate (limestone, marble, chalk, sites where they were prepared for calcination. The shell s, etc.) to a temperature of around 900°C for sev­ major technological factors surrounding acquisition eral hours in a process known as ' calcining'. It is an of the raw carbonate material, therefore, involved, unstable and slightly hazardous product. Therefore, identifi cation of suitable stone, workable extraction, 88 Table I. Historical timeline of binding materiaIs. 12000 BC Reactions between limestone and oil shale during spontaneous combustion occurred in Israel to form a natural deposit of cement compounds. 5600 BC Intentionally production of concrete from sand, graveI, and lime a natural concrete in Yugoslavia. 3000 BC Bitumen to bind bricks and stones was used by Babylonians and Assyrians. 3000 BC Egyptians used mud mixed with straw to bind dried bricks. They also used lime and gypsum mortars in the pyramids. 3000 BC Chinese used cementitious material to hold bamboo together in their boats and in the Great Wall.
Recommended publications
  • Archaeology South-East ASE
    Archaeology South-East ASE LAND AT CRAYLANDS LANE/LONDON ROAD LITTLE SWANSCOMBE, KENT (Centred at NGR 559786 174912) HISTORIC BUILDING RECORD (HISTORIC ENGLAND LEVEL 1 & 3) Commissioned by Swanscombe Developments LLP LAND AT CRAYLANDS LANE/LONDON ROAD, LITTLE SWANSCOMBE, KENT HISTORIC BUILDINGS RECORD (HISTORIC ENGLAND LEVEL 3) NGR: 559786 174912 Commissioned by Swanscombe Developments LLP Site Code: CLI 16 Project No. 160242 Report No. 2016180 OASIS ID: archaeol6-251290 Assistant Prepared by: Hannah Green BA, MA Archaeologist Reviewed and Amy Williamson BA Project Manager approved by: Date of Issue: May 2016 Revision: 2 Archaeology South-East Units 1 & 2 2 Chapel Place Portslade East Sussex BN41 1DR Archaeology South-East Land At Craylands Lane / London Road, Little Swanscombe, Kent Historic Buildings Record SUMMARY In April 2016 Archaeology South-East (a division of the Centre for Applied Archaeology, UCL) carried out a programme of historic building recording of the buildings and tramway tunnels adjacent to Craylands Lane and London Road, Little Swanscombe, Kent, DA10 0LP, prior to the proposed redevelopment of the site for residential use. This recording exercise forms a detailed survey of the extant tramway tunnels at Historic England Level 3 (English Heritage 2006a). The wider site was subject to a Level 1 record, for contextual purposes. A desk-based assessment has previously been produced for the site by Archaeology South-East (ASE 2005). The site was established as a quarry in the early 20th century, forming part of the Swanscombe Works. The Swanscombe Works was one of the largest cement producers throughout the 20th century, and at its closure in 1990 was the oldest cement producer in the world.
    [Show full text]
  • Different Types of Building Limes
    Different types of building limes Natural hydraulic limes are made from limestone that contains impurities such as clay or silicates. Unlike lime putty which is non-hydraulic lime, NHLs can set in damp conditions, indeed they require water for a minimum period of around 72 hours to gain maximum strength. They also have some free lime available for carbonation. There are three European classifications NHL 2, NHL3.5 and NHL5 based on the compressive strength of laboratory mortars after 28 days. These are often somewhat misleadingly termed feebly hydraulic, moderately hydraulic and eminently hydraulic. We generally recommend the use of NHLs where the need for breathability and lower strength is outweighed by the desire for an earlier and harder set such as working on bedding hard masonry, wall copings, chimneys and slate floors. In some circumstances hydraulic lime mortars can be used for rendering or plastering. The strength of a hydraulic lime mortar (HLM) varies depending on the manufacturer of the hydraulic lime as some NHL will be high in the band or low. HLM will also vary depending on the ratio of lime binder to aggregate and the type of aggregate or sand used. Natural Hydraulic Lime (NHL) NHL or Natural Hydraulic Lime, comes from limestone that has natural impurities of clay and other minerals, the amount of impurities within it determines how hard it will set. NHL works by setting in the presence of water, hence the term Hydraulic: Natural hydraulic lime powders come in 3 European grades: GRADE STRENGTH(MPa) EXAMPLES OF USE NHL2 >2 to <7 Pointing internally or with soft masonry, plastering NHL3.5 >3.5 to <10 Bedding, pointing NHL5 >5 to <15 Flooring, below DPC or chimney flaunchings NHL's can be used when speed is essential as it sets much quicker than a Lime Putty based mortar.
    [Show full text]
  • The Effect of Linseed Oil on the Properties of Lime-Based Restoration Mortars
    Allma Mater Studiiorum – Uniiversiità dii Bollogna DOTTORATO DI RICERCA Science for Conservation Ciclo XXII Settore/i scientifico disciplinari di afferenza: CHIM/12 TITOLO TESI THE EFFECT OF LINSEED OIL ON THE PROPERTIES OF LIME-BASED RESTORATION MORTARS Presentata da: Eva Čechová Coordinatore Dottorato Relatore Prof. Rocco Mazzeo Prof. Ioanna Papayianni Esame finale anno 2009 Abstract THE EFFECT OF LINSEED OIL ON THE PROPERTIES OF LIME-BASED RESTORATION MORTARS The traditional lime mortar is composed of hydrated lime, sand and water. Besides these constituents it may also contain additives aiming to modify fresh mortar´s properties and/or to improve hardened mortar´s strength and durability. Already in the first civilizations various additives were used to enhance mortar´s quality, among the organic additives, linseed oil was one of the most common. From literature we know that it was used already in Roman period to reduce water permeability of a mortar, but the mechanism and the technology, e.g. effects of different dosages, are not clearly explained. There are only few works studying the effect of oil experimentally. Knowing the function of oil in historical mortars is important for designing a new compatible repair mortar. Moreover, linseed oil addition could increase the sometimes insufficient durability of lime-based mortars used for reparation and it could be a natural alternative to synthetic additives. In the present study, the effect of linseed oil on the properties of six various lime- based mortars has been studied. Mortars´ compositions have been selected with respect to composition of historical mortars, but also mortars used in a modern restoration practise have been tested.
    [Show full text]
  • ADDIS ABABA UNIVERSITY the Effect of Egg and Lime on The
    ADDIS ABABA UNIVERSITY ADDIS ABABA INSTITUTE OF TECHNOLOGY SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING The Effect of Egg and Lime on the Compressive Strength of Mortar By: - Neima Yesuf Advisor: - Dr. Esayas G/Yohannes A thesis submitted as a Partial Fulfillment of the Requirements for the degree of Masters of Science in Structural Engineering August 2014 1 Acknowledgment First of all I would like to thank Addis Ababa institute of Technology for giving me this opportunity to conduct this interesting research. And I would like to thank Dr Esayas G/yohannes for giving me great advices during this research. And I would like to give my gratitude for W/t Yewubdar Eshetu, Ato Daniel Kibret, Ato Getachew Asrat, Ato Sirahbizu W/senbet, Ato Wubale, my family and close friends and all those that contributed in different ways in making this research happen. 2 ABSTRACT The Effect of Egg and Lime on the Compressive strength of Mortar Neima Yesuf Addis Ababa University, 2014 In Ethiopia there is a saying that tells buildings like Fasiledes castle of Gondar were built from materials that did not include cement. This saying describes the buildings as made from stones using lime mortar, consisting of sand, lime and egg parts, as a binder. This saying gave a motivation for this research to investigate the effect of egg parts on the compressive strength of mortar. This research concentrates on the effect of egg albumin and egg shell on the compressive strength of mortar since there is already good known material on lime and the effect of the egg albumin and egg shell with regards to cement can be studied on mortar without the addition of aggregates.
    [Show full text]
  • Characterisation and Consolidation of Historical Lime Mortars in Cultural Heritage Buildings and Associated Structures in East Africa
    Characterisation and Consolidation of Historical Lime Mortars in Cultural Heritage Buildings and Associated Structures in East Africa Athuman M. K. Ngoma TRIKA-BKN. Bulletin 101, 2009 ISSN 1103-4270 ISRN KTH/BKN/B--101--SE Doctoral Thesis The Artichoke At first glance it seems unappetizing, even forbidding, with the meagre edible matter in its hard exterior. The reward, however, comes in taking it apart, devouring it leaf by leaf. Its leaves slowly become more tender and tastier, until you arrive at the succulent heart. ii ABSTRACT ...........................................................................................................................viii PREFACE ................................................................................................................................ix ACKNOWLEDGEMENTS..................................................................................................... x CHAPTER ONE: INTRODUCTION .................................................................................... 1 1.1 Background and Problem Identification .................................................................... 1 1.2 Restoration of Historical Structure............................................................................. 3 1.3 Objectives, Limitations and Method .......................................................................... 3 CHAPTER TWO: MORTAR AND MORTAR DAMAGE................................................. 5 2.1 Introduction ...............................................................................................................
    [Show full text]
  • NHL Lime Plaster
    NHL Lime Plaster St Astier Limes and Mortars telephone: 0800 783 9014 Lime Plaster using St Astier NHL Using St. Astier NHL plastering mortars instead of non hydraulic putty mortars reduces the working time by about 50%. NHL mortars offer similar vapour exchange qualities as putty mortars but are more robust, can be sprayed and used for decorative plasterwork without the addition of gypsum. Requiring less after care than putty, it can be applied in 2 coats on good level backgrounds. Mortar. Plastering in hydraulic lime mortar normally consists of two or three-coat work. Lime plaster made with feebly or moderately hydraulic lime and sand is the basis for this guide. This type of lime sets and hardens predominantly by an hydraulic set and re-absorption of Carbon Dioxide from the air. By its nature the drying and absorption process is slower than gypsum plasters, therefore lime plaster curing should not be hurried allowing approximately 3-5 days per coat depending on the hydraulic lime used. Background. When applying Lime Plaster on the hard, the background will normally be brick or stone. The surface should be clean, free from dust and any organic materials such as lichens etc. Test the surface of masonry backgrounds for dust by applying a piece of masking tape to the background and immediately remove, examine the sticky side for traces materials that may affect the bond between the plaster and the wall. Internal walls can be uneven and rough, often with areas that have been altered. Different background conditions are therefore common and this needs to be addressed before plastering.
    [Show full text]
  • How Limestone, Rocks, and Volcanic Ash Built the Modern World
    26/11/2017 The Rock Solid History of Concrete ALEXANDERVANLOON/WIKIMEDIA The Rock Solid History of Concrete By Jonathan Schifman Oct 12, 2017 1.5k HOW LIMESTONE, ROCKS, AND VOLCANIC ASH BUILT THE MODERN WORLD. The story of concrete is so ancient that we don't even know when and where it begins. It is a story of discovery, experimentation, and mystery. Emperors and kings became legends for erecting great concrete structures, some of which are still a mystery to engineers today. Many of history's most skilled architects found inspiration in slabs of the gray building material. Common bricklayers advanced the technology, and a con man played a crucial role in the development of concrete recipes. Today, the world is literally filled with concrete, from roads and sidewalks to bridges and dams. The word itself has become a synonym for something that is real and tangible. Press http://www.popularmechanics.com/technology/infrastructure/a28502/rock-solid-history-of-concrete/ 1/22 26/11/2017 The Rock Solid History of Concrete your handprints into the sidewalk and sign your name to history. This is the story of concrete. The First Cement—and Maybe Concrete? Let's get this out of the way right here: cement and concrete are not the same thing. Cement, a mixture of powdered limestone and clay, is an ingredient in concrete along with water, sand, and gravel. Concrete's invention was made possible by the development of cement, and to trace the history of cement, we must trace the use of its components. ADVERTISEMENT - CONTINUE READING BELOW The earliest known use of limestone in a structure has been dated back about 12,000 years.
    [Show full text]
  • Portland Cement
    International Conference on Transport, Civil, Architecture and Environment engineering (ICTCAEE'2012) December 26-27, 2012 Dubai (UAE) Portland Cement Alireza Baghchesaraei1 , Omid Reza Baghchesaraei2 kiln is fired by coal, the ash of the coal acts as a secondary raw Abstract— portland cement is the most common type of cement material. in general usage in many parts of the world, as it is a basic ingredient Portland cement was developed from cements (or correctly of concrete, mortar, stucco and most non-specialty grout. There are hydraulic limes) made in Britain in the early part of the different standards for classification of Portland cement. The two nineteenth century, and its name is derived from its similarity major standards are the ASTM C150 used primarily in the U.S. and to Portland stone, a type of building stone that was quarried on European EN-197. EN 197 cement types CEM I, II, III, IV, and V do the Isle of Portland in Dorset, England. Joseph Aspdin, a not correspond to the similarly-named cement types in ASTM C 150. Portland cement manufacture can cause environmental impacts at all British bricklayer, in 1824 was granted a patent for a process stages of the process. When cement is mixed with water a highly of making a cement which he called Portland cement. His alkaline solution (pH ~13) is produced by the dissolution of calcium, cement was an artificial hydraulic lime similar in properties to sodium and potassium hydroxides. the material known as "Roman Cement" (patented in 1796 by James Parker) and his process was similar to that patented in Keywords—New,Material,Portland Cement 1822 and used since 1811 by James Frost who called his cement "British Cement".
    [Show full text]
  • Concrete Story-Telling (By New-Territories)
    Concrete Story-Telling (by New-Territories) 1 ) Concrete in general Concrete is a material used in building construction, consisting of a hard, chemically inert particulate substance, known as an aggregate (usually made from different types of sand and gravel), that is bonded together by cement and water. The Assyrians and Babylonians used clay as the bonding substance or cement*1. The Egyptians used lime and gypsum cement. In 1756, British engineer, John Smeaton made the first modern concrete (hydraulic cement) by adding pebbles as a coarse aggregate and mixing powered brick into the cement. In 1824, English inventor, Joseph Aspdin invented Portland Cement, which has remained the dominant cement used in concrete production. Joseph Aspdin created the first true artificial cement by burning ground limestone and clay together. The burning process changed the chemical properties of the materials and Joseph Aspdin created a stronger cement than what using plain crushed limestone would produce. *1 cement : the word “cement” traces to the Romans, “caementicium”= masonry made from crushed rock with burnt lime as bindern referred to as “cementum,” “cimentum,” “cäment” and cement. The other major part of concrete besides the cement is the aggregate. Aggregates include sand, crushed stone, gravel, slag, ashes, burned shale, and burned clay. Fine aggregate (fine refers to the size of aggregate) is used in making concrete slabs and smooth surfaces. Coarse aggregate is used for massive structures or sections of cement. Concrete that includes embedded metal (usually steel) is called reinforced concrete or ferroconcrete. Iron reinforced concrete was invented (1849) by Joseph Monier, who received a patent in 1867.
    [Show full text]
  • Lime Mortars for the Repair of Masonry
    Lime mortars for the repair of masonry HTC 1:2020 June 2020 Heritage Technical Codes Cover image A 150-year-old lime mortar high up in an exposed church tower. The large lumps of lime show that it was made in the traditional way by sand-slaking (i.e. slaking quicklime with sand). The mortar is beginning to erode, particularly from perpendicular joints which are less well-compacted. Repointing with a similar lime mortar will ensure compatibility with the bricks. Acknowledgment We acknowledge and respect Victorian Traditional Owners as the original custodians of Victoria's land and waters, their unique ability to care for Country and deep spiritual connection to it. We honour Elders past and present whose knowledge and wisdom has ensured the continuation of culture and traditional practices. We are committed to genuinely partner, and meaningfully engage, with Victoria's Traditional Owners and Aboriginal communities to support the protection of Country, the maintenance of spiritual and cultural practices and their broader aspirations in the 21st century and beyond. © The State of Victoria, Heritage Council of Victoria 2020; and David Young 2020 All photographs and diagrams by David Young ISBN 978-1-76105-177-7 (pdf/online/MS Word) Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.
    [Show full text]
  • I on the Historv Oi Portland After 1 150 Years
    Christopher Hall De~artmentof Bulldlnq I On the Historv oi Portland after University of Manchester . Institute of Science and Technology Manchester. England M60 1QD 1 150 Years Cementitious building materials have a long history, and began to build the third Eddystone lighthouse off the the date 1824, traditionally taken as the origin of portland southwest coast of Britain (4),apparently a labor of Hercu- cement, is in fact only the date of a patent (I) granted to les in the absence of a good hydraulic cement. Smeaton, ap- Joseoh Asodin (1778-1855) of Leeds. Eneland. who mav preciating the need to obtain the best component materials not at that'time have made portland cemeit at all. ~oday; fur the lime-pozzolana cement he intended to use, exam- cement is the successor to a line of materials with a historv ined a number of mixtures, and found that the quality de- reaching hack to the ancient world; it has a chemistry o? pended on the limestone (5). He made the important dis- perhaps unsurpassed complexity amongst major inorganic covery that the best mortars were made from limes con- industrial materials and is still the subject of intense study. taining clay impurities. We recognize now that the alumi- At some ~ointin the second quarter of the 19th century, nosilicate clay minerals are closely related to those in the about 150 ago, the cement as we know it now was fir& pozzolana, with this essential difference: that they are produced. burned intimately with the lime in the calcining process. It The very simplest of the mineral cements are those based soon emerged that certain heavily clay-bearing limestones on gypsum, hydrated calcium sulfate.
    [Show full text]
  • Background Facts and Issues Concerning Cement and Cement Data
    Background Facts and Issues Concerning Cement and Cement Data By Hendrik G. van Oss Open-File Report 2005-1152 U.S. Department of the Interior U.S. Geological Survey ii U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. iii Preface This report is divided into two main parts. Part 1 first serves as a general overview or primer on hydraulic (chiefly portland) cement and, to some degree, concrete. Part 2 describes the monthly and annual U.S. Geological Survey (USGS) cement industry canvasses in general terms of their coverage and some of the issues regarding the collection and interpretation of the data therein. The report provides background detail that has not been possible to include in the USGS annual and monthly reports on cement. These periodic publications, however, should be referred to for detailed current data on U.S. production and sales of cement. It is anticipated that the contents of this report may be updated and/or supplemented from time to time.
    [Show full text]