I on the Historv Oi Portland After 1 150 Years

Total Page:16

File Type:pdf, Size:1020Kb

I on the Historv Oi Portland After 1 150 Years Christopher Hall De~artmentof Bulldlnq I On the Historv oi Portland after University of Manchester . Institute of Science and Technology Manchester. England M60 1QD 1 150 Years Cementitious building materials have a long history, and began to build the third Eddystone lighthouse off the the date 1824, traditionally taken as the origin of portland southwest coast of Britain (4),apparently a labor of Hercu- cement, is in fact only the date of a patent (I) granted to les in the absence of a good hydraulic cement. Smeaton, ap- Joseoh Asodin (1778-1855) of Leeds. Eneland. who mav preciating the need to obtain the best component materials not at that'time have made portland cemeit at all. ~oday; fur the lime-pozzolana cement he intended to use, exam- cement is the successor to a line of materials with a historv ined a number of mixtures, and found that the quality de- reaching hack to the ancient world; it has a chemistry o? pended on the limestone (5). He made the important dis- perhaps unsurpassed complexity amongst major inorganic covery that the best mortars were made from limes con- industrial materials and is still the subject of intense study. taining clay impurities. We recognize now that the alumi- At some ~ointin the second quarter of the 19th century, nosilicate clay minerals are closely related to those in the about 150 ago, the cement as we know it now was fir& pozzolana, with this essential difference: that they are produced. burned intimately with the lime in the calcining process. It The very simplest of the mineral cements are those based soon emerged that certain heavily clay-bearing limestones on gypsum, hydrated calcium sulfate. Gypsum loses its were hydraulic in the absence of the pozzolana (6).Such water of crystallization easily on gentle heating to yield materials became known as Roman cements. Various natu- various olasters. These dehydrated suhstances when mixed ral cements of this kind (whose properties depended in an with water reform a crystalline mass of synthetic gypsum, erratic way on the composition of the mineral taken from which however is mechanically weak and is slowly dissolved the ground) achieved prominence in various places in the hv water. There is evidence that the ancientEevotians".. earlv vears of the 19th centurv. The essential roles of lime mixed burnt gypsum with sand to make masonry mortars andsikca in producing hydra;lic cements were established 12). Such mortars were unsuited to less arid climates. and some time before 1818 hv the Frenchman Vicat in his sci- the early bu~ldrrsOII [he nurthtm shores of the Xlediterra- entific studies of innumerable artificial mixtures of lime- nean dt.wlc>oed the ;k~ll; of lime-hurninr ,conversion of stones and clays (7). calcium carbonate to the oxide). The quickkme produced is Thus about the year 1824, a good many people in several slaked with water to yield a lime putty, to which can he European countries were interested in trying to make their added sand to produce a mortar or coarse mineral to pro- fortunes by perfecting these cements. Some were spurred duce a concrete. Such pure lime mortars and concretes on by the belief that the Romans had had a secret for mak- harden slowly and often incompletely by reaction with the ing fine cement which had been lost, and many unlikely carbon dioxide of the air to give calcium carbonate once substances were added in the hope of stumbling upon a more. The Roman builders could achieve superb quality in missing ingredient. Lacking any clear notion of the nature pure lime mortars of this kind-many examples remain of the cementing reactions and using the most variable of today-hut these materials did not set from within the raw materials. thev labored lareelv in the dark. Scientifical- . u A mass of the paste, nor did they have the quality of hydraul- ly speaking the nature of portland cement did not emerge icily: the capacity to set in contact with water, so valuahle until well into the second half of the 19th centurv. Todav's in many engineering situations. cement is made by heating an intimate mixture of finely Hydraulic limes were produced by hoth Greeks and Ro- eround limestone and clav.. (in ~rouortions. carefullv " adiust-- mans by adding to the lime putty fine volcanic ash or ed by reference to analyses of raw materials) to a tempera- crushed volcanic minerals, the Romans using the deposits ture sufficientlv. high.. for oartial meltine" to occur (8).The at Pozzuoli, so that now all such materials are known as cooled granular product, a complex multiphase clinker, is pozzolanas. The Romans also discovered that crushed tiles ground to a powder of large surface area. This is portland could act as artificial pozzolanas. Both natural and artifi- cement. It consists primarily of a number of calcium sili- cial pozzolanas are composed chiefly of silica with some cate and aluminate comoounds. When mixed with water it alumina in forms which on mixing with water will react forms a hydraulic paste which sets and hardens to a strong readily with calcium hydroxide from the lime to give hy- solid, larpelv com~osedof hydrates of calcium silicates but drated calcium silicates and aluminates. These important with a remarkahfy intricate physical microstructure. The suhstances are closely similar to the cementing compounds critical variables closely controlled in manufacture are the in portland cements themselves. Because hoth the pozzola- composition of the feed (chalk:clay, 7525) and clinkering na and the lime are present in the mortar, the setting pro- temperature (over 1400°C). Neither Aspdin nor anyone ceeds from within the mass; the extreme insolubility and else for a long time after 1824 fully understood these basic useful strength of these hydrates leads to the property of facts. What then is the basis of Aspdin's claim to be the in- hydraulicity. Lime-pozzolana cements were the only ce- ventor of portland cement? ments available for work in contact with water from the On November 6, 1824, the gossip column of the newspa- Roman period until as late as the 19th century (3). per the Leeds Mercury was preoccupied with its usual In the 18th and 19th centuries, we see the beginnings of business of warning the honest citizens about the dishonest an understandine of whv it is that lime-oozzolana mixtures ("Last Saturdav.-. three females. handsomelv dressed. and Iln\,e thrw rcmarknhle hydraulic pr,,ptrries, and !he ;tart having the appearance of respectable ladies, paid a five of .a I,?horwus ernoiricnl itrun~lp10 make Iwtter and herter ~ound. hnnknote.. to a haberdasher in Leeds, which is cements. But the understanding was a long time coming, not worth a farthing") and gave only a single passing sen- and the early pioneers had very little help from the chem- tence to Aspdin's news. "We hear that Joseph Aspdin, ists of the day. In 1757 the great engineer John Smeaton bricklayer of this town, has obtained a patent for a superior 222 1 Journal of Chemical Education sign (12). The understandine of the nature of the cement cement representing Portland stone." His patent BP 5022: -.. w 1824, "An Improvement in the Modes of Producing an Ar- reactions-both the composition and phase relationships in tificial Stone" consisted of two hrief pages and the rough- the clinker and the details of the hvdration reactions- ness of his manufacturine methods is apparent. His Drocess have been more recent, and the materials science of cement calls for the use of a "specific quantityGf limestoneand of and concrete remains an active and important area of clav hut sadlv. thev. are not specified. Information about the study. burning temperature is of course also absent, as are all de- Advances in knowledae have been brought about by a tails of the kiln which might have helped to establish this. number of modern experimental methods,-such as X-ray However, Aspdin did introduce the name portland cement, diffraction techniques for compound identification, optical a shrewd idea to link the unproven qualities of his new ce- and electron micr&copy, diffeiential thermal analysis, ad- ment with those of a fine building stone. Unfortunately lit- sorption isotherm techniques, and so on (13). tle is known of Aspdin's manufacturing activities at this There is no doubt that for the first few decades the pro- time. The scanty records have been examined with great duction of portland cement was a primitive manufacturing care by Halstead (6,9).Aspdin was carrying on business as enterprise, even by the standards of the day. The material patent portland cement manufacturer at times during the took a considerable time to penetrate into constructional next ten years both in Leeds and Wakefield, and certainly and civil eneineerine". nractice. and indeed not until the de- later in Wakefield, hut few details have come to light. His velopment of the techniques and structural theory of rein- son William entered the business, and spent the rest of his forced concrete construction were its full potentialities re- rather short life in the cement industry, moving from one alized. venture to the next without ever apparently really prosper- These facts help explain why portland cement was not ing (10). produced in the US until 1871 when David 0. Saylor was The question of whether what Aspdin made in the early eranted his US patent (14). The earlv American portland davs of his business. sav from 1824 to 1830. should be re- cement manufac&ers had to face strong dual competition ga;ded as a true portland cement is a debated but still open from the natural cement industry and from the portland auestion.
Recommended publications
  • Calcareous Cement: Their Nature and Uses, with Some
    •a^^-^ko 1v- MMX. i-" J, < ,v.- ^^fe* jir^MVin ?2f /" CALCAREOUS CEMENTS THEIR NATURE AND USES. STANDARD WORKS FOR ENGINEERS. By W. J. MACQUORN RANKINE, C.E., LL.D., F.R.S., Late Keg. Prof, of Civil Engineering in tlie University of Glasgow. Ill Crown 8vo, Cloth. Thoroughly Revised by W. J. Miliab, C.E., Sec. to the Inst, of Engineers and Shipbuilders in Scotland. I.—APPLIED MECHANICS. Focrteenth Editio;?. 12s. 6d. IL—CIVIL ENGINEERING. Ninetee.nth Edition. IBs. Ill —THE STEAM ENGINE AND OTHER PRIME MOVERS. Thirtebxth Editioh. 12s. 6d. IV.—MACHINERY AND MILLWORK. Sevk.vth Edition. 12s. 6d. v.—USEFUL RULES FOR ENGINEERS, ARCHITECTS, BUILDERS, ELECTRICIANS, &c. Seventh Edition-. 10s. Cd. VI.—A MECHANICAL TEXT-BOOK: A Simple Introduction to the Study of Mechanics. Fourth Edition. 9s. VII.—PROFESSOR RANKINE'S MISCELLANEOUS SCIENTIFIC PAPERS. With Memoir by Professor Tait, M.A., and Fine Portrait on Steel. Royal 8vo, Handsome Cloth. 31s. 6d. HYDRAULIC POWER AND HYDRAULIC MACHINERY. For the Use of Practical Engineers and Students. By Henry Robinson, M.Inst.C.E., F.G.S., Professor of Civil Engineering, King's College, London. SECOKD EDITION. With 69 Lithographic Plates. Large 8vo. 34s. " A book of 6BEAT professional usefulness. "-Iron. MEASUREMENT CONVERSIONS (Eng-lish and Fpench). 43 Graphic TaVtles or Diagrams. Showing at a glance the Mutual Convei-sion of Measurements m Different Units of Lengths, Areas, Volumes, Weights, Stresses, Densities, Quantities of Work, Horse Powers, temperatures, &c. For the Use of Engineers, Surveyors, Architects, and Contractors. By R. H. Smith, A.M.I.C.E., M.I.M.E., M.I.E.E., &c.
    [Show full text]
  • Archaeology South-East ASE
    Archaeology South-East ASE LAND AT CRAYLANDS LANE/LONDON ROAD LITTLE SWANSCOMBE, KENT (Centred at NGR 559786 174912) HISTORIC BUILDING RECORD (HISTORIC ENGLAND LEVEL 1 & 3) Commissioned by Swanscombe Developments LLP LAND AT CRAYLANDS LANE/LONDON ROAD, LITTLE SWANSCOMBE, KENT HISTORIC BUILDINGS RECORD (HISTORIC ENGLAND LEVEL 3) NGR: 559786 174912 Commissioned by Swanscombe Developments LLP Site Code: CLI 16 Project No. 160242 Report No. 2016180 OASIS ID: archaeol6-251290 Assistant Prepared by: Hannah Green BA, MA Archaeologist Reviewed and Amy Williamson BA Project Manager approved by: Date of Issue: May 2016 Revision: 2 Archaeology South-East Units 1 & 2 2 Chapel Place Portslade East Sussex BN41 1DR Archaeology South-East Land At Craylands Lane / London Road, Little Swanscombe, Kent Historic Buildings Record SUMMARY In April 2016 Archaeology South-East (a division of the Centre for Applied Archaeology, UCL) carried out a programme of historic building recording of the buildings and tramway tunnels adjacent to Craylands Lane and London Road, Little Swanscombe, Kent, DA10 0LP, prior to the proposed redevelopment of the site for residential use. This recording exercise forms a detailed survey of the extant tramway tunnels at Historic England Level 3 (English Heritage 2006a). The wider site was subject to a Level 1 record, for contextual purposes. A desk-based assessment has previously been produced for the site by Archaeology South-East (ASE 2005). The site was established as a quarry in the early 20th century, forming part of the Swanscombe Works. The Swanscombe Works was one of the largest cement producers throughout the 20th century, and at its closure in 1990 was the oldest cement producer in the world.
    [Show full text]
  • How Limestone, Rocks, and Volcanic Ash Built the Modern World
    26/11/2017 The Rock Solid History of Concrete ALEXANDERVANLOON/WIKIMEDIA The Rock Solid History of Concrete By Jonathan Schifman Oct 12, 2017 1.5k HOW LIMESTONE, ROCKS, AND VOLCANIC ASH BUILT THE MODERN WORLD. The story of concrete is so ancient that we don't even know when and where it begins. It is a story of discovery, experimentation, and mystery. Emperors and kings became legends for erecting great concrete structures, some of which are still a mystery to engineers today. Many of history's most skilled architects found inspiration in slabs of the gray building material. Common bricklayers advanced the technology, and a con man played a crucial role in the development of concrete recipes. Today, the world is literally filled with concrete, from roads and sidewalks to bridges and dams. The word itself has become a synonym for something that is real and tangible. Press http://www.popularmechanics.com/technology/infrastructure/a28502/rock-solid-history-of-concrete/ 1/22 26/11/2017 The Rock Solid History of Concrete your handprints into the sidewalk and sign your name to history. This is the story of concrete. The First Cement—and Maybe Concrete? Let's get this out of the way right here: cement and concrete are not the same thing. Cement, a mixture of powdered limestone and clay, is an ingredient in concrete along with water, sand, and gravel. Concrete's invention was made possible by the development of cement, and to trace the history of cement, we must trace the use of its components. ADVERTISEMENT - CONTINUE READING BELOW The earliest known use of limestone in a structure has been dated back about 12,000 years.
    [Show full text]
  • Portland Cement
    International Conference on Transport, Civil, Architecture and Environment engineering (ICTCAEE'2012) December 26-27, 2012 Dubai (UAE) Portland Cement Alireza Baghchesaraei1 , Omid Reza Baghchesaraei2 kiln is fired by coal, the ash of the coal acts as a secondary raw Abstract— portland cement is the most common type of cement material. in general usage in many parts of the world, as it is a basic ingredient Portland cement was developed from cements (or correctly of concrete, mortar, stucco and most non-specialty grout. There are hydraulic limes) made in Britain in the early part of the different standards for classification of Portland cement. The two nineteenth century, and its name is derived from its similarity major standards are the ASTM C150 used primarily in the U.S. and to Portland stone, a type of building stone that was quarried on European EN-197. EN 197 cement types CEM I, II, III, IV, and V do the Isle of Portland in Dorset, England. Joseph Aspdin, a not correspond to the similarly-named cement types in ASTM C 150. Portland cement manufacture can cause environmental impacts at all British bricklayer, in 1824 was granted a patent for a process stages of the process. When cement is mixed with water a highly of making a cement which he called Portland cement. His alkaline solution (pH ~13) is produced by the dissolution of calcium, cement was an artificial hydraulic lime similar in properties to sodium and potassium hydroxides. the material known as "Roman Cement" (patented in 1796 by James Parker) and his process was similar to that patented in Keywords—New,Material,Portland Cement 1822 and used since 1811 by James Frost who called his cement "British Cement".
    [Show full text]
  • Concrete Story-Telling (By New-Territories)
    Concrete Story-Telling (by New-Territories) 1 ) Concrete in general Concrete is a material used in building construction, consisting of a hard, chemically inert particulate substance, known as an aggregate (usually made from different types of sand and gravel), that is bonded together by cement and water. The Assyrians and Babylonians used clay as the bonding substance or cement*1. The Egyptians used lime and gypsum cement. In 1756, British engineer, John Smeaton made the first modern concrete (hydraulic cement) by adding pebbles as a coarse aggregate and mixing powered brick into the cement. In 1824, English inventor, Joseph Aspdin invented Portland Cement, which has remained the dominant cement used in concrete production. Joseph Aspdin created the first true artificial cement by burning ground limestone and clay together. The burning process changed the chemical properties of the materials and Joseph Aspdin created a stronger cement than what using plain crushed limestone would produce. *1 cement : the word “cement” traces to the Romans, “caementicium”= masonry made from crushed rock with burnt lime as bindern referred to as “cementum,” “cimentum,” “cäment” and cement. The other major part of concrete besides the cement is the aggregate. Aggregates include sand, crushed stone, gravel, slag, ashes, burned shale, and burned clay. Fine aggregate (fine refers to the size of aggregate) is used in making concrete slabs and smooth surfaces. Coarse aggregate is used for massive structures or sections of cement. Concrete that includes embedded metal (usually steel) is called reinforced concrete or ferroconcrete. Iron reinforced concrete was invented (1849) by Joseph Monier, who received a patent in 1867.
    [Show full text]
  • Celebrating 75 Years of Irish Cement
    CELEBRATING 75 YEARS OF IRISH CEMENT 1938 - 2013 introduction from small importance OF 75 Years beginnings... construction There was early recognition of the importance of Irish Cement commenced operations in 1938. Initial cement construction and that the new State should be capable of Of Irish CemenT production capacity installed at Limerick and Drogheda was providing the basic materials for the industry from its own 225,000 tonnes of cement per annum and this has grown over resources. This led to the passing of the Cement Act by three quarters of a century to a current installed capacity in th the Oireachtas in 1933, the formation of Cement Limited THIS Publication mARkS THe 75 2013 of over 4 million tonnes per annum. in 1936 and the commissioning of production plants at AnnIveRSARy Of THe COmmenCemenT Drogheda and Limerick in 1938. Of CemenT PRODuction by IRISH Over the past 75 years capacity has been increased to meet CemenT LImITeD at LImeRICk AnD ‘portland’ cement the needs of the developing Irish economy, the plants have DROGHeda In 1938. been upgraded and expanded, and a new green field plant was constructed at Platin in the early 1970s to replace the original Drogheda plant. Platin was subsequently While the production and use of cement have their roots cement manufacture in the 19th century – uk in antiquity, the story of modern cement making dates expanded twice through two major investments. As back to the early nineteenth century and the work of Leeds technology moved forward, product composition and 1 stonemason Joseph Aspdin who in 1824 filed the first patent performance have been continuously improved, modified for ‘Portland’ cement.
    [Show full text]
  • Background Facts and Issues Concerning Cement and Cement Data
    Background Facts and Issues Concerning Cement and Cement Data By Hendrik G. van Oss Open-File Report 2005-1152 U.S. Department of the Interior U.S. Geological Survey ii U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. iii Preface This report is divided into two main parts. Part 1 first serves as a general overview or primer on hydraulic (chiefly portland) cement and, to some degree, concrete. Part 2 describes the monthly and annual U.S. Geological Survey (USGS) cement industry canvasses in general terms of their coverage and some of the issues regarding the collection and interpretation of the data therein. The report provides background detail that has not been possible to include in the USGS annual and monthly reports on cement. These periodic publications, however, should be referred to for detailed current data on U.S. production and sales of cement. It is anticipated that the contents of this report may be updated and/or supplemented from time to time.
    [Show full text]
  • Technological Changes in the Cement Manufacturing Industry. By- Wesson, Carl E
    REPOR TRESUMES ED OM 582 VT 003 669 TECHNOLOGICAL CHANGES IN THE CEMENT MANUFACTURING INDUSTRY. BY- WESSON, CARL E. CALIFORNIA STATE DEPT. OF EMPLOYMENT, SACRAMENTO BUREAU OF EMPLOYMENT SECURITY, WASHINGTON, D.C. PUB DATE OCT 66 EDRS PRICE MF-$0.25 HC-$1.32 31P. DESCRIPTORS- *TECHNOLOGICAL ADVANCEMENT, *AUTOMATION, *CEMENT INDUSTRY, JOB ANALYSIS, COMPUTERS, EMPLOYMENT TRENDS, EMPLOYMENT OPPORTUNITIES, *OCCUPATIONAL INFORMATION, THE PURPOSE OF THIS STUDY IS TO PRESENT A PRELIMINARY PICTURE OF OCCUPATIONAL CHANGES BROUGHT ABOUT IN THE MANUFACTURE OF CEMENT AS A RESULT OF INTRODUCING AUTOMATED EQUIPMENT. ONE AUTOMATED AND SEVERAL CONVENTIONAL TYPE CEMENT PLANTS WERE STUDIED. ANALYSIS OF DATA OBTAINED THROUGH RESEARCH AND DATA COLLECTED DURING THE STUDY REVEALED THAT MANUFACTURERS OF CEMENT, LIKE THOSE IN SO MANY OTHER INDUSTRIES, ARE AUTOMATING THEIR MANUFACTURING PROCESSES. THE CEMENT INDUSTRY IS GOING THROUGH ONE OF THE GREATEST REMODERNIZATION ERAS THAT COULD BE EXPERIENCED BY ANY INDUSTRY. INFORMATION IS PROVIDED ON THE OCCUPATIONAL STRUCTURE OF THE CEMENT PLANT BEFORE AND AFTER INTRODUCTION OF A COMPUTER CONTROL SYSTEM, THE JOSS ELIMINATED AND NEW JOBS CREATED, THE KIND OF WORK THE NEW JOBS ENTAIL, THE KINDS OF KNOWLEDGE AND SKILLS THE NEW JOBS DEMAND, AND THE SOURCE OF WORKERS FOR FILLING THE NEW JOBS. HISTORICAL MATERIALS, *PROCESS FLOWCHARTS, AND OTHER PERTINENT INFORMATION ARE PRESENTED FOR EACH PROCESS IN THE AUTOMATED PLANT DESCRIBED. CHANGEOVER TO AN AUTOMATED SYSTEM IN THE ABC CEMENT COMPANY INDICATED A DECREASE IN EMPLOYMENT OF ABOUT 13 PERCENT. AVERAGE PRODUCTION WAS INCREASED. (PS) United States Employment Service October 1966 Technological Changes in the Cement Manufacturing Industry Department of Employment State of California U.
    [Show full text]
  • Chairman's Report
    Newsletter No. 101 – May 2021 Free to members Chairman’s Report In this Issue: Bob Flanagan John Bazley Good news this month is that restoration of the monu- White (1784- ment to dramatist and judge Sir Thomas Noon Talfourd 1867): Solid (1795–1854; grave 1,452, square 34) has been completed save for work on the brickwork that will be finished once Foundations (if) the weather improves. The elegant cross atop the Page 5 monument had been demolished and the vault damaged The Mabey by a falling tree (see Newsletter 87, September 2016). Sculptors : An Thanks to the Old Reding- Immense ensians Association, the Dickens Fellowship, Kev- Contribution in Crook & Jacqueline Page 10 Landy (Lambeth) and to monumental masons Row- The Curlings, land Brothers. They have The Hunters, as always done an ex- and the Dunns cellent job! Page 14 Other news is that the con- Tidying-up the tract for the roadways and drainage package of the Cemetery NHLF grant has been aw- Page 15 arded to idverde UK Ltd. However, seemingly work Forthcoming cannot start until May at Events Page 15 the earliest. Inevitably this work will be disruptive, A Bit of Mystery but a one-way traffic sys- Page 16 tem is being planned that should allow unimpeded access to all parts of the cemetery. The restored Talfourd cross Planning for the new entrances on Robson Road and at Hubbard Road continues. At Hubbard Road it is apparent that one of the original gateposts has been hit recently by a high-sided vehicle. The damage will be repaired as part of the works to enable this entrance to be reopened.
    [Show full text]
  • A Well Cemented Technique – XRF
    A Well Cemented Technique – XRF MiLbMaggi Loubser UWO XRF 2010 20th Anniversary Celebration Symposium: Practical XRF Application in Industry 1 A bit of history • 3000 BC – Egyptians used mud mixed with straw to bind bricks. Also furthered the discovery of lime and gypsum mortar as a binding agent for the Pyramids 2 2 A bit of history • 300 BC • Romans used slaked lime and volcanic ash called pozzuolana, found near Pozzouli at the bay of Naples. They used lime as a cementitious material. Plinyyp reported a mortar mixture of 1 part lime to 4 parts sand. Vitruvius reported a 2 parts pozzolana to 1 part lime. Animal fat, milk, and blood were used as admixtures 3 A bit of history • After 400 AD – The art of Concrete was Eddystone Lighthouse lost after the fall of the 1759 Constructed Roman Empire under the guidance of • 1756 John Smeaton – John Smeaton , British using his new Engineer, rediscovered mortar hydraulic cement through repeatdtted tes ting of mort ar i n both fresh and salt water on sam pesoples of v ocaolcani coc ori gin 4 4 A bit of history • Portland cement is an extremely fine grey powder manufactured from some of the earth's most common minerals. It's the glue that binds sand and gravel together into the rock- like mass we know as concrete. • The term "portland cement" was coined by its inventor, English stonemason Joseph Aspdin. Aspdin heated a mixture of finely powdered limestone and clay in a small furnace to produce hydraulic cement- one that would harden when water is added.
    [Show full text]
  • Roman Cement – Key Historic Material to Cover the Exteriors of Buildings
    This paper was published in “RILEM Workshop Repair Mortars for Historic Masonry”, ed. C. Groot, RILEM Publications SARL, 2009, 2-11 The original publication is available at the publisher’s web site: http://www.rilem.net/ The article is copyrighted by RILEM. Readers must contact RILEM for permission to reprint or use the material in any form. ROMAN CEMENT – KEY HISTORIC MATERIAL TO COVER THE EXTERIORS OF BUILDINGS G. Adamski1, L. Bratasz1, R. Kozlowski1, N. Mayr2, D. Mucha1, , M. Stilhammerova3 and J. Weber2 1Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Poland 2Institute of Conservation Sciences and Restoration Technology, University of Applied Arts Vienna, Austria 3The Monuments Board of Slovak Republic, Slovakia Abstract Roman cements were key materials for the economic and easy manufacture of the stuccoes for the exterior of buildings during the nineteenth and early twentieth centuries. The survey of historic buildings across Europe has revealed a considerable diversity of the historic application techniques from architectural castings, to in-situ applied renders and hand-run elements. A wide range of aggregate contents between 20 –50% was identified. The microstructure of the Roman cement pastes showed a very fine ‘groundmass’ encapsulating a significant amount of partially hydrated remnants of original cements. Historic Roman cement mortars generally combine high porosity with high mechanical strength and excellent durability. Two categories of pores have been distinguished: fine pores characteristic of well-hydrated mature Roman cement matrix and large pores characteristic of mortars strongly exposed to air. The current ROCEM project is bringing back Roman cements to the market. A broad research on the compatibility between the historic stuccoes and the new repair mortars is described.
    [Show full text]
  • The Manufacture and Testing of Portland Cement.”’ by Major-General HENRYYOUNG DARRACOTT SCOTT, C.B., R.E., F.R.S., Assoc
    Proceedings.] SCOTT AND REDGRAVE ON PORTLAXDCEMENT. 67 11 May, 1880. WILLIAM HEKRY BARLOW, F.R.S., President, in the Chair. (Paper No. 1649.) “The Manufacture and Testing of Portland Cement.”’ By Major-General HENRYYOUNG DARRACOTT SCOTT, C.B., R.E., F.R.S., Assoc. Inst. C.E., and G1LBER.r RICHARDBEIIGKAVE, Assoc. Inst. C.E. NOTWITHSTANDINGthat much has been written concerning Portland cement, the history of its early manufacture is involved in con- siderableobscurity. Theinvestigations of Smeaton andPasley in England, of Fuchsand John in Germany, and of Vicat in France, into the nature and causes of the hydraulicity of limes, are well known ; but the discovery of the exact conditions of the manufacture of the cement now recognised as Portland seems to have been only gradually arrive& at. The first mention of acement named, in consequence of its fancied resemblance to Portland stone, “ Portland cement,” occurs inthe specification of a patent, KO. 5,022, grantedto Joseph Aspdin,a bricklayer of Leeds, dated October 21st, 1824. The cement originally made by Aspdin does not, however, appear tu have been a true Portland, nor was his process identical with that which has since been generally adopted in the production of this material. He used, in fact, a double system of calcination, as he employed a hard limestone in lieu of a soft and friable chalk. He specified, first burning t.he limestone to lime, so as to obtain a readily pulverised quicklime ; this lime he mixed with a suitable, or, as he terms it, “a specific quantity, of argillaceous earth or clay,” and then he directed that the mixture should be calcined “in a furnacesimilar to a limekiln, till the carbonic acid is entirely expelled.” This process of double calcination is perhaps, 1 The diacnssion upon this Paper wa8 taken together with that upon the two followiug ones.
    [Show full text]