Different Types of Building Limes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hot-Mixed Mortars: the New Lime Revival
ALISON HENRY Hot-mixed mortars: the new lime revival Appreciation of the limitations of lime putty mortars and concerns about the strength of natural hydraulic limes have triggered renewed interest in traditional mortars, and in hot mixing. When non-hydraulic lime-putty mortars are used in exposed locations or, as here, for demanding applications such as on wall tops, failure due to frost damage is not uncommon. Quicklime made in The last five years or so have seen a revival in use of hot- traditional kilns often mixed mortar.While many people have welcomed this as contained under- or over- burned limestone which did a way of making more authentic mortars for conservation, not slake when the mortar others are sceptical or even hostile to what they see as a was made, and remained in new fad. Before exploring the pros and cons of hot-mixed the mix as rounded whitish particles, often referred to as mortars, it is worth reflecting on the past 40 years of lime ‘lime lumps’. Fragments of use and how we have arrived at the current situation. black fuel ash from the lime kiln sometimes found their way into the mortar too. The lime revival These are clearly visible in As the damage caused by hard, impervious cement many hot-mixed mortars. mortars became apparent from the mid- 20th century, However, for very high- quality work, quicklime was the revival in use of lime from the 1970s was naturally ‘BHP’ – ‘best hand-picked’ welcomed by conservation practitioners. Emerging – and did not contain lime practice borrowed from materials and methods used lumps or ash. -
The Effect of Linseed Oil on the Properties of Lime-Based Restoration Mortars
Allma Mater Studiiorum – Uniiversiità dii Bollogna DOTTORATO DI RICERCA Science for Conservation Ciclo XXII Settore/i scientifico disciplinari di afferenza: CHIM/12 TITOLO TESI THE EFFECT OF LINSEED OIL ON THE PROPERTIES OF LIME-BASED RESTORATION MORTARS Presentata da: Eva Čechová Coordinatore Dottorato Relatore Prof. Rocco Mazzeo Prof. Ioanna Papayianni Esame finale anno 2009 Abstract THE EFFECT OF LINSEED OIL ON THE PROPERTIES OF LIME-BASED RESTORATION MORTARS The traditional lime mortar is composed of hydrated lime, sand and water. Besides these constituents it may also contain additives aiming to modify fresh mortar´s properties and/or to improve hardened mortar´s strength and durability. Already in the first civilizations various additives were used to enhance mortar´s quality, among the organic additives, linseed oil was one of the most common. From literature we know that it was used already in Roman period to reduce water permeability of a mortar, but the mechanism and the technology, e.g. effects of different dosages, are not clearly explained. There are only few works studying the effect of oil experimentally. Knowing the function of oil in historical mortars is important for designing a new compatible repair mortar. Moreover, linseed oil addition could increase the sometimes insufficient durability of lime-based mortars used for reparation and it could be a natural alternative to synthetic additives. In the present study, the effect of linseed oil on the properties of six various lime- based mortars has been studied. Mortars´ compositions have been selected with respect to composition of historical mortars, but also mortars used in a modern restoration practise have been tested. -
Precis of Use of the Natural Hydraulic Lime NHL
ACCURATE OF USE OF THE NATURAL HYDRAULIC LIME Precis of use of the natural hydraulic lime NHL « Or, how to use nature to protect us from its whims ». Olivier Labesse. 1 ACCURATE OS USE OF THE NATURAL HYDRAULIC LIME To my father, a man, i own everything. 2 ACCURATE OF USE OF THE NATURAL HYDRAULIC LIME Preface There has been an on-going renaissance in working with lime throughout Europe during the last twenty years or so. Some countries had abandoned lime completely in favour of cement; when lime was used it was only to increase the workability of cement mortars. Working with lime was all but forgotten, repairs to old buildings were carried our us- ing cement mortars and concrete. As a result problems began to occur. It was realised that old structures originally built with lime were best repaired using lime. In simple terms old buildings needed to breathe in order to stay dry and healthy, and to remain flexible so as not to crack from inevitable minor movement. Working with lime had to be re-learnt again. In some countries nobody still living had worked with lime or only the very old had the dimmest memory of doing so. Written sources were scarce and some- times confusing. Initially mistakes were made but bit by bit knowledge and skills were re-developed. There is still some way to go. France was fortunate not to have abandoned its natural hydraulic lime production, which it has maintained since the 19th century. Today it has a thriving export business because of renewed demand worldwide. -
ADDIS ABABA UNIVERSITY the Effect of Egg and Lime on The
ADDIS ABABA UNIVERSITY ADDIS ABABA INSTITUTE OF TECHNOLOGY SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING The Effect of Egg and Lime on the Compressive Strength of Mortar By: - Neima Yesuf Advisor: - Dr. Esayas G/Yohannes A thesis submitted as a Partial Fulfillment of the Requirements for the degree of Masters of Science in Structural Engineering August 2014 1 Acknowledgment First of all I would like to thank Addis Ababa institute of Technology for giving me this opportunity to conduct this interesting research. And I would like to thank Dr Esayas G/yohannes for giving me great advices during this research. And I would like to give my gratitude for W/t Yewubdar Eshetu, Ato Daniel Kibret, Ato Getachew Asrat, Ato Sirahbizu W/senbet, Ato Wubale, my family and close friends and all those that contributed in different ways in making this research happen. 2 ABSTRACT The Effect of Egg and Lime on the Compressive strength of Mortar Neima Yesuf Addis Ababa University, 2014 In Ethiopia there is a saying that tells buildings like Fasiledes castle of Gondar were built from materials that did not include cement. This saying describes the buildings as made from stones using lime mortar, consisting of sand, lime and egg parts, as a binder. This saying gave a motivation for this research to investigate the effect of egg parts on the compressive strength of mortar. This research concentrates on the effect of egg albumin and egg shell on the compressive strength of mortar since there is already good known material on lime and the effect of the egg albumin and egg shell with regards to cement can be studied on mortar without the addition of aggregates. -
Development of Bond Strength in Hydraulic Lime Mortared Brickwork
Development of Bond Strength in Hydraulic Lime Mortared Brickwork Submitted by ZHAOXIA ZHOU for the degree of Doctor of Philosophy UNIVERSITY OF BATH Department of Architecture and Civil Engineering January 2012 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that they must not copy it or use material from it except as permitted by law or with the consent of the author. This thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purposes of consultation. Signature of Author........................................................... ii Acknowledgements The work in the thesis was carried out in the Department of Architecture and Civil Engineering at the University of Bath between January 2006 and January 2009. The author would like to thank Professor Pete Walker and Dr Dina D'Ayala, joint supervisors of this study. They have provided continuous support and professional guidance throughout the duration of the research. Their help, patience and time ensured that the project was completed successfully. The author would like to thank Professor Pete Walker in particular, who has been a great supervisor all the way through this long journey, not only contributing considerable expertise to the research, but also providing endless encouragement and support to help me through this most difficult time in my life. Special mention should be made to Dr Andrew Heath for designing the pneumatic loading system on the bond wrench test apparatus, and all of the laboratory staff in the department, Neil, Brian, Will, Sophie, Graham and Paul, who offered a big hand during the large amount of experimental work. -
Characterisation and Consolidation of Historical Lime Mortars in Cultural Heritage Buildings and Associated Structures in East Africa
Characterisation and Consolidation of Historical Lime Mortars in Cultural Heritage Buildings and Associated Structures in East Africa Athuman M. K. Ngoma TRIKA-BKN. Bulletin 101, 2009 ISSN 1103-4270 ISRN KTH/BKN/B--101--SE Doctoral Thesis The Artichoke At first glance it seems unappetizing, even forbidding, with the meagre edible matter in its hard exterior. The reward, however, comes in taking it apart, devouring it leaf by leaf. Its leaves slowly become more tender and tastier, until you arrive at the succulent heart. ii ABSTRACT ...........................................................................................................................viii PREFACE ................................................................................................................................ix ACKNOWLEDGEMENTS..................................................................................................... x CHAPTER ONE: INTRODUCTION .................................................................................... 1 1.1 Background and Problem Identification .................................................................... 1 1.2 Restoration of Historical Structure............................................................................. 3 1.3 Objectives, Limitations and Method .......................................................................... 3 CHAPTER TWO: MORTAR AND MORTAR DAMAGE................................................. 5 2.1 Introduction ............................................................................................................... -
Lime and Its Place in the 21St Century: Combining Tradition, Innovation, and Science in Building Preservation∗
International Building Lime Symposium 2005 Orlando, Florida, March 9 -11, 2005 LIME AND ITS PLACE IN THE 21ST CENTURY: COMBINING TRADITION, INNOVATION, AND SCIENCE IN BUILDING PRESERVATION∗ Lauren B. Sickels-Taves, Ph.D.1 Philip D. Allsopp, D.Arch, RIBA2 Abstract Lime is a long-established material in mortars and renders, with its use dating back centuries. Its properties are time-tested, both in-situ and in laboratories. However, lime’s marketability and the increased need for faster building in the 19th and 20th centuries decreased its widespread use. During this period, masonry integrity problems, and, later, sustainability concerns and increased mold risk were introduced into the built environment resulting from the widespread use of impervious materials including Portland cement for mortars and external renders. Evidence shows that lime has always been and remains a practical, sustainable, and healthy alternative to cement worthy of far more widespread deployment across the building industry. ∗ © Copyright NLA Building Lime Group 2005 The views presented in this paper are solely those of the authors. The National Lime Association (NLA) and the Building Lime Group assume no liability or responsibility for any errors, omissions, or other limitations in this paper or for any products, services, or methods presented. This paper is intended for use by professional personnel competent to evaluate the significance and limitations of the information provided and who will accept full responsibility for the application of this information. NLA and the Building Lime Group do not intend to infringe on any patent or other intellectual property right or induce any other party to do so, and thus users of this document are responsible for determining whether any method, technique, or technology described herein is protected by patent or other legal restriction. -
NHL Lime Plaster
NHL Lime Plaster St Astier Limes and Mortars telephone: 0800 783 9014 Lime Plaster using St Astier NHL Using St. Astier NHL plastering mortars instead of non hydraulic putty mortars reduces the working time by about 50%. NHL mortars offer similar vapour exchange qualities as putty mortars but are more robust, can be sprayed and used for decorative plasterwork without the addition of gypsum. Requiring less after care than putty, it can be applied in 2 coats on good level backgrounds. Mortar. Plastering in hydraulic lime mortar normally consists of two or three-coat work. Lime plaster made with feebly or moderately hydraulic lime and sand is the basis for this guide. This type of lime sets and hardens predominantly by an hydraulic set and re-absorption of Carbon Dioxide from the air. By its nature the drying and absorption process is slower than gypsum plasters, therefore lime plaster curing should not be hurried allowing approximately 3-5 days per coat depending on the hydraulic lime used. Background. When applying Lime Plaster on the hard, the background will normally be brick or stone. The surface should be clean, free from dust and any organic materials such as lichens etc. Test the surface of masonry backgrounds for dust by applying a piece of masking tape to the background and immediately remove, examine the sticky side for traces materials that may affect the bond between the plaster and the wall. Internal walls can be uneven and rough, often with areas that have been altered. Different background conditions are therefore common and this needs to be addressed before plastering. -
Experimental Study on Lime Mortar Using Flyash and Gallnut As Additives
Special Issue - 2016 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 SNCIPCE - 2016 Conference Proceedings Experimental Study on Lime Mortar using Flyash and Gallnut As Additives B. Dhilipkumar1 M. Dhivakar Karthick2 Assistant Professor Assistant Professor Department of Civil Engineering Department of Civil Engineering Kongunadu College of Engineering & Technology Kongunadu College of Engineering & Technology Thottiam, Trichy Thottiam, Trichy Abstract— As concern the environmental impacts and high strength and tensile strength of lime mortar have been cost of cement which is widely used, clearly requires alternate studied. protective binder. But in the first civilization, lime is used as II. METHODOLOGY biodegradable binding material which is also composed of additives such as pozzolana and traditional herbs. In the present Lime is a binder which is in general, the purpose of the study lime mortar with composition of flyash as pozzolana binder is to hold the sand particles together and to fill the which enables mortar to set rapidly in the ratio of 1:1:2 voids in between the grains of sand. Hydraulic lime used in (lime:pozzolana:sand) as per IS:4098 – 1983. Also used extracts building construction. Sand is the most common aggregate in of kadukkai (gallnut) and palm’s jaggery in the proportion of 5%, 10% and 15% of the weight of binder. As the result, on mortars. the potable water should be used in appropriate addition of 5% herbal extract in pozzolanic lime mortar amount till attain required consistency. Flyash , kadukkai improves workability and increases tensile strength, also ( Terminalia chebula) and palm’s jaggery are additives of enhanced increased compressive strength about 55% compared lime mortar. -
Lime Mortars for the Repair of Masonry
Lime mortars for the repair of masonry HTC 1:2020 June 2020 Heritage Technical Codes Cover image A 150-year-old lime mortar high up in an exposed church tower. The large lumps of lime show that it was made in the traditional way by sand-slaking (i.e. slaking quicklime with sand). The mortar is beginning to erode, particularly from perpendicular joints which are less well-compacted. Repointing with a similar lime mortar will ensure compatibility with the bricks. Acknowledgment We acknowledge and respect Victorian Traditional Owners as the original custodians of Victoria's land and waters, their unique ability to care for Country and deep spiritual connection to it. We honour Elders past and present whose knowledge and wisdom has ensured the continuation of culture and traditional practices. We are committed to genuinely partner, and meaningfully engage, with Victoria's Traditional Owners and Aboriginal communities to support the protection of Country, the maintenance of spiritual and cultural practices and their broader aspirations in the 21st century and beyond. © The State of Victoria, Heritage Council of Victoria 2020; and David Young 2020 All photographs and diagrams by David Young ISBN 978-1-76105-177-7 (pdf/online/MS Word) Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication. -
Hydraulic Lime an Introduction
HYDRAULIC LIME AN INTRODUCTION Hydraulic lime was an important cementitious material before the arrival of Portland cement but it is little used now, except in conservation work. Production of good hydraulic lime is as much a craft as a technology, even more than ordinary lime but, with the decline in use of hydraulic lime, there are few skilled producers left and new producers often need to learn the required skills from scratch. Hydraulic lime hardens partly by reaction with water and so differs from other types of lime which harden by chemical reaction with carbon dioxide in the air. Hydraulic lime has properties intermediate between ordinary lime and Portland cement but is produced in a similar way to ordinary lime. In addition to containing calcium hydroxide, the chemical which makes up ordinary lime, hydraulic lime also contains calcium silicates similar to the main cementitious components of Portland cement. A cement with properties similar to hydraulic lime can also be obtained by mixing ordinary lime with a pozzolanic material. Hydraulic lime can be made stronger than ordinary lime and can be used in some applications for which ordinary lime is not suitable, particularly where water is present. In developing countries hydraulic lime is rarely produced. There is probably considerable potential for increased production in situations where Figure 1: Slaking. Hydrated lime is produced by adding water to quicklime. Portland cement is scarce or very expensive. Chenkumbe Hills Area, Malawi ©Practical However, in general, little mapping of reserves of Action/David Mather raw materials or assessment of their quality has been carried out. -
Potential of Using Wood Biomass Ash in Low-Strength Composites
materials Article Potential of Using Wood Biomass Ash in Low-Strength Composites Ana Bariˇcevi´c 1,* , Ivana Carevi´c 1, Jelena Šantek Bajto 1, Nina Štirmer 1 , Marija Bezinovi´c 1 and Keti Kristovi´c 2 1 Department of Materials, Faculty of Civil Engineering, University of Zagreb, Fra Andrije Kaˇci´caMioši´ca26, 10000 Zagreb, Croatia; [email protected] (I.C.); [email protected] (J.Š.B.); [email protected] (N.Š.); [email protected] (M.B.) 2 Trames Ltd., Šipˇcine2, 20000 Dubrovnik, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-1-4639-536 Abstract: Reducing greenhouse gas emissions and dependence on fossil fuels is the cornerstone of all European climate and energy strategies. Consequently, renewable energy sources are becoming more competitive with fossil fuels. The largest source of bioenergy in the European Union is biomass-fired power plants. Therefore, the European coal phase-out strategy led to an increased use of wood biomass as a sustainable fuel, generating large amounts of wood biomass ash (WBA). In the research studies reported so far, WBA has been mainly used in cementitious composites. However, given the similarities between the chemical composition of WBA and hydraulic lime (HL), this research focused on its potential classification as a building lime. Overall, three different sources of fly WBA were considered for the preparation of binders as mixtures of WBA and coal fly ash (CFA) in different ratios. The contribution of each binder mixture on the paste and mortar properties was analyzed based on the chemical composition, setting time, volume stability, and contribution to the mortar strength (compressive and flexural).