Sodium Cooled Nuclear Reactors

Total Page:16

File Type:pdf, Size:1020Kb

Sodium Cooled Nuclear Reactors Couv_mono7GB2:Couv_mono7FR_BàT 10/06/16 10:47 Page 1 Commissariat à l’énergie atomique et aux énergies alternatives Commissariat à l’énergie atomique et aux énergies alternatives e-den A Nuclear Energy Division Monograph e-den Even as civil nuclear energy is experiencing a real resurgence in interest, there is a need also to know pre- A Nuclear Energy Division cisely what is involved in the issue, whether it be nuclear energy itself, or the associated science and tech- Monograph nology. And yet, overviews evidencing a good scientific level, as regards this type of energy, are scarce… To make good this virtual absence, and highlight its own work in due manner, the French Alternative Energies and Atomic Energy Commission (CEA: Commissariat à l'énergie atomique et aux énergies alter- natives) is setting out, in the form of short monographs, a comprehensive overview of its own ongoing research, in the area of civil nuclear energy. Such research being diverse, and multidisciplinary, this series of CEA monographs explores, and surveys topics as varied, if complementary, as the reactors of the future, nuclear fuel, materials under irradiation, or nuclear waste… Sodium-Cooled Aimed both at scientists hailing from other areas of expertise, wishing to appraise themselves of the issues at hand, and a wider public, interested in learning about the present and future technological envi- ronment, these CEA monographs set out the recent findings from research, together with their context Nuclear Reactors and the related stakes. Sodium-Cooled Nuclear Reactors Sodium-Cooled Nuclear Reactors The first nuclear reactor that generated electric power, in 1951, was a liquid metal-cooled fast neutron reactor. In the following years nineteen fast neutron reactors using sodium as coolant were constructed, first as research nuclear reac- tors, and then as power reactors.This Monograph describes that history as well as the operating experience feedback gained with those reactors, among which the three French reactors RAPSODIE, PHÉNIX and SUPERPHÉNIX: design, materials, measurements, instrumentation, in-service ins- pection, components, operating experience reviews, etc. The design principles of this reactor type are also detailed, highlighting their significant potential assets: the ability to burn all of the uranium fed to it, which would ensure world power supply for thousands of years; the ability to recycle all of the plutonium and uranium arising from spent fuel treatment, thereby closing the cycle, which would minimize ultimate waste. Today two high-power sodium-cooled fast reactors are being constructed, one in India, and the other one in Russia, and a number of projects are under study, among which the ASTRID project in France. This Monograph reviews the status of these developments in 2013. 22 ISBN 978-2-281-14055-2 ISSN 1950-2672 The deployment of this promising technology is slowed down, especially due to overcost in constructing these reac- tors in contrast with the water reactor type.The perspectives of this deployment are analyzed in a technico-economic chapter, in relation to the uranium resource evolution. DEN Monographs A Nuclear Energy Division Monograph Commissariat à l’énergie atomique et aux énergies alternatives 91191 Gif-sur-Yvette Cedex (France) Tel: +33 (0)1 64 50 10 00 Scientific Committee Georges Berthoud, Gérard Ducros, Damien Féron, Yannick Guérin, Christian Latgé, Yves Limoge, Gérard Santarini, Jean-Marie Seiler, Étienne Vernaz (Research Directors). Topic Editor: Joël Guidez. Contributors to this Monograph: Catherine Andrieux, François Baqué, Bern ard Bonin, Bernard Boullis, Céline Cabet, Frank Carré, Philippe Dufour , François Gauché, Jean-Paul Grouiller, Joël Guidez (Topic Editor), Jean-Philippe Jeannot, Christian Latgé, Marion Le Flem, Pierre Le Coz, Laurent Martin, Michel Masson, Gilles Mathonnière, Jean-Guy Nokhamzon, Michel Pelletier, Gilles Rodriguez, Manuel Saez, Jean-Louis Séran, Frédéric Varaine, Alain Zaetta. Editorial Director: François Gauché. Editorial Board: Bernard Bonin (Editor in chief), Olivier Provitina, Michaël Lecomte, Alain Forestier. Administrator: Alexandra Bender. Editor: Jean-François Parisot. Graphic concept: Pierre Finot. Translation of the 2014 French Edition: Catherine Andrieux-Martinet and Revision: Topic Editor and Authors. Correspondence: all correspondence should be addressed to the Editor or to CEA/DEN Direction scientifique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France). Tel: +33 (0)1 69 08 16 75 © CEA Saclay et Groupe Moniteur (Éditions du Moniteur), Paris, 2016. ISBN 978-2-281-14055-2 ISSN 1950-2672 The information contained in this document may be freely reproduced, subject to agreement by the Editorial Board and due acknowledgement of the source. Front cover: photograph taken during the sodium filling of the SUPERPHÉNIX reactor. The fuel sub-assembly lattice is about to be immersed in sodium. Commissariat à l’énergie atomique et aux énergies alternatives e-den A Nuclear Energy Division Monograph Sodium-Cooled Nuclear Reactors Foreword After a dazzling start in the 1950’s when, for many, it stood as the hope of an inexhaus- tible, economically competitive energy source, nuclear energy experienced in the 1980’s and 1990’s a rejection by majority public opinion in several Western countries, which sud- denly brought its development to a halt. Although the 1973 and 1979 oil crises marked the launch of massive equipment programs in a few countries heavily penalized by oil imports, in particular France and Japan, they were paradoxically followed by a gap in nuclear investments, first, in the United States, and then in Western Europe. However, repeated oil market tensions and emerging concerns over the possible depletion of natural resources, as well as expectable effects on climate and the environment due to their large-scale burning should have, by contrast, enhanced such investments. There are surely many reasons for this pause, which can in part be explained by the acci- dents at Three Mile Island in 1979, and Chernobyl in 1986, deeply impacting public opi- nion. Fukushima recent accident legitimately raises again the same questions, although the context is quite different.The pending issue is not so much whether reactors are tech- nically able to withstand the most improbable events: Fukushima focuses renewed atten- tion, indeed, on how to train operators and members of the decision-making line in charge of tackling a severe dysfunction of engineered safety systems in the case of equipment failure. In France, whereas the siting of nuclear power plants had never - except for one case - aroused a true debate in the population, a negative attitude emerged in the late 1980’s concerning the nuclear waste issue. Given the growing difficulties of the French national agency for radioactive waste management (ANDRA) in its search for an underground labo- ratory site, the Government of the time decided to suspend work, set a one-year morato- rium, and submitted the issue to the French parliamentary office for evaluation of scientific and technological options (OPECST). By adopting most of the OPECST’s recommendations, in particular its definition of a diver- sified research program, and also the basis for a democratic debate with the populations concerned, the French Act of December 30, 1991 on radioactive waste management thus greatly contributed to calm the debate. Following a fifteen-year period, in which various options for long-term radioactive waste management were investigated, the French Act of June 28, 2006 made it possible to set out the basic framework for this management, to be recognized as a necessity from now on. In addition, the starting century is marked by collective awareness that our generation’s energy needs cannot be met without concern for the environment, and without preserving future generations’ right to satisfy these same needs. This is the concept of sustainable development which our society will inevitably face, indeed. Today, it goes unquestioned that global warming due to increasing greenhouse gas emis- sions is a human-caused problem. Only the extent and consequences of this warming are still debated. Sodium-Cooled Nuclear Reactors 5 Industrialized countries, who are for the most part the origin of the current situation, hold a particular responsibility, which should induce them to voluntarily reduce emissions of these gases. By its very nature, nuclear energy is not concerned by this type of emissions, while being able to produce a relatively abundant, reliable, and economically competitive energy source. Quite naturally, it is therefore expected to be the predominant energy source. Even if the worldwide situation is still contrasted, more especially in Europe, several coun- tries (China, South Korea, Finland, India, South Africa, Poland, the United Arab Emirates…) have already decided to make huge investments in developing this energy, and do keep this option after Fukushima accident. Others are very close to taking this step, in particular Great Britain and the United States, who seem to be determined to launch programs for the construction of new nuclear power plants by the end of the decade, picking up a process that had been on hold for thirty years. Following France’s national energy debate that took place in the first half of 2003, the French Strategic Orientation Act on energy passed in June 2005 established the decision to build an EPR demonstrator reactor, to pave the way for the replacement of currently operating power plants. A number of signs thus lead us to believe that a worldwide revival of nuclear energy is taking place.Nevertheless, the future of nuclear energy in our country, as in many others, will lar- gely depend on its capacity to properly address the following two concerns: - The first concern has to do with its social acceptability, for it is crucial that nuclear energy be deployed under optimum safety and security conditions, generating a minimum amount of ultimate waste, and the latter be fully controlled with regard to its possible impact on health and the environment.The shock caused by Fukushima accident can but enhance this safety requirement as an absolute priority.
Recommended publications
  • Molten Salts As Blanket Fluids in Controlled Fusion Reactors [Disc 6]
    r1 0 R N L-TM-4047 MOLTEN SALTS AS BLANKET FLUIDS IN CONTROLLED FUSION REACTORS W. R. Grimes Stanley Cantor .:, .:, .- t. This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. om-TM- 4047 Contract No. W-7405-eng-26 REACTOR CHENISTRY DIVISION MOLTEN SALTS AS BLANKET FLUIDS IN CONTROLLED FUSION REACTORS W. R. Grimes and Stanley Cantor DECEMBER 1972 OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the 1J.S. ATOMIC ENERGY COMMISSION This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com- pleteness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. i iii CONTENTS Page Abstract ............................. 1 Introduction ........................... 2 Behavior of Li2BeFq in a Eypothetical CTR ............3 Effects of Strong Magnetic Fields .............5 Effects on Chemical Stability .............5 Effects on Fluid Dynamics ...............7 Production of Tritium ..................
    [Show full text]
  • Monitoring and Diagnosis Systems to Improve Nuclear Power Plant Reliability and Safety. Proceedings of the Specialists` Meeting
    J — v ft INIS-mf—15B1 7 INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR ELECTRIC Ltd. Monitoring and Diagnosis Systems to Improve Nuclear Power Plant Reliability and Safety PROCEEDINGS OF THE SPECIALISTS’ MEETING JOINTLY ORGANISED BY THE IAEA AND NUCLEAR ELECTRIC Ltd. AND HELD IN GLOUCESTER, UK 14-17 MAY 1996 NUCLEAR ELECTRIC Ltd. 1996 VOL INTRODUCTION The Specialists ’ Meeting on Monitoring and Diagnosis Systems to Improve Nuclear Power Plant Reliability and Safety, held in Gloucester, UK, 14 - 17 May 1996, was organised by the International Atomic Energy Agency in the framework of the International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI) and the International Task Force on NPP Diagnostics in co-operation with Nuclear Electric Ltd. The 50 participants, representing 21 Member States (Argentina, Austria, Belgium, Canada, Czech Republic, France, Germany, Hungary, Japan, Netherlands, Norway, Russian Federation, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, Ukraine, UK and USA), reviewed the current approaches in Member States in the area of monitoring and diagnosis systems. The Meeting attempted to identify advanced techniques in the field of diagnostics of electrical and mechanical components for safety and operation improvements, reviewed actual practices and experiences related to the application of those systems with special emphasis on real occurrences, exchanged current experiences with diagnostics as a means for predictive maintenance. Monitoring of the electrical and mechanical components of systems is directly associated with the performance and safety of nuclear power plants. On-line monitoring and diagnostic systems have been applied to reactor vessel internals, pumps, safety and relief valves and turbine generators. The monitoring techniques include nose analysis, vibration analysis, and loose parts detection.
    [Show full text]
  • Nuclear Space Power Safety and Facility Guidelines Study
    NUCLEAR SPACE POWER SAFETY AND FACILITY GUIDELINES STUDY (SEPTEMBER 1995) rss Has NUCLEAR SPACE POWER SAFETY AND FACILITY GUIDELINES STUDY (11 September 1995) Prepared for: Department of Energy Office of Procurement Assistance and Program Management HR-522.2 Washington, D.C. 20585 by: William F. Mehlman The Johns Hopkins University Applied Physics Laboratory Johns Hopkins Road Laurel, Maryland 20723-6099 in response to: Department of Energy grant to The Johns Hopkins University Applied Physics Laboratory DE-FG01-94NE32180 dated 27 September 1994 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. IfH DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. TABLE OF CONTENTS 1.0 INTRODUCTION 1 1.1 PURPOSE ...1 1.2 BACKGROUND 1 1.3 SCOPE 3 2.0 NUCLEAR SPACE SAFETY GUIDELINES AND CONSIDERATIONS .
    [Show full text]
  • Cooling Wide-Bandgap Materials in Power Electronics
    Cooling Wide-Bandgap Materials in Power Electronics By Josh Perry Marketing Communications Specialist Advanced Thermal Solutions, Inc. (ATS) Engineers are always looking for an edge in their designs to extract as much power and performance as possible from a system, while attempting to meet industry trends in miniaturization. In the power electronics industry, this has required an examination of the materials being used to overcome inherent limitations from heat, voltage, or switching speed. Engineers are using wide-bandgap materials to expand the capabilities of power electronics, pushing them beyond the thermal and electrical limits of silicon-based components. (Background image created by Xb100 – Freepik.com) For years, silicon was the answer for the power electronics market, but in the past decade there has been a growing movement towards wide-bandgap materials, particularly silicon carbide (SiC) and gallium nitride (GaN). Wide-bandgap materials have higher breakdown voltage and perform more 1 efficiently at high temperatures than silicon-based components. [1] Recent research indicated, “For commercial applications above 400 volts, SiC stands out as a viable near-term commercial opportunity especially for single-chip current ratings in excess of 20 amps.” [2] This efficiency allows systems to consume less power, charge faster, and convert energy at a higher rate. A recent article from Electronic Design explained that SiC power devices “operate at higher switching speeds and higher temperatures with lower losses than conventional silicon.” SiC has an internal resistance that is 100 times lower than silicon and a breakdown electric field of 2.8 MV/cm, which is far higher than silicon’s 0.3 MV/cm, meaning that SiC components can handle the same level of current in smaller packages.
    [Show full text]
  • Standardization of Radioanalytical Methods for Determination of 63Ni and 55Fe in Waste and Environmental Samples
    NKS-356 ISBN 978-87-7893-440-6 Standardization of Radioanalytical Methods for Determination of 63Ni and 55Fe in Waste and Environmental Samples Xiaolin Hou 1) Laura Togneri 2) Mattias Olsson 3) Sofie Englund 4) Olof Gottfridsson 5) Martin Forsström 6) Hannele Hironen 7) 1) Technical university of Denmark, DTU Nutech 2) Loviisa Power Plant, Fortum Power, Finland 3) Forsmarks Kraftgrupp AB, Sweden 4) OKG Aktiebolag, Sweden 5) Ringhals AB, Sweden 6) Studsvik Nuclear AB, Sweden (7) Olkiluoto Nuclear Power Plant, Finland January 2016 Abstract This report presents the progress on the NKS-B STANDMETHOD project which was conduced in 2014-2015, aiming to establish a Nordic standard methods for the determination of 63Ni and 55Fe in nuclear reactor process- ing water samples as well as other waste and environmental samples. Two inter-comparison excercises for determination of 63Ni and 55Fe in waste samples have been organized in 2014 and 2015, an evaluation of the results is given in this report. Based on the the results from this project in 2014-2015, Nordic standard methods for determination 63Ni in nuclear reactor processing water and for simultaneous determination of 55Fe and 63Ni in other types of waste and environmental samples respectively are proposed. Meanwhile an analytical method for determination of 55Fe in reactor water samples is also recommended. In addition, some procedures for sequential separation of actinides are presented for the simultaneous determinaiton of isotopes of actinides in waste samples are presented. Key words Radioanalysis; 63Ni; 55Fe; standard method; reactor water NKS-356 ISBN 978-87-7893-440-6 Electronic report, January 2016 NKS Secretariat P.O.
    [Show full text]
  • Accident Source Terms for Light-Water Nuclear Power Plants: High Burnup and Mixed Oxide Fuels
    ERIINRC 02-202 ACCIDENT SOURCE TERMS FOR LIGHT-WATER NUCLEAR POWER PLANTS: HIGH BURNUP AND MIXED OXIDE FUELS Draft Report: June 2002 Final Report: November 2002 Energy Research, Inc. - P.O. Box 2034 Rockville, Maryland 20847-2034 Work Performed Under the Auspices of the United States Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, D.C. 20555 ERL/NRC 02-202 ACCIDENT SOURCE TERMS FOR LIGHT-WATER NUCLEAR POWER PLANTS: HIGH BURNUP AND MIXED OXIDE FUELS Draft Report: June 2002 Final Report: November 2002 Energy Research, Inc. P. 0. Box 2034 Rockville, Maryland 20847-2034 Work performed under the auspices of United States Nuclear Regulatory Commission Washington, D.C. Under Contract Number NRC-04-97-040 I This page intentionally left blank PREFACE performed by a This report has been prepared by Energy Research, Inc. based on work Office panel of experts organized by the United States Nuclear Regulatory Commission, if necessary, of Nuclear Regulatory Research, to develop recommendations for changes, to high burnup to the revised source term as published inlNUREG-1465, for application and mixed oxide fuels. the panel facilitator, and Dr. Brent Boyack of Los Alamos National Laboratory served as of the final report. Energy Research, Inc. has been responsible for the preparation Individual contributors to this report include: Executive Summary M. Khatib-Rahbar Section 1 M. Khatib-Rahbar Section 2 H. Nourbakhsh Section 3 B. Boyack Section 4 M. Khatib-Rahbar A. Hidaka of the Japan Substantial technical input was provided to the panel, by Mr. Evrard of the Institut de Atomic Energy Research Institute (JAERI), and Mr.
    [Show full text]
  • Hydrodynamics and Heat Transfer in Nuclear Reactor
    Hydrodynamics and heat transfer in nuclear reactor Lecture 1. Nuclear reactors Department of nuclear and thermal power plants Lecturer: prof. Alexander Korotkikh Contents Introduction Nuclear power plant Classification of nuclear reactors Principle of work of nuclear reactor Heat hydraulic processes in nuclear reactor Conclusion Introduction On June 27, 1954, the world's fist nuclear power plant to generate electricity for a power grid started operations at the Soviet city of Obninsk. A nuclear power plant is a thermal power station in which the heat source is a nuclear reactor. As is typical in all conventional thermal power stations the heat is used to generate steam which drives a steam turbine connected to an electric generator which produces electricity. As of 23 April 2014, the Intern. Atomic Energy Agency report there are 435 nuclear power reactors in operation operating in 31 countries. Nuclear power plants are usually considered to be base load stations, since fuel is a small part of the cost of production. Nuclear power plant The conversion to electrical energy takes place indirectly, as in conventional thermal power plants. The fission in a nuclear reactor heats the reactor coolant. The coolant may be water, gas or liquid metal depending on the type of reactor. The reactor coolant then goes to a steam generator and heats water to produce steam. The pressurized steam is then usually fed to a multi-stage steam turbine. Steam turbines in Western nuclear power plants are among the largest steam turbines ever. After the steam turbine has expanded and partially condensed the steam, the remaining vapor is condensed in a condenser.
    [Show full text]
  • Physical Properties of Organic Nuclear Reactor Coolants
    m mwym m mørn . EUROPEAN ATOMIC ENERGY COMMUNITY — EURATOM Hm Ìli' l'ir M !>·'1 't:h ii m '■•f0* ïVM JSlSmi mm mlWàm mmmv^pupm nm .E.A. (CEN Grenoble, France) Paper presented at the 144th National ACS Meeting Division of Industrial and Engineering Chemistry Symposium on Organic Nuclear Reactor Coolant Technology, Los Angeles (Calif., USA) March 31st to April 5th, 1963 «iii c .. •{••'niti't.-t'ib iii;! > ·Γ"·!»ΐ This document was prepared under the sponsorship of the Commission of the European Atomic Energy Community (EURATOM). Neither the EURATOM Commission, its contractors nor any person acting on their behalf: Make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the m Kd use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights; or o iiiiÜii 2 — Assume any liability with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this document. The authors' names are This report can be obtained, at the price of Belgian Francs 50,­ from : PRESSES ACADÉMIQUES EUROPÉENNES, 98, Chaussée de Charleroi, Brussels 6. Please remit payments : — to BANQUE DE LA SOCIÉTÉ GÉNÉRALE (Agence Ma Campagne) — Brussels — account No 964.558, — to BELGIAN AMERICAN BANK AND TRUST COMPANY — New York — account No 121.86, — to LLOYDS BANK (Foreign) Ltd. — 10 Moorgate London E. C. 2, giving the reference : "EUR 400.e — Physical properties of organic nuclear reactor coolants,,. m '%» ■ι?« EUR 400.e PHYSICAL PROPERTIES OF ORGANIC NUCLEAR REACTOR COOLANTS by S.
    [Show full text]
  • Seabrook Station Revision 18 to Updated Final Safety Analysis
    SEABROOK STATION UPDATED FINAL SAFETY ANALYSIS REPORT CHAPTER 5 REACTOR COOLANT SYSTEM AND CONNECTED SYSTEMS SECTIONS 5.1 Summary Descriptions 5.2 Integrity of Reactor Coolant Pressure Boundary 5.3 Reactor Vessel 5.4 Component and Subsystem Design SEABROOK REACTOR COOLANT SYSTEM AND CONNECTED SYSTEMS Revision 13 STATION Summary Description Section 5.1 UFSAR Page 1 5.1 SUMMARY DESCRIPTION The Reactor Coolant System (RCS), shown in Figure 5.1-1, Figure 5.1-2, Figure 5.1-3 and Figure 5.1-4, consists of four similar heat transfer loops connected in parallel to the reactor pressure vessel. Each loop contains a reactor coolant pump, steam generator and associated piping and valves. In addition, the system includes a pressurizer, pressurizer relief tank, pressurizer relief and safety valves, interconnecting piping and instrumentation necessary for operational control. All the above components are located in the Containment Building. During operation, the RCS transfers the heat generated in the core to the steam generators where steam is produced to drive the turbine generator. Borated demineralized water is circulated in the RCS at a flow rate and temperature consistent with achieving the reactor core thermal-hydraulic performance. The water also acts as a neutron moderator and reflector and as a solvent for the neutron absorber used in chemical shim control. The RCS pressure boundary provides a barrier against the release of radioactivity generated within the reactor, and is designed to ensure a high degree of integrity throughout the life of the plant. RCS pressure is controlled by the use of the pressurizer, where water and steam are maintained in equilibrium by electrical heaters and water sprays.
    [Show full text]
  • "Reactor Coolant System"
    Revision 45—09/30/09 NAPS UFSAR 5-i Chapter 5: Reactor Coolant System Table of Contents Section Title Page 5.1 SUMMARY DESCRIPTION . 5.1-1 5.1.1 Reactor Coolant System Components . 5.1-2 5.1.1.1 Reactor Vessel . 5.1-2 5.1.1.2 Steam Generators. 5.1-2 5.1.1.3 Reactor Coolant Pumps . 5.1-2 5.1.1.4 Piping. 5.1-2 5.1.1.5 Pressurizer . 5.1-3 5.1.1.6 Pressurizer Relief Tank . 5.1-3 5.1.1.7 Safety and Relief Valves . 5.1-3 5.1.1.8 Loop Stop Valves . 5.1-3 5.1.1.9 Reactor Vessel Head Shielding . 5.1-3 5.1.2 Reactor Coolant System Performance and Safety Functions. 5.1-3 5.1.2.1 Reactor Coolant Flow . 5.1-4 5.1.2.2 Interrelated Performance and Safety Functions. 5.1-6 5.1.3 System Operation . 5.1-7 5.1.3.1 Plant Start-up . 5.1-7 5.1.3.2 Power Generation and Hot Shutdown . 5.1-8 5.1.3.3 Plant Shutdown . 5.1-9 5.1.3.4 Refueling . 5.1-10 5.1.3.5 Loss of Decay Heat Removal . 5.1-10 5.1 References . 5.1-12 5.1 Reference Drawings . 5.1-12 5.2 INTEGRITY OF THE REACTOR COOLANT SYSTEM BOUNDARY . 5.2-1 5.2.1 Design Criteria Methods and Procedures. 5.2-1 5.2.1.1 Performance Objectives and Design Conditions .
    [Show full text]
  • Irradiated Assisted Corrosion of Stainless Steel in Light Water Reactors - Focus on Radiolysis and Corrosion Damage Mi Wang
    Irradiated Assisted Corrosion of Stainless Steel in Light Water Reactors - Focus on Radiolysis and Corrosion Damage Mi Wang To cite this version: Mi Wang. Irradiated Assisted Corrosion of Stainless Steel in Light Water Reactors - Focus on Radi- olysis and Corrosion Damage. 2013. hal-00841142 HAL Id: hal-00841142 https://hal.archives-ouvertes.fr/hal-00841142 Submitted on 19 Aug 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Laboratoire des Solides Irradiés, UMR 7642 Bibliography Report June 2013 Irradiated Assisted Corrosion of Stainless Steel in Light Water Reactors – Focus on Radiolysis and Corrosion Damage Mi WANG 1, 2 1 Laboratoire des Solides Irradiés – Ecole Polytechnique, CNRS, CEA, Palaiseau, France 2 Laboratoire d’Etude de la Corrosion Aqueuse – CEA/DEN/DPC/SCCME, Centre de Saclay, Gif-sur-Yvette, France Laboratoire des Solides Irradiés Tél. : 33 1 69 33 44 80 28, route de Saclay, F91128 Palaiseau Fax : 33 1 69 33 45 54 http://www.lsi.polytechnique.fr 2 Contents 1 Light Water Reactors5 1.1 General Introduction.....................................6 1.1.A Main Components..................................6 1.2 Classification of Nuclear Reactors..............................8 1.2.A Classified via Nuclear reaction............................8 1.2.B Classified by Coolant and Moderator........................8 1.2.C Classified via Generation...............................8 1.3 Boiling Water Reactors (BWRs)..............................9 1.3.A Introduction......................................9 1.3.B Water Chemistry Control in BWRs........................
    [Show full text]
  • Pebble Bed Reactors
    330 Int. J. Critical Infrastructures, Vol. 1, No. 4, 2005 A future for nuclear energy: pebble bed reactors Andrew C. Kadak Department of Nuclear Engineering 24-202, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA E-mail: [email protected] Abstract: Pebble Bed Reactors could allow nuclear plants to support the goal of reducing global climate change in an energy hungry world. They are small, modular, inherently safe, use a demonstrated nuclear technology and can be competitive with fossil fuels. Pebble bed reactors are helium cooled reactors that use small tennis ball size fuel balls consisting of only 9 grams of uranium per pebble to provide a low power density reactor. The low power density and large graphite core provide inherent safety features such that the peak temperature reached even under the complete loss of coolant accident without any active emergency core cooling system is significantly below the temperature that the fuel melts. This feature should enhance public confidence in this nuclear technology. With advanced modularity principles, it is expected that this type of design and assembly could lower the cost of new nuclear plants removing a major impediment to deployment. Keywords: pebble bed reactor; safety; economics; modularity; PBMR. Reference to this paper should be made as follows: Kadak, A.C. (2005) ‘A future for nuclear energy: pebble bed reactors’, Int. J. Critical Infrastructures, Vol. 1, No. 4, pp.330–345. Biographical notes: Dr. Kadak is presently Professor of the Practice in the Nuclear Engineering Department at MIT. He is the former President and CEO of Yankee Atomic Electric Company, a nuclear plant operator and provider of nuclear engineering and environmental services to nuclear plants.
    [Show full text]