Molten Salts As Blanket Fluids in Controlled Fusion Reactors [Disc 6]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:2003.07462V2 [Cond-Mat.Mtrl-Sci] 8 Jun 2020
The Structure of Molten FLiNaK Benjamin A. Frandsena,∗, Stella D. Nickersonb, Austin D. Clarkb, Andrew Solanob, Raju Barala, Jonathan Williamsb, J¨orgNeuefeindc, Matthew Memmottb aDepartment of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA. bDepartment of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA. cNeutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. Abstract The structure of the molten salt (LiF)0:465(NaF)0:115(KF)0:42 (FLiNaK), a potential coolant for molten salt nuclear reactors, has been studied by ab initio molecular dynamics simulations and neutron total scattering experiments. We find that the salt retains well-defined short-range structural correlations out to approximately 9 A˚ at typical reactor operating temperatures. The experimentally determined pair distribution function can be described with quantitative accuracy by the molecular dynamics simulations. These results indicate that the essential ionic interactions are properly captured by the simulations, providing a launching point for future studies of FLiNaK and other molten salts for nuclear reactor applications.1 Keywords: molten salt reactor, FLiNaK, total scattering, pair distribution function, molecular dynamics Molten salt reactors (MSRs) are a promising nuclear reactor concept in which fuel and/or fertile material are dissolved directly into a halide salt coolant. This has significant benefits over traditional light water reactors (LWRs) that are in operation today, including the capability of producing medical radioisotopes and electricity simultane- ously in large amounts [1] and the possibility of reactor designs that prevent proliferation of weaponizable material, eliminate the risk of meltdown events, and avoid producing long-lived transuranic nuclear waste [2, 3]. -
Monitoring and Diagnosis Systems to Improve Nuclear Power Plant Reliability and Safety. Proceedings of the Specialists` Meeting
J — v ft INIS-mf—15B1 7 INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR ELECTRIC Ltd. Monitoring and Diagnosis Systems to Improve Nuclear Power Plant Reliability and Safety PROCEEDINGS OF THE SPECIALISTS’ MEETING JOINTLY ORGANISED BY THE IAEA AND NUCLEAR ELECTRIC Ltd. AND HELD IN GLOUCESTER, UK 14-17 MAY 1996 NUCLEAR ELECTRIC Ltd. 1996 VOL INTRODUCTION The Specialists ’ Meeting on Monitoring and Diagnosis Systems to Improve Nuclear Power Plant Reliability and Safety, held in Gloucester, UK, 14 - 17 May 1996, was organised by the International Atomic Energy Agency in the framework of the International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI) and the International Task Force on NPP Diagnostics in co-operation with Nuclear Electric Ltd. The 50 participants, representing 21 Member States (Argentina, Austria, Belgium, Canada, Czech Republic, France, Germany, Hungary, Japan, Netherlands, Norway, Russian Federation, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, Ukraine, UK and USA), reviewed the current approaches in Member States in the area of monitoring and diagnosis systems. The Meeting attempted to identify advanced techniques in the field of diagnostics of electrical and mechanical components for safety and operation improvements, reviewed actual practices and experiences related to the application of those systems with special emphasis on real occurrences, exchanged current experiences with diagnostics as a means for predictive maintenance. Monitoring of the electrical and mechanical components of systems is directly associated with the performance and safety of nuclear power plants. On-line monitoring and diagnostic systems have been applied to reactor vessel internals, pumps, safety and relief valves and turbine generators. The monitoring techniques include nose analysis, vibration analysis, and loose parts detection. -
Nuclear Space Power Safety and Facility Guidelines Study
NUCLEAR SPACE POWER SAFETY AND FACILITY GUIDELINES STUDY (SEPTEMBER 1995) rss Has NUCLEAR SPACE POWER SAFETY AND FACILITY GUIDELINES STUDY (11 September 1995) Prepared for: Department of Energy Office of Procurement Assistance and Program Management HR-522.2 Washington, D.C. 20585 by: William F. Mehlman The Johns Hopkins University Applied Physics Laboratory Johns Hopkins Road Laurel, Maryland 20723-6099 in response to: Department of Energy grant to The Johns Hopkins University Applied Physics Laboratory DE-FG01-94NE32180 dated 27 September 1994 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. IfH DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. TABLE OF CONTENTS 1.0 INTRODUCTION 1 1.1 PURPOSE ...1 1.2 BACKGROUND 1 1.3 SCOPE 3 2.0 NUCLEAR SPACE SAFETY GUIDELINES AND CONSIDERATIONS . -
Recent Research of Thorium Molten-Salt Reactor from a Sustainability Viewpoint
Sustainability 2012, 4, 2399-2418; doi:10.3390/su4102399 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article Recent Research of Thorium Molten-Salt Reactor from a Sustainability Viewpoint Takashi Kamei Research Institute for Applied Sciences, 49, Tanaka-Oi-cho, Sakyo-ku, Kyoto 606-8202, Japan; E-Mail: [email protected]; Tel.: +81-75-701-3164; Fax: +81-75-492-0679. Received: 3 July 2012; in revised form: 20 August 2012 / Accepted: 24 August 2012 / Published: 27 September 2012 Abstract: The most important target of the concept “sustainability” is to achieve fairness between generations. Its expanding interpolation leads to achieve fairness within a generation. Thus, it is necessary to discuss the role of nuclear power from the viewpoint of this definition. The history of nuclear power has been the control of the nuclear fission reaction. Once this is obtained, then the economy of the system is required. On the other hand, it is also necessary to consider the internalization of the external diseconomy to avoid damage to human society caused by the economic activity itself, due to its limited capacity. An extreme example is waste. Thus, reducing radioactive waste resulting from nuclear power is essential. Nuclear non-proliferation must be guaranteed. Moreover, the FUKUSHIMA accident revealed that it is still not enough that human beings control nuclear reaction. Further, the most essential issue for sustaining use of one technology is human resources in manufacturing, operation, policy-making and education. Nuclear power will be able to satisfy the requirements of sustainability only when these subjects are addressed. The author will review recent activities of a thorium molten-salt reactor (MSR) as a cornerstone for a sustainable society and describe its objectives and forecasts. -
Cooling Wide-Bandgap Materials in Power Electronics
Cooling Wide-Bandgap Materials in Power Electronics By Josh Perry Marketing Communications Specialist Advanced Thermal Solutions, Inc. (ATS) Engineers are always looking for an edge in their designs to extract as much power and performance as possible from a system, while attempting to meet industry trends in miniaturization. In the power electronics industry, this has required an examination of the materials being used to overcome inherent limitations from heat, voltage, or switching speed. Engineers are using wide-bandgap materials to expand the capabilities of power electronics, pushing them beyond the thermal and electrical limits of silicon-based components. (Background image created by Xb100 – Freepik.com) For years, silicon was the answer for the power electronics market, but in the past decade there has been a growing movement towards wide-bandgap materials, particularly silicon carbide (SiC) and gallium nitride (GaN). Wide-bandgap materials have higher breakdown voltage and perform more 1 efficiently at high temperatures than silicon-based components. [1] Recent research indicated, “For commercial applications above 400 volts, SiC stands out as a viable near-term commercial opportunity especially for single-chip current ratings in excess of 20 amps.” [2] This efficiency allows systems to consume less power, charge faster, and convert energy at a higher rate. A recent article from Electronic Design explained that SiC power devices “operate at higher switching speeds and higher temperatures with lower losses than conventional silicon.” SiC has an internal resistance that is 100 times lower than silicon and a breakdown electric field of 2.8 MV/cm, which is far higher than silicon’s 0.3 MV/cm, meaning that SiC components can handle the same level of current in smaller packages. -
Molten-Salt Technology and Fission Product Handling
Molten-Salt Technology and Fission Product Handling Kirk Sorensen Flibe Energy, Inc. ORNL MSR Workshop October 4, 2018 2018-10-16 Hello, my name is Kirk Sorensen and I’d like to talk with you today about fission products and their handling in molten-salt reactors. One of the things that initially attracted me to molten-salt reactor technology was the array of options that it gave for the intelligent handling of fission products. It represented such a contrast to solid-fueled systems, which mixed fission products in with unburned nuclear fuel in a form that was difficult to separate, one from another. While my focus will be on our work on molten-salt reactor fission product handling, many of the principles are general to molten-salt reactors as a whole. Fundamental Nuclear Reactor Concept In its simplest form, a nuclear reactor generates thermal energy that is carried away by a coolant. That coolant heats the working fluid of a power conversion system, which generates electricity from part of the thermal energy and rejects the remainder to the environment. coolant working fluid fresh fuel electricity Power Nuclear Heat Conversion Reactor Exchanger System spent fuel heated water or air coolant working fluid The primary coolant chosen for a nuclear reactor determines, in large part, its size and manufacturability. The temperature of the coolant determines the efficiency of electrical generation. Fundamental Nuclear Reactor Concept In its simplest form, a nuclear reactor generates thermal energy that is carried away by a coolant. That coolant heats the working fluid of a power conversion system, which generates electricity from part of the thermal energy and rejects the remainder to the environment. -
Molten-Salt Fast Reactors
MOLTEN-SALT FAST REACTORS L. G. Alexander Oak Ridge National Laboratory Oak Ridge, Tennessee Thorium, plutonium, and uranium chlorides and fluorides are soluble in mixtures of the halides of Li, Be, Na, K, Mg, and other metals. Their fluoride solutions, at least, are compatible with INOR (an alloy consisting primarily of nickel). They are also compatible with graphite, a structural material as well as a moderator having many desirable properties for high-temperature application. Thus, many embodiments are possible for molten-salt reactors, ranging from simple one-fluid, one-region systems externally cooled to complex internally cooled, two-region, two- fluid systems. The capabilities of only a few of the more obvious systems have been studied so far. The nuclear and economic potentials of several thermal reactors have been evaluated heretofore, (1-3) and recently a limited program for the preliminary evaluation of fast molten-salt reactor concepts was instituted. Appropriate background studies were performed: (1) a survey was made of data available about the thermal and physical properties of molten fluoride and chloride salt mixtures, (2) the compatibilities of selected reactor materials with various reactor coolants and with molten-salt fuels were studied, (3) potential processing methods for irradiated molten fluoride and chloride reactor fuels were reviewed, and (4) data available for the nuclear properties of chlorine, nickel, and other nuclides of interest were reviewed. The compositions and physical properties of typical molten-salt -
Standardization of Radioanalytical Methods for Determination of 63Ni and 55Fe in Waste and Environmental Samples
NKS-356 ISBN 978-87-7893-440-6 Standardization of Radioanalytical Methods for Determination of 63Ni and 55Fe in Waste and Environmental Samples Xiaolin Hou 1) Laura Togneri 2) Mattias Olsson 3) Sofie Englund 4) Olof Gottfridsson 5) Martin Forsström 6) Hannele Hironen 7) 1) Technical university of Denmark, DTU Nutech 2) Loviisa Power Plant, Fortum Power, Finland 3) Forsmarks Kraftgrupp AB, Sweden 4) OKG Aktiebolag, Sweden 5) Ringhals AB, Sweden 6) Studsvik Nuclear AB, Sweden (7) Olkiluoto Nuclear Power Plant, Finland January 2016 Abstract This report presents the progress on the NKS-B STANDMETHOD project which was conduced in 2014-2015, aiming to establish a Nordic standard methods for the determination of 63Ni and 55Fe in nuclear reactor process- ing water samples as well as other waste and environmental samples. Two inter-comparison excercises for determination of 63Ni and 55Fe in waste samples have been organized in 2014 and 2015, an evaluation of the results is given in this report. Based on the the results from this project in 2014-2015, Nordic standard methods for determination 63Ni in nuclear reactor processing water and for simultaneous determination of 55Fe and 63Ni in other types of waste and environmental samples respectively are proposed. Meanwhile an analytical method for determination of 55Fe in reactor water samples is also recommended. In addition, some procedures for sequential separation of actinides are presented for the simultaneous determinaiton of isotopes of actinides in waste samples are presented. Key words Radioanalysis; 63Ni; 55Fe; standard method; reactor water NKS-356 ISBN 978-87-7893-440-6 Electronic report, January 2016 NKS Secretariat P.O. -
Status of Fast Spectrum Molten Salt Reactor Waste Management Practice December 2020
PNNL-30739 Status of Fast Spectrum Molten Salt Reactor Waste Management Practice December 2020 Stuart T Arm David E Holcomb* Robert L Howard Brian Riley *Oak Ridge National Laboratory Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Choose an item. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: [email protected] Available to the public from the National Technical Information Service 5301 Shawnee Rd., Alexandria, VA 22312 ph: (800) 553-NTIS (6847) email: [email protected] <https://www.ntis.gov/about> Online ordering: http://www.ntis.gov Choose an item. -
Accident Source Terms for Light-Water Nuclear Power Plants: High Burnup and Mixed Oxide Fuels
ERIINRC 02-202 ACCIDENT SOURCE TERMS FOR LIGHT-WATER NUCLEAR POWER PLANTS: HIGH BURNUP AND MIXED OXIDE FUELS Draft Report: June 2002 Final Report: November 2002 Energy Research, Inc. - P.O. Box 2034 Rockville, Maryland 20847-2034 Work Performed Under the Auspices of the United States Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, D.C. 20555 ERL/NRC 02-202 ACCIDENT SOURCE TERMS FOR LIGHT-WATER NUCLEAR POWER PLANTS: HIGH BURNUP AND MIXED OXIDE FUELS Draft Report: June 2002 Final Report: November 2002 Energy Research, Inc. P. 0. Box 2034 Rockville, Maryland 20847-2034 Work performed under the auspices of United States Nuclear Regulatory Commission Washington, D.C. Under Contract Number NRC-04-97-040 I This page intentionally left blank PREFACE performed by a This report has been prepared by Energy Research, Inc. based on work Office panel of experts organized by the United States Nuclear Regulatory Commission, if necessary, of Nuclear Regulatory Research, to develop recommendations for changes, to high burnup to the revised source term as published inlNUREG-1465, for application and mixed oxide fuels. the panel facilitator, and Dr. Brent Boyack of Los Alamos National Laboratory served as of the final report. Energy Research, Inc. has been responsible for the preparation Individual contributors to this report include: Executive Summary M. Khatib-Rahbar Section 1 M. Khatib-Rahbar Section 2 H. Nourbakhsh Section 3 B. Boyack Section 4 M. Khatib-Rahbar A. Hidaka of the Japan Substantial technical input was provided to the panel, by Mr. Evrard of the Institut de Atomic Energy Research Institute (JAERI), and Mr. -
Remote Operations and Maintenance Framework for Molten Salt Reactors
ORNL/TM-2018/1107 Remote Operations and Maintenance Framework for Molten Salt Reactors David E. Holcomb Charles L. Britton, Jr. Venugopal K. Varma Louise G. Worrall December 2018 Approved for public release. Distribution is unlimited. DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect. Website www.osti.gov Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Website http://classic.ntis.gov/ Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source: Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Website http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. -
231Pa and 232U Production in a Fusion Breeder to Aid Nonproliferation with Thorium Fission Fuel Cycles
Vallecitos Molten Salt Research Report No. 5 Rev.1 September 9, 2014 231Pa and 232U production in a fusion breeder to aid nonproliferation with thorium fission fuel cycles Ralph W. Moir Abstract 231Pa is made especially copiously in a fusion reactor blanket by n,2n reactions on 232Th owing to fusion’s uniquely high neutron energy being well above the reaction threshold unlike fission neutrons. The 231Pa can be extracted for use in making thorium cycles more proliferation resistant or left in the fusion reactor’s blanket to produce 232U for self- protection of the produced 233U or some of both. Typical fusion production rates of 231Pa 233 and U are of order 0.1 and 2 kg per full power year per MWfusion, respectively. Neutrons captured in 231Pa produce 232U that contributes to making 233U a 231 nonproliferant. Pa revenues per Wnucleary range from 0.08 $ to 0.5 $ depending on blanket design and market value of isotopes. By comparison, the electricity revenues is typically 0.1 $ at Q=2 and falling for Q<2 (Q=fusion power/input power). 1. Introduction This note describes a fusion breeder designed to produce 231Pa, 232U and 233U for use in molten salt reactors that are described in a companion note.1 Special emphasis is given to nonproliferation of weapons useable materials. As opposed to a fission breeder reactor, a fusion breeder reactor can produce far more fissile material for the same amount of nuclear power by an order of magnitude so that we can think of a fusion breeder being located in a site and supplying the isotopes (231Pa, 232U and 233U) to dozens of fission reactors at various sites.