Gene Deletions and Amplifications in Human Hepatocellular Carcinomas

Total Page:16

File Type:pdf, Size:1020Kb

Gene Deletions and Amplifications in Human Hepatocellular Carcinomas The American Journal of Pathology, Vol. 180, No. 4, April 2012 Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved. DOI: 10.1016/j.ajpath.2011.12.021 Gastrointestinal, Hepatobiliary, and Pancreatic Pathology Gene Deletions and Amplifications in Human Hepatocellular Carcinomas Correlation with Hepatocyte Growth Regulation Michael A. Nalesnik,* George Tseng,† and morbidity. Several chronic conditions are associated Ying Ding,†‡ Guo-Sheng Xiang,* with an increased incidence of HCC, including alcohol- Zhong-liang Zheng,* YanPing Yu,* ism, chronic infections with hepatitis B virus (HBV) or James W. Marsh,§ George K. Michalopoulos,* and hepatitis C virus (HCV), hemochromatosis, and metabolic Jian-Hua Luo* diseases. Common to all these conditions is that their chronic forms may cause liver cirrhosis and HCC can ‡ From the Departments of Pathology* and Surgery, and the often arise on this background. Because most of the Departments of Biostatistics,† and the Joint CMU-Pitt Ph.D. previously mentioned conditions do not involve genotoxic Program in Computational Biology,§ the Graduate School of agents and none of the associated viruses carry trans- Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania forming oncogenes, it is reasonable to assume that, for most HCCs, cirrhosis per se and associated irregularities induced in the hepatocyte microenvironment are some- Tissues from 98 human hepatocellular carcinomas how responsible for generating genomic or epigenetic (HCCs) obtained from hepatic resections were subjected alterations leading to carcinogenesis. Cirrhosis is asso- to somatic copy number variation (CNV) analysis. Most ciated with a higher rate of hepatocyte proliferation. HCC of these HCCs were discovered in livers resected for in rodents appears, in most conditions, associated with orthotopic transplantation, although in a few cases, the long-term hyperproliferation of hepatocytes.1 Several tumors themselves were the reason for the hepatecto- genomic abnormalities have been described in HCC, mies. Genomic analysis revealed deletions and amplifi- such as mutations in p53 and ␤-catenin, deletions in cations in several genes, and clustering analysis based areas of chromosome 1, and activation of specific onco- on CNV revealed five clusters. The LSP1 gene had the genes by HBV through insertional mutagenesis.2 Genes most cases with CNV (46 deletions and 5 amplifica- expressed by HBV or HCV may cause a long-term pro- tions). High frequencies of CNV were also seen in PT- motion effect, also facilitating the evolution of HCC.3 PRD (21/98), GNB1L (18/98), KIAA1217 (18/98), RP1- Studies4–6 of gene expression in HCC have demon- 1777G6.2 (17/98), ETS1 (11/98), RSU1 (10/98), strated subgroups of three clusters with differing gene TBC1D22A (10/98), BAHCC1 (9/98), MAML2 (9/98), expression profiles and prognosis. Despite several stud- RAB1B (9/98), and YIF1A (9/98). The existing literature ies related to gene expression profiling of hepatocyte- regarding hepatocytes or other cell types has connected derived tumors (adenomas or HCCs), there has been many of these genes to regulation of cytoskeletal archi- little analysis of genome-wide alterations underpinning tecture, signaling cascades related to growth regulation, and transcription factors directly interacting with nu- clear signaling complexes. Correlations with existing Supported by the Rangos Fund for Enhancement of Pathology Re- literature indicate that genomic lesions associated with search (RSG-08-137-01-CNE to Y.P.Y.) and grants from the NIH HCC at the level of resolution of CNV occur on many (5R01CA103958-05 and 5R01CA035373-27 to G.K.M. and R01CA098249 genes associated directly or indirectly with signaling to J.-H.L.). pathways operating in liver regeneration and hepato- Accepted for publication December 22, 2011. cyte growth regulation. (Am J Pathol 2012, 180:1495–1508; M.A.N. and G.T. contributed equally to this work. DOI: 10.1016/j.ajpath.2011.12.021) Supplemental material for this article can be found on http://ajp. amjpathol.org or at doi: 10.1016/j.ajpath.2011.12.021. Address reprint requests to George K. Michalopoulos, M.D., Ph.D., Hepatocellular carcinoma (HCC) is the most common S410 BST, Department of Pathology, University of Pittsburgh School of type of liver cancer and is associated with high mortality Medicine, Pittsburgh, PA 15241. E-mail: [email protected]. 1495 1496 Nalesnik et al AJP April 2012, Vol. 180, No. 4 the altered patterns of gene expression.7 We performed Tissue Processing, DNA Extraction, Amplicon this study to assess genetic alterations (deletions or am- Generation, and Labeling plifications) detectable by analysis of copy number vari- ation (CNV) and to examine the relationships, if any, to FFPE tissues were microdissected to achieve tumor pu- the known pathways controlling hepatocyte growth dur- rity Ͼ85%. The dissected tissues were incubated in xy- 8–14 ing liver regeneration and in hepatocyte cultures. We lene solution overnight to remove residual paraffin. DNA have used the Affymetrix (Santa Clara, CA) 6.0 single- was then extracted using the Qiagen tissue kit (Qiagen, nucleotide polymorphism (SNP) oligonucleotide arrays Valencia, CA). Amplicons were generated by performing for these studies. The method provides useful information linear PCR using random 12mers on 2-␮g DNA templates on the types of deletions and amplifications larger than using the following program: 94°C for 1 minute and then approximately 1000 bp and is much more detailed than 40 cycles of 94°C for 30 seconds, 45°C for 1 minute, and studies of large areas of loss of heterozygosity. In addi- 72°C for 2 minutes. The PCR products were then purified tion, this approach provides detailed information about and digested with DNase1 for fragmentation. The frag- the site of the genomic alterations within specific genes, mented DNA was then labeled with biotinylated cytosine. allowing correlations between the expected changes in protein structure and the change in function. Hybridization, Washing, and Scanning of the SNP 6.0 Chip Materials and Methods Fragmented DNA (250 ␮g) was hybridized with a pre- Case Material equilibrated Affymetrix chip at 50°C for 16 hours. After the Formalin-fixed, paraffin-embedded (FFPE) tissue speci- hybridization cocktails were removed, the chips were mens were obtained from the Surgical Pathology Ar- then washed in a fluidic station with low-stringency buffer chives of the University of Pittsburgh Medical Center, (six times SSPE, 0.01% Tween 20, and 0.005% antifoam) Pittsburgh, PA, in accordance with Institutional Review for 10 cycles (two mixes per cycle) and stringent buffer Board regulations (PRO-08050186). Anonymized sam- (100 mmol/L MES, 0.1 mol/L NaCl, and 0.01% Tween 20) ples spanned a 26-year period, from 1981 through 2006. for 4 cycles (15 mixes per cycle) and then stained with This time interval partially antedated establishment of the streptavidin-phycoerythrin. This was followed by incuba- Milan criteria15 and spanned a period during which HBV tion with biotinylated mouse anti-avidin antibody and infection was a more frequent indication for transplanta- restaining with streptavidin-phycoerythrin. The chips tion at our center. were scanned in a G7 scanner (Affymetrix Inc., Santa Clinical information was obtained via Honest Broker Clara, CA) to detect hybridization signals. from the EDIT Transplant Database and Surgical Pathol- ogy records. This included patient survival, tumor size, tumor recurrence after transplantation, underlying dis- ease, and ␣-fetoprotein levels. The 98 adult patients in- SYBR Green Real-Time Quantitation PCR cluded 22 females and 76 males. Samples were derived The LightCycler FastStart DNA Master SYBR-Green I kit from native livers at transplantation in all but six patients (Roche Applied Science, Indianapolis, IN) was used for who underwent surgical resection. Matched control tis- real-time PCR amplification. The reaction was performed sue was obtained from noncirrhotic tissue, usually from in a LightCycler machine (Roche Applied Science, Indi- hilar tissue, and did not include lymph nodes. Underlying anapolis, IN). A quantitation standard curve of normal diseases included HBV infection (n ϭ 22), HCV infection male DNA from 50,000 to 500,000 copies of genome was (n ϭ 21), ethanol use (n ϭ 13), hemochromatosis (n ϭ 3), generated using known amounts of template copies. and primary sclerosing cholangitis (n ϭ 2). Six patients Genomic DNA (100 ng) was used for all of the experi- had multiple underlying disorders (3 HBV and HCV, 2 HCV and ethanol use, and 1 HBV, HCV, and ethanol use), mental and control samples. HotStarTaq DNA polymer- and one patient each had sarcoid, granulomatous dis- ase (Qiagen, Valencia, CA) was activated with a 10- ease not further specified, type II glycogen storage dis- minute pre-incubation step at 95°C. Amplification for ease, autoimmune hepatitis, and nonalcoholic steato- LSP1 (leukocyte-specific protein 1; 5=-CAATGCTCCTC- hepatitis. In 26 patients, there was either no known TATCCAGCC-3= and 5=-ATGGAGGGGCACTGATTGGA- underlying disorder or insufficient data to establish an 3=) and PTPRD (protein tyrosine phosphatase, receptor underlying disease. Tumors were solitary in 30 patients type, D; 5=-CGTAGAGATGCCCAGTATCTGC-3= and 5=- and multiple in 66 patients. No determination was possi- CTCTGATGAGGCTGCCATTGTG-3=) was performed with ble in the remaining two patients. All tumors were HCCs, 45 cycles of the following program:
Recommended publications
  • Aberrant Methylation Underlies Insulin Gene Expression in Human Insulinoma
    ARTICLE https://doi.org/10.1038/s41467-020-18839-1 OPEN Aberrant methylation underlies insulin gene expression in human insulinoma Esra Karakose1,6, Huan Wang 2,6, William Inabnet1, Rajesh V. Thakker 3, Steven Libutti4, Gustavo Fernandez-Ranvier 1, Hyunsuk Suh1, Mark Stevenson 3, Yayoi Kinoshita1, Michael Donovan1, Yevgeniy Antipin1,2, Yan Li5, Xiaoxiao Liu 5, Fulai Jin 5, Peng Wang 1, Andrew Uzilov 1,2, ✉ Carmen Argmann 1, Eric E. Schadt 1,2, Andrew F. Stewart 1,7 , Donald K. Scott 1,7 & Luca Lambertini 1,6 1234567890():,; Human insulinomas are rare, benign, slowly proliferating, insulin-producing beta cell tumors that provide a molecular “recipe” or “roadmap” for pathways that control human beta cell regeneration. An earlier study revealed abnormal methylation in the imprinted p15.5-p15.4 region of chromosome 11, known to be abnormally methylated in another disorder of expanded beta cell mass and function: the focal variant of congenital hyperinsulinism. Here, we compare deep DNA methylome sequencing on 19 human insulinomas, and five sets of normal beta cells. We find a remarkably consistent, abnormal methylation pattern in insu- linomas. The findings suggest that abnormal insulin (INS) promoter methylation and altered transcription factor expression create alternative drivers of INS expression, replacing cano- nical PDX1-driven beta cell specification with a pathological, looping, distal enhancer-based form of transcriptional regulation. Finally, NFaT transcription factors, rather than the cano- nical PDX1 enhancer complex, are predicted to drive INS transactivation. 1 From the Diabetes Obesity and Metabolism Institute, The Department of Surgery, The Department of Pathology, The Department of Genetics and Genomics Sciences and The Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
    [Show full text]
  • A Comparative Analysis of Transcribed Genes in the Mouse Hypothalamus and Neocortex Reveals Chromosomal Clustering
    A comparative analysis of transcribed genes in the mouse hypothalamus and neocortex reveals chromosomal clustering Wee-Ming Boon*, Tim Beissbarth†, Lavinia Hyde†, Gordon Smyth†, Jenny Gunnersen*, Derek A. Denton*‡, Hamish Scott†, and Seong-Seng Tan* *Howard Florey Institute, University of Melbourne, Parkville 3052, Australia; and †Genetics and Bioinfomatics Division, Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville 3050, Australia Contributed by Derek A. Denton, August 26, 2004 The hypothalamus and neocortex are subdivisions of the mamma- representing all of the genes that are expressed (qualitative and lian forebrain, and yet, they have vastly different evolutionary quantitative) in the hypothalamus and neocortex under standard histories, cytoarchitecture, and biological functions. In an attempt conditions. to define these attributes in terms of their genetic activity, we have In the current study, we describe the use of the Serial Analysis compared their genetic repertoires by using the Serial Analysis of of Gene Expression (SAGE) database, which allows simulta- Gene Expression database. From a comparison of 78,784 hypothal- neous detection of the expression levels of the entire genome amus tags with 125,296 neocortical tags, we demonstrate that each without a priori knowledge of gene sequences (13). SAGE takes structure possesses a different transcriptional profile in terms of advantage of the fact that a small sequence tag taken from a gene ontological characteristics and expression levels. Despite its defined position within the transcript is sufficient to identify the more recent evolutionary history, the neocortex has a more com- gene (from known cDNA or EST sequences), and up to 40 tags plex pattern of gene activity.
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • RSU1) in Cancer Cell Metastasis: a Tale of a Tumor Suppressor
    International Journal of Molecular Sciences Review Ras Suppressor-1 (RSU1) in Cancer Cell Metastasis: A Tale of a Tumor Suppressor Maria Louca 1, Triantafyllos Stylianopoulos 1 and Vasiliki Gkretsi 2,* 1 Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus; [email protected] (M.L.); [email protected] (T.S.) 2 Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus * Correspondence: [email protected]; Tel.: +357-22-559-630 Received: 18 May 2020; Accepted: 5 June 2020; Published: 7 June 2020 Abstract: Cancer is a multifactorial disease responsible for millions of deaths worldwide. It has a strong genetic background, as mutations in oncogenes or tumor suppressor genes contribute to the initiation of cancer development. Integrin signaling as well as the signaling pathway of Ras oncogene, have been long implicated both in carcinogenesis and disease progression. Moreover, they have been involved in the promotion of metastasis, which accounts for the majority of cancer-related deaths. Ras Suppressor-1 (RSU1) was identified as a suppressor of Ras-induced transformation and was shown to localize to cell-extracellular matrix adhesions. Recent findings indicate that its expression is elevated in various cancer types, while its role in regulating metastasis-related cellular processes remains largely unknown. Interestingly, there is no in vivo work in the field to date, and thus, all relevant knowledge stems from in vitro studies. In this review, we summarize recent studies using breast, liver and brain cancer cell lines and highlight the role of RSU1 in regulating cancer cell invasion.
    [Show full text]
  • Original Article Correlation Between LSP1 Polymorphisms and the Susceptibility to Breast Cancer
    Int J Clin Exp Pathol 2015;8(5):5798-5802 www.ijcep.com /ISSN:1936-2625/IJCEP0005835 Original Article Correlation between LSP1 polymorphisms and the susceptibility to breast cancer Hai Chen, Xiaodong Qi, Ping Qiu, Jiali Zhao Department of Galactophore, The General Hospital of Beijing Military Command, Beijing, China Received January 12, 2015; Accepted March 16, 2015; Epub May 1, 2015; Published May 15, 2015 Abstract: Objective: The present study aimed at assessing the relationship between Leukocyte-specific protein 1 gene (LSP1) polymorphisms (rs569550 and rs592373) and the pathogenesis of breast cancer (BC). Methods: 70 BC patients and 72 healthy subjects were enrolled in the study. Rs569550 and rs592373 polymorphisms were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Odds ratio (OR) with 95% confidence interval (CI) were calculated by the chi-squared test to assess the relationship between LSP1 polymorphisms and BC risk. Linkage disequilibrium (LD) and haplotypes were also analyzed by HaploView software. Results: Genotype distribution of the control was in accordance with Hardy-Weinberg equilibrium (HWE). The homo- zygous genotype TT and T allele of rs569550 could significantly increase the risk of BC (TT vs. GG: OR=3.17, 95% CI=1.23-8.91; T vs. G: OR=1.63, 95% CI=1.01-2.64). For rs592373, mutation homozygous genotype CC and C allele were significantly associated with BC susceptibility (CC vs. TT: OR=4.45, 95% CI=1.38-14.8; C vs. T: OR=1.70, 95% CI=1.03-2.81). LD and haplotypes analysis of rs569550 and rs592373 polymorphisms showed that T-C haplotype was a risk factor for BC (T-C vs.
    [Show full text]
  • Meta-Analysis of Nasopharyngeal Carcinoma
    BMC Genomics BioMed Central Research article Open Access Meta-analysis of nasopharyngeal carcinoma microarray data explores mechanism of EBV-regulated neoplastic transformation Xia Chen†1,2, Shuang Liang†1, WenLing Zheng1,3, ZhiJun Liao1, Tao Shang1 and WenLi Ma*1 Address: 1Institute of Genetic Engineering, Southern Medical University, Guangzhou, PR China, 2Xiangya Pingkuang associated hospital, Pingxiang, Jiangxi, PR China and 3Southern Genomics Research Center, Guangzhou, Guangdong, PR China Email: Xia Chen - [email protected]; Shuang Liang - [email protected]; WenLing Zheng - [email protected]; ZhiJun Liao - [email protected]; Tao Shang - [email protected]; WenLi Ma* - [email protected] * Corresponding author †Equal contributors Published: 7 July 2008 Received: 16 February 2008 Accepted: 7 July 2008 BMC Genomics 2008, 9:322 doi:10.1186/1471-2164-9-322 This article is available from: http://www.biomedcentral.com/1471-2164/9/322 © 2008 Chen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Epstein-Barr virus (EBV) presumably plays an important role in the pathogenesis of nasopharyngeal carcinoma (NPC), but the molecular mechanism of EBV-dependent neoplastic transformation is not well understood. The combination of bioinformatics with evidences from biological experiments paved a new way to gain more insights into the molecular mechanism of cancer. Results: We profiled gene expression using a meta-analysis approach. Two sets of meta-genes were obtained. Meta-A genes were identified by finding those commonly activated/deactivated upon EBV infection/reactivation.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Download Download
    Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/)
    [Show full text]
  • Genome-Wide Screen of Otosclerosis in Population Biobanks
    medRxiv preprint doi: https://doi.org/10.1101/2020.11.15.20227868; this version posted November 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . 1 Genome-wide Screen of Otosclerosis in 2 Population Biobanks: 18 Loci and Shared 3 Heritability with Skeletal Structure 4 Joel T. Rämö1, Tuomo Kiiskinen1, Juha Karjalainen1,2,3,4, Kristi Krebs5, Mitja Kurki1,2,3,4, Aki S. 5 Havulinna6, Eija Hämäläinen1, Paavo Häppölä1, Heidi Hautakangas1, FinnGen, Konrad J. 6 Karczewski1,2,3,4, Masahiro Kanai1,2,3,4, Reedik Mägi5, Priit Palta1,5, Tõnu Esko5, Andres Metspalu5, 7 Matti Pirinen1,7,8, Samuli Ripatti1,2,7, Lili Milani5, Antti Mäkitie9, Mark J. Daly1,2,3,4,10, and Aarno 8 Palotie1,2,3,4 9 1. Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of 10 Helsinki, Helsinki, Finland 11 2. Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, 12 Massachusetts, USA 13 3. Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 14 USA 15 4. Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA 16 5. Estonian Genome Center, University of Tartu, Tartu, Estonia, Institute of Molecular and Cell Biology, 17 University of Tartu, Tartu, Estonia 18 6. Finnish Institute for Health and Welfare, Helsinki, Finland 19 7. Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland 20 8.
    [Show full text]
  • Multi-Targeted Mechanisms Underlying the Endothelial Protective Effects of the Diabetic-Safe Sweetener Erythritol
    Multi-Targeted Mechanisms Underlying the Endothelial Protective Effects of the Diabetic-Safe Sweetener Erythritol Danie¨lle M. P. H. J. Boesten1*., Alvin Berger2.¤, Peter de Cock3, Hua Dong4, Bruce D. Hammock4, Gertjan J. M. den Hartog1, Aalt Bast1 1 Department of Toxicology, Maastricht University, Maastricht, The Netherlands, 2 Global Food Research, Cargill, Wayzata, Minnesota, United States of America, 3 Cargill RandD Center Europe, Vilvoorde, Belgium, 4 Department of Entomology and UCD Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America Abstract Diabetes is characterized by hyperglycemia and development of vascular pathology. Endothelial cell dysfunction is a starting point for pathogenesis of vascular complications in diabetes. We previously showed the polyol erythritol to be a hydroxyl radical scavenger preventing endothelial cell dysfunction onset in diabetic rats. To unravel mechanisms, other than scavenging of radicals, by which erythritol mediates this protective effect, we evaluated effects of erythritol in endothelial cells exposed to normal (7 mM) and high glucose (30 mM) or diabetic stressors (e.g. SIN-1) using targeted and transcriptomic approaches. This study demonstrates that erythritol (i.e. under non-diabetic conditions) has minimal effects on endothelial cells. However, under hyperglycemic conditions erythritol protected endothelial cells against cell death induced by diabetic stressors (i.e. high glucose and peroxynitrite). Also a number of harmful effects caused by high glucose, e.g. increased nitric oxide release, are reversed. Additionally, total transcriptome analysis indicated that biological processes which are differentially regulated due to high glucose are corrected by erythritol. We conclude that erythritol protects endothelial cells during high glucose conditions via effects on multiple targets.
    [Show full text]
  • Proteomic Analysis Uncovers Measles Virus Protein C Interaction with P65
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084418; this version posted May 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Proteomic Analysis Uncovers Measles Virus Protein C Interaction with p65/iASPP/p53 Protein Complex Alice Meignié1,2*, Chantal Combredet1*, Marc Santolini 3,4, István A. Kovács4,5,6, Thibaut Douché7, Quentin Giai Gianetto 7,8, Hyeju Eun9, Mariette Matondo7, Yves Jacob10, Regis Grailhe9, Frédéric Tangy1**, and Anastassia V. Komarova1, 10** 1 Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, 75015 Paris, France 2 Université Paris Diderot, Sorbonne Paris Cité, Paris, France 3 Center for Research and Interdisciplinarity (CRI), Université de Paris, INSERM U1284 4 Network Science Institute and Department of Physics, Northeastern University, Boston, MA 02115, USA 5 Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208-3109, USA 6 Department of Network and Data Science, Central European University, Budapest, H-1051, Hungary 7 Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France. 8 Bioinformatics and Biostatistics Hub, Computational Biology Department, Institut Pasteur, CNRS USR3756, Paris, France 9 Technology Development Platform, Institut Pasteur Korea, Seongnam-si, Republic of Korea 10 Laboratory of Molecular Genetics of RNA Viruses, Institut Pasteur, CNRS UMR-3569,
    [Show full text]
  • Frontotemporal Dementia an Autophagy Disease? Zhiqiang Deng1,2,3, Patricia Sheehan3, Shi Chen1,2* and Zhenyu Yue3*
    Deng et al. Molecular Neurodegeneration (2017) 12:90 DOI 10.1186/s13024-017-0232-6 REVIEW Open Access Is amyotrophic lateral sclerosis/ frontotemporal dementia an autophagy disease? Zhiqiang Deng1,2,3, Patricia Sheehan3, Shi Chen1,2* and Zhenyu Yue3* Abstract Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders that share genetic risk factors and pathological hallmarks. Intriguingly, these shared factors result in a high rate of comorbidity of these diseases in patients. Intracellular protein aggregates are a common pathological hallmark of both diseases. Emerging evidence suggests that impaired RNA processing and disrupted protein homeostasis are two major pathogenic pathways for these diseases. Indeed, recent evidence from genetic and cellular studies of the etiology and pathogenesis of ALS-FTD has suggested that defects in autophagy may underlie various aspects of these diseases. In this review, we discuss the link between genetic mutations, autophagy dysfunction, and the pathogenesis of ALS-FTD. Although dysfunction in a variety of cellular pathways can lead to these diseases, we provide evidence that ALS-FTD is, in many cases, an autophagy disease. Keywords: Amyotrophic lateral sclerosis, Frontotemporal dementia, Autophagy, Disease-associated genes, Autophagy- related genes Background FTD is a form of dementia characterized by focal atro- Though various cellular defects are noted in Amyo- phy of the frontal and anterior temporal lobes of the trophic Lateral Sclerosis (ALS) and Frontotemporal de- brain, called frontaltemporal lobar degeneration (FTLD) mentia (FTD) including dysregulation of RNA [4]. The comorbidity of these diseases in patients and processing, protein aggregation, and oxidative stress, the the shared genetic risk factors suggest ALS and FTD detailed disease mechanisms remain poorly understood represent a continuum of neurodegenerative disorders [1, 2].
    [Show full text]