Examining the Management of Rare Insects Through the Lens of Biotic

Total Page:16

File Type:pdf, Size:1020Kb

Examining the Management of Rare Insects Through the Lens of Biotic Copyedited by: OUP Annals of the Entomological Society of America, XX(X), 2019, 1–11 doi: 10.1093/aesa/saz008 Special Collection Special Collection Downloaded from https://academic.oup.com/aesa/advance-article-abstract/doi/10.1093/aesa/saz008/5372394 by University of New Hampshire Library user on 01 April 2019 Examining the Management of Rare Insects Through the Lens of Biotic Interactions: A Comparative Case Study of Nicrophorus americanus (Coleoptera: Silphidae) and Gryllotalpa major (Orthoptera: Gryllotalpidae) Daniel R. Howard1, and Carrie L. Hall Department of Biological Sciences, University of New Hampshire, 38 Academic Way, Durham, NH 03824 and 1Corresponding author, e-mail: [email protected] Subject Editor: Elsa Youngsteadt Received 28 September 2018; Editorial decision 24 January 2019 Abstract Recovery plans for rare and endangered insects most commonly focus on identifying critical abiotic habitat requirements for focal species, and then using these criteria in developing species management portfolios. Biotic interaction data are rarely available, and when produced are seldom integrated into management plans due to their complexity of interpretation. Here we examine advances in our understanding of biotic factors that regulate behavior and life history in two rare insect species of conservation focus: the carrion-breeding American burying beetle, Nicrophorus americanus (Olivier) and the lek mating Gryllotalpa major (Saussure). Current recovery and conservation plans for both species are heavily weighted by abiotic habitat considerations, despite the likely regulation of populations by critical biotic interactions such as interspecies competition, symbioses, predation, and behavioral variation. Examples presented here support a more cohesive approach to constructing conservation management plans to prioritize the integration of ecological interaction data, and to incentivize related research leading to more effective species recovery outcomes. Key words: Nicrophorus americanus, American burying beetle, Gryllotalpa major, prairie mole cricket, insect conservation Insects play a critical role in ecosystem function, extending their carrion and dung-feeding insect assemblages are known to shift with influence across trophic levels from soils to canopy (Berryman 1986), the successional state of disturbed or regenerating grassland and but many species have exhibited recent perilous declines (Shortall forest patches as a functional response to changing mammal and et al. 2009, Brooks et al. 2012, Baxter-Gilbert et al. 2015, Hallmann bird community assemblages found therein (Dunn 2004). et al. 2017, Lister and Garcia 2018). Due to their important ecological While insect declines are often rightfully attributed to changes functions related to herbivory, pollination services, decomposition, in local and regional abiotic conditions (Bender et al. 1998, nutrient cycling, and soil aeration, insect communities are critical Flockhart et al. 2015, Rodrigues et al. 2016), less is known about in maintaining ecosystem resilience in the face of climate-related how perturbations of biotic relationships, including dependencies, disequilibria and increasing impacts from anthropogenic disturbance relate to population declines and community composition changes (Lavelle et al. 2006, Weisser and Siemann 2008, Rader et al. 2013). (Albrecht et al. 2007, Styrsky and Eubanks 2007, Merrill et al. 2008, Insect populations both regulate and respond to changes in ecosystem Rasmann et al. 2014), especially in insect species of conservation structure (Matson and Addy 1975), with many species occupying interest. Many insect species have evolved intricate symbioses that specific and sometimes ephemeral positions in successional gradients render them potentially susceptible to decline if their symbiont (Majer et al. 2007). The biodiversity and abundance of herbivorous populations suffer (Kikuchi et al. 2016); moreover, changes insects is tied closely to ecosystem successional state due to post- in the dynamics of these symbiont relationships can produce disturbance botanical forage availability (Heliövaara and Vaisanen community-wide spillover effects. For example, Sanders et al. 1984, Niemelä et al. 1996), and insects occupying higher trophic (2016) manipulated the bacterial gut symbionts in one of three levels are often highly sensitive to the secondary and tertiary biotic aphid species in an experimental community, which conferred some interactions that constrain or facilitate food source availability (Price resistance to its parasitoid and allowed the treatment aphid species et al. 1980, Holloway et al. 1992, Dodd et al. 2012). For example, to increase in density. This led to a change in the relative densities of © The Author(s) 2019. Published by Oxford University Press on behalf of Entomological Society of America. 1 All rights reserved. For permissions, please e-mail: [email protected]. Copyedited by: OUP 2 Annals of the Entomological Society of America, 2019, Vol. XX, No. XX the three aphid species, which in turn led to the ultimate extinction Nebraska, with disjunct reintroduced populations occurring in of the other aphids’ specialist parasitoids. As another example, the Kansas, Missouri, and Rhode Island; unsuccessful reintroductions larvae of many lycaenid butterflies are tended by mutualistic ants have occurred in Ohio. Members of the Nicrophorine genus of Downloaded from https://academic.oup.com/aesa/advance-article-abstract/doi/10.1093/aesa/saz008/5372394 by University of New Hampshire Library user on 01 April 2019 that putatively protect them from natural predators and in return Silphid burying beetles, American burying beetles and conspecifics receive honey-dew secretions that the larvae produce to incentivize are notable for a reproductive life history that includes locating and the symbiosis (Elmes et al. 1998, Saarinen et al. 2006). Declines in burying small vertebrate carcasses that are subsequently used as a native ant populations (Porter and Savignano 1990), in combination feeding resource for their carefully attended offspring (Pukowski with other abiotic factors, could then easily lead to a recovery 1933, Scott 1998). As such their reproductive behavior is thought tipping point for some of the more at-risk lycaenids (Trager et al. to facilitate soil nutrient cycling, but few studies have examined this 2009). Perhaps equally problematic is that when these types of empirically. Most burying beetles provide bi-parental care (Scott biotic interaction data are available for a species, their difficulty in 1998) and produce antimicrobial oral and anal secretions that interpretation or applicability often results in their exclusion from preserve the carcass resource from soil microbe degradation for the species recovery and management portfolios. week or so that offspring are actively feeding during development Here we examine evidence that biotic community interactions (Rozen at al 2008, Hall et al. 2011). While the causes of the decline influence insect behavior, ecology, and evolution in two species of of the species remain under investigation and debated, Sikes and conservation concern. With these data in mind, we aim to promote a Raithel (2002) identified several factors that may have led to the discussion centered on how our understanding of biotic interactions rapid decline of the species including 1) pesticide use, 2) artificial can inform stakeholders and have applied usefulness. We then offer lighting, 3) pathogens, 4) habitat alteration, 5) increased competition recommendations for incorporating such research into species for breeding resources, and 6) the decline of appropriately sized recovery and management plans. One species has been formally faunal assemblages that provide breeding carcasses for successful protected under the U.S. Endangered Species Act since the late recruitment. While the American burying beetle is considered 1980s, and is currently embroiled in politically inspired delisting a habitat generalist, evidence is building that some of its biotic efforts, while the other was proposed for listing as a threatened interactions may be more specialized. species in 1990 but did not receive formal protection at the federal Much of the research on the American burying beetle has level. Its conservation plight has drawn little attention. While the focused on conducting biological field surveys and understanding foci of research on these two exemplars have diverged dramatically what constitutes suitable habitat for the species. Anderson (1982) over the past three decades, it is increasingly evident that identifying hypothesized that the decline of the species might relate to the loss of important biotic interactions represents a critical dimension in their primary forest that once covered eastern North America. Creighton conservation. et al. (2009) found that clearcutting forestry practices likely caused local extirpation of American burying beetles at a research site in southeastern Oklahoma, while in Nebraska, American burying beetle Case Studies populations in grasslands declined across a region where an eastern American Burying Beetle (Nicrophorus americanus red cedar forest became established (Walker and Hoback 2007). Olivier) Efforts at American burying beetle habitat modeling (Crawford The American burying beetle (Fig. 1) is a federally endangered and Hoagland 2010), refining trapping and marking designs (Butler necrophilous insect species whose range once extended across 35 et al. 2012, Leasure
Recommended publications
  • Orthoptera: Ensifera) in Rajshahi City, Bangladesh Shah HA Mahdi*, Meherun Nesa, Manzur-E-Mubashsira Ferdous, Mursalin Ahmed
    Scholars Academic Journal of Biosciences Abbreviated Key Title: Sch Acad J Biosci ISSN 2347-9515 (Print) | ISSN 2321-6883 (Online) Zoology Journal homepage: https://saspublishers.com/sajb/ Species Abundance, Occurrence and Diversity of Cricket Fauna (Orthoptera: Ensifera) in Rajshahi City, Bangladesh Shah HA Mahdi*, Meherun Nesa, Manzur-E-Mubashsira Ferdous, Mursalin Ahmed Department of Zoology, University of Rajshahi, Rajshahi 6205, Bangladesh DOI: 10.36347/sajb.2020.v08i09.003 | Received: 06.09.2020 | Accepted: 14.09.2020 | Published: 25.09.2020 *Corresponding author: Shah H. A. Mahdi Abstract Original Research Article The present study was done to assess the species abundance, monthly occurrence and diversity of cricket fauna (Orthoptera: Ensifera) in Rajshahi City, Bangladesh. A total number of 283 individuals of cricket fauna were collected and they were identified into three families, six genera and seven species. The collected specimens belonged to three families such as Gryllidae (166), Tettigoniidae (59) and Gryllotalpidae (58). The seven species and their relative abundance were viz. Gryllus texensis (36.40%), Gryllus campestris (18.37%), Lepidogryllus comparatus (3.89%), Neoconocephalus palustris (9.89%), Scudderia furcata (4.95%), Montezumina modesta (6.01%) and Gryllotalpa gryllotalpa (20.49%). Among them, highest population with dominance was Gryllus texensis (103) and lowest population was Lepidogryllus comparatus (11). Among the collected species, the status of Gryllus texensis, Gryllus campestris and Gryllotalpa gryllotalpa were very common (VC); Neoconocephalus palustris and Montezumina modesta were fairly common (FC) and Lepidogryllus comparatus and Scudderia furcata were considered as rare (R). Base on monthly occurrence 2 species of cricket were found throughout 12 months, 2 were 9-11 months, 2 were 6-8 months and 1 was 3-5 months.
    [Show full text]
  • Orthoptera: Gryllotalpidae)
    3613 The Journal of Experimental Biology 211, 3613-3618 Published by The Company of Biologists 2008 doi:10.1242/jeb.023143 Hearing and spatial behavior in Gryllotalpa major Saussure (Orthoptera: Gryllotalpidae) Daniel R. Howard1,2,*, Andrew C. Mason2 and Peggy S. M. Hill1 1University of Tulsa, Faculty of Biological Sciences, 600 South College, Tulsa, OK 74104, USA and 2University of Toronto Scarborough, Department of Life Sciences, 1265 Military Trail, Scarborough, ON, M1C 1A4, Canada *Author for correspondence (e-mail: [email protected]) Accepted 23 September 2008 SUMMARY The prairie mole cricket (Gryllotalpa major Saussure) is a rare orthopteran insect of the tallgrass prairie ecosystem of the south central USA. Populations are known to currently occupy fragmented prairie sites in Oklahoma, Arkansas, Kansas and Missouri, including The Nature Conservancyʼs Tallgrass Prairie Preserve in north central Oklahoma. Prairie mole cricket populations were surveyed at this site and at another site in Craig County, OK during the spring of 2005 and 2006, using the male cricketʼs acoustic call to locate advertising aggregations of males. Five males from one large aggregation were removed in a study to describe (1) the hearing thresholds across the callʼs range of frequencies, (2) the distances over which the higher harmonic components of the maleʼs calls are potentially detectable, (3) the speciesʼ sensitivity to ultrasound and (4) the spatio-auditory dynamics of the prairie mole cricket lek. Results indicate that G. major has a bimodal pattern of frequency tuning, with hearing sensitivities greatest at the 2 kHz carrier frequency (41 dB SPL) and declining through the callʼs frequency range (84 dB at 10 kHz).
    [Show full text]
  • List of Insect Species Which May Be Tallgrass Prairie Specialists
    Conservation Biology Research Grants Program Division of Ecological Services © Minnesota Department of Natural Resources List of Insect Species which May Be Tallgrass Prairie Specialists Final Report to the USFWS Cooperating Agencies July 1, 1996 Catherine Reed Entomology Department 219 Hodson Hall University of Minnesota St. Paul MN 55108 phone 612-624-3423 e-mail [email protected] This study was funded in part by a grant from the USFWS and Cooperating Agencies. Table of Contents Summary.................................................................................................. 2 Introduction...............................................................................................2 Methods.....................................................................................................3 Results.....................................................................................................4 Discussion and Evaluation................................................................................................26 Recommendations....................................................................................29 References..............................................................................................33 Summary Approximately 728 insect and allied species and subspecies were considered to be possible prairie specialists based on any of the following criteria: defined as prairie specialists by authorities; required prairie plant species or genera as their adult or larval food; were obligate predators, parasites
    [Show full text]
  • Phylogeny of Ensifera (Hexapoda: Orthoptera) Using Three Ribosomal Loci, with Implications for the Evolution of Acoustic Communication
    Molecular Phylogenetics and Evolution 38 (2006) 510–530 www.elsevier.com/locate/ympev Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication M.C. Jost a,*, K.L. Shaw b a Department of Organismic and Evolutionary Biology, Harvard University, USA b Department of Biology, University of Maryland, College Park, MD, USA Received 9 May 2005; revised 27 September 2005; accepted 4 October 2005 Available online 16 November 2005 Abstract Representatives of the Orthopteran suborder Ensifera (crickets, katydids, and related insects) are well known for acoustic signals pro- duced in the contexts of courtship and mate recognition. We present a phylogenetic estimate of Ensifera for a sample of 51 taxonomically diverse exemplars, using sequences from 18S, 28S, and 16S rRNA. The results support a monophyletic Ensifera, monophyly of most ensiferan families, and the superfamily Gryllacridoidea which would include Stenopelmatidae, Anostostomatidae, Gryllacrididae, and Lezina. Schizodactylidae was recovered as the sister lineage to Grylloidea, and both Rhaphidophoridae and Tettigoniidae were found to be more closely related to Grylloidea than has been suggested by prior studies. The ambidextrously stridulating haglid Cyphoderris was found to be basal (or sister) to a clade that contains both Grylloidea and Tettigoniidae. Tree comparison tests with the concatenated molecular data found our phylogeny to be significantly better at explaining our data than three recent phylogenetic hypotheses based on morphological characters. A high degree of conflict exists between the molecular and morphological data, possibly indicating that much homoplasy is present in Ensifera, particularly in acoustic structures. In contrast to prior evolutionary hypotheses based on most parsi- monious ancestral state reconstructions, we propose that tegminal stridulation and tibial tympana are ancestral to Ensifera and were lost multiple times, especially within the Gryllidae.
    [Show full text]
  • Nwjz 141206 Jafari.Pdf
    NORTH-WESTERN JOURNAL OF ZOOLOGY 11 (1): 58-61 ©NwjZ, Oradea, Romania, 2015 Article No.: 141206 http://biozoojournals.ro/nwjz/index.html Acoustic burrow structures of European mole crickets, Gryllotalpa gryllotalpa (Orth.: Gryllotalpidae) in Northwestern Iran Shabnam JAFARI¹, Mohammad Hossein KAZEMI¹ and Hossein LOTFALIZADEH²,* 1. Department of Plant Protection, Tabriz branch, Islamic Azad University, Tabriz, Iran. 2. Department of Plant Pests and Diseases, Agricultural and Natural Resources Research Center of East Azarbaijan, Tabriz, Iran. * Corresponding author, H. Lotfalizadeh, Email: [email protected] Received: 7. April 2014 / Accepted: 1. July 2014 / Available online: 01. January 2015 / Printed: June 2015 Abstract. The acoustic chambers of the European mole cricket Gryllotalpa gryllotalpa (L., 1758) were studied in the north-west of Iran. Observations showed that all the calling burrows in this area had one horn shape entrance and branching tunnels beyond the bulb (the site of the head and thorax of insect in calling position). The patterns of these burrows were alike; however, the sizes of different parts of tunnels were dependent on the dimension of males. This is the first report of a single entrance calling chamber for European mole cricket. Key words: acoustic chambers, calling song, horn shape, European Mole Cricket. Introduction about half an hour (15-46 min) (Kazemi et al. 2012). The Gryllotalpidae (Orthoptera) includes seven Mole crickets are burrowing insects and exca- recent genera with over 100 species in the world vate different types of tunnels during their life- (Eades et al. 2014, Walker & Moore 2014). The ge- times. Endo (2007) divided the tunnels of mole nus Gryllotalpa was once thought to be distributed crickets in to horizontal and vertical ones.
    [Show full text]
  • Conservation Assessment for the Reflexed Indiangrass Leafhopper (Flexamia Reflexa (Osborn and Ball))
    Conservation Assessment for the Reflexed Indiangrass Leafhopper (Flexamia reflexa (Osborn and Ball)) USDA Forest Service, Eastern Region October 18, 2005 James Bess OTIS Enterprises 13501 south 750 west Wanatah, Indiana 46390 This document is undergoing peer review, comments welcome This Conservation Assessment was prepared to compile the published and unpublished information on the subject taxon or community; or this document was prepared by another organization and provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service - Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................ 1 ACKNOWLEDGEMENTS............................................................................................................ 1 NOMENCLATURE AND TAXONOMY ..................................................................................... 2 DESCRIPTION OF SPECIES.......................................................................................................
    [Show full text]
  • Chapter 2 Seasonal Development of Gryllotalpa Africana
    ... .. - - - - -- ---_.__ ._ -- - .__ _- - Chapter 2 Seasonal development of Gryllotalpa africana "One difficulty encountered in implementing pest management programs for mole crickets is lack of detailed ecological information about these pests" - Hudson 1987. 57 Abstract The population dynamics (in terms of seasonal development) of G. africana was documented for the first time in South Africa. An irritating drench (soap water solution) was used to quantify life stage occurrence on turfgrass over one year. Oviposition took place from early October (spring), with eggs incubating for approximately three weeks. Nymphs reached the adult stage from March (late summer) and the majority of individuals over wintered in this stage. Adult numbers peaked in early September (early spring), declining through the season. Gryllotalpa africana was therefore univoltine in the study area. The adult population was female biased in spring. The smallest individuals (in relation to mean length) were sampled in December (early summer), whilst the smallest nymphs (in relation to mean length) occurred in November (late spring). Keywords: Univoltine, spring oviposition, life stage, absolute length, turfgrass 58 2.1 Introduction Gryllotaipa africana (the African mole cricket) only occurs in Africa (Townsend 1983), from where only one account concerning the life cycle of G. africana is available (from Zimbabwe) (Sithole 1986), with some notes on the species in South Africa provided by Schoeman (1996) and Brandenburg et ai. (2002). Females lay 30-50 oval, white eggs in hardened chambers in the soil (Sithole 1986). Incubation period is temperature dependant, varying from 15-40 days (Sithole 1986). Nymphs feed on wonns and roots of plants and (in favourable conditions) develop through six instars, with wing bud development visible in later instars (Sirhole 1986).
    [Show full text]
  • Mole Crickets (Gryllotalpidae)
    Information Sheet Mole Crickets (Gryllotalpidae) An adult mole cricket, Gryllotalpa sp. (australis­group) with fully developed wings: the fore wings extend only about half the length of the abdomen and partially conceal the folded hind wings which extend down the midline beyond the end of the abdomen. Mole crickets have become one of the most as a distinct family, Gryllotalpidae (e.g. commonly asked­about insects at the WA Rentz 1996). They are distinguished from Museum. This is a result of the establishment true crickets in being modified for a and spread of two species not known to occur burrowing mode of life: the fore legs bear in Western Australia prior to the 1990’s. They stout spines to assist digging and the first are Gryllotalpa sp. (australis­group) and G. segment of the thorax is enlarged and pluvialis. The latter, at least, is native to hardened. Females lack the needle­like eastern Australia. They have spread ovipositor of the true crickets. throughout Perth’s suburbs and are known also from other south­western population Mole crickets are often confused with the centres. According to enquirers, the insects superficially similar sandgropers or run rampant in vegetable gardens, plant pots cylindrachetids (see separate information or new lawns, drown in swimming pools, enter sheet). They are readily distinguished by houses and cause annoyance by their loud their longer appendages and (usually) the songs. presence of wings in adults. Fully winged individuals are capable of flight but they fly Mole crickets are most closely related to the only at night and are sometimes attracted to true crickets (Orthoptera: Gryllidae) and lights.
    [Show full text]
  • Biology and Control of Mole Crickets 3 the Area After Flushing Can Minimize Sun Scalding of the Turf
    ALABAMA A&M AND AUBURN UNIVERSITIES Biology and Control ANR-0176 of Mole Crickets Mole crickets have become the most destructive insect pest on turf and lawns in Gulf Coast states. Estimates of damage and replacement costs for turf and pastures in these states are in the millions of dollars annually. This review of the biology, ecology, and management of mole crickets is intended as a reference for homeowners, turf professionals, and local Extension agents. Pest Mole Crickets Brief History and Their Cousins of Mole Crickets The insect order Orthoptera in the United States includes crickets, grasshoppers, Scapteriscus mole crickets were and mole crickets. Within this not known to occur in North order, grasshoppers are a separate America before the early 1900s. subgroup from the field crickets Three species in the genus and mole crickets. Crickets (such Neoscapteriscus were introduced as the field cricket Gryllus spp.) near the Georgia and Florida are related to mole crickets but do border from South America. not live in soil. The short-winged mole cricket (N. Two families of crickets have abbreviatus) is the least known the common name of mole of these species. It is incapable of crickets. Pest mole crickets have Figure 1. The hearing organ on the mole flight due to its shortened wings, cricket is analogous to human ears. digging front legs and live most and it basically has established of their lives in soil, similar to only in Florida. Two additional the mammalian mole. Pygmy species, the tawny mole cricket forelegs that separate them from mole crickets, much smaller and (Neoscapteriscus vicinus) and the native species, which have four unrelated to pest mole crickets, the southern mole cricket claws.
    [Show full text]
  • Endangered Ecosystems of the United States: a Preliminary Assessment of Loss and Degradation
    Biological Report 28 February 1995 Endangered Ecosystems of the United States: A Preliminary Assessment of Loss and Degradation National Biological Service U.S. Department of the Interior Technical Report Series National Biological Service The National Biological Service publishes five technical report series. Manuscripts are accepted from Service employees or contractors, students and faculty associated with cooperative research units, and other persons whose work is sponsored by the Service. Manuscripts are received with the understanding that they are unpublished. Manuscripts receive anonymous peer review. The final decision to publish lies with the editor. Editorial Staff Series Descriptions MANAGING EDITOR Biological Report ISSN 0895-1926 Paul A. Opler Technical papers about applied research of limited scope. Subjects include new information arising from comprehensive studies, surveys and inventories, effects of land use on fish AsSISTANT BRANCH LEADER and wildlife, diseases of fish and wildlife, and developments Paul A. Vohs in technology. Proceedings of technical conferences and symposia may be published in this series. ISSN 0899-451X SCIENTIFIC EDITORS Fish and Wildlife Leafiet Summaries of technical information for readers of non­ Elizabeth D. Rockwell technical or semitechnical material. Subjects include topics of James R. Zuboy current interest, results of inventories and surveys, management techniques, and descriptions of imported fish TECHNICAL EDITORS and wildlife and their diseases. JerryD. Cox Fish and Wildlife Research ISSN 1040-2411 Deborah K. Harris Papers on experimental research, theoretical presentations, and interpretive literature reviews. North American Fauna ISSN 0078-1304 VISUAL INFORMATION SPECIALIST Monographs of long-term or basic research on faunal and Constance M . Lemos floral life histories, distributions, population dynamics, and taxonomy and on community ecology.
    [Show full text]
  • The Burrow Morphology of Mole Crickets (Orthoptera: Gryllotalpidae): Terminology and Comparisons
    The burrow morphology of mole crickets (Orthoptera: Gryllotalpidae): terminology and comparisons Ed Baker December 2016 Abstract Since the publication of [1] three additional burrow casts, unknown to the author, were located in the Natural History Museum, London (NHM) collection by George Beccaloni. These casts were provisionally identified as Gryllotalpa ?vineae. In order to establish whether this identification was correct a literature survey of the casts of mole crickets (Orthoptera: Gryllotalpidae) was conducted. Through this process a standardised ter- minology for mole cricket burrows has been established. The application of eccentricity measurements to burrow structures has identified measurements that can potentially be used to discriminate those species for which suitably detailed burrow descriptions have been made available. It is demonstrated that the eccentricity of the restrictions on either side of the bulb, as well as the eccentricity of the horn opening, are useful diagnostic characters. Contents 1 Introduction 3 2 Terminology of burrow structures 3 2.1 Living burrows . .4 2.1.1 Horizontal burrows . .4 2.1.2 Vertical burrows . .5 2.1.3 Entrances . .5 2.1.4 Egg Chambers . .5 2.2 Acoustic Burrows . .5 2.2.1 Orientation . .5 2.2.2 Offset horn . .6 2.2.3 Horn number and arrangement . .6 2.2.4 Horn Opening . .7 1 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2664v1 | CC BY 4.0 Open Access | rec: 21 Dec 2016, publ: 21 Dec 2016 EWB5 LIST OF FIGURES 2.2.5 Horn spacing . .8 2.2.6 Bulb . .8 2.2.7 Throat and exit . .8 2.2.8 Exit number and orientation .
    [Show full text]
  • Acquired Natural Enemies of Oxyops Vitiosa 1
    Christensen et al.: Acquired Natural Enemies of Oxyops vitiosa 1 ACQUIRED NATURAL ENEMIES OF THE WEED BIOLOGICAL CONTROL AGENT OXYOPS VITIOSA (COLEPOTERA: CURCULIONIDAE) ROBIN M. CHRISTENSEN, PAUL D. PRATT, SHERYL L. COSTELLO, MIN B. RAYAMAJHI AND TED D. CENTER USDA/ARS, Invasive Plant Research Laboratory, 3225 College Ave., Ft. Lauderdale, FL 33314 ABSTRACT The Australian curculionid Oxyops vitiosa Pascoe was introduced into Florida in 1997 as a biological control agent of the invasive tree Melaleuca quinquenervia (Cav.) S. T. Blake. Pop- ulations of the weevil increased rapidly and became widely distributed throughout much of the invasive tree’s adventive distribution. In this study we ask if O. vitiosa has acquired nat- ural enemies in Florida, how these enemies circumvent the protective terpenoid laden exu- dates on larvae, and what influence 1 of the most common natural enemies has on O. vitiosa population densities? Surveys of O. vitiosa populations and rearing of field-collected individ- uals resulted in no instances of parasitoids or pathogens exploiting weevil eggs or larvae. In contrast, 44 species of predatory arthropods were commonly associated (>5 individuals when pooled across all sites and sample dates) with O. vitiosa. Eleven predatory species were ob- served feeding on O. vitiosa during timed surveys, including 6 pentatomid species, 2 formi- cids and 3 arachnids. Species with mandibulate or chelicerate mouthparts fed on adult stages whereas pentatomids, with haustellate beaks, pierced larval exoskeletons thereby by- passing the protective larval coating. Observations of predation were rare, with only 8% of timed surveys resulting in 1 or more instances of attack. Feeding by the pentatomid Podisus mucronatus Uhler accounted for 76% of all recorded predation events.
    [Show full text]