Lipoxygenase-Derived Eicosanoids in Myocardial Ischaemia-Reperfusion

Total Page:16

File Type:pdf, Size:1020Kb

Lipoxygenase-Derived Eicosanoids in Myocardial Ischaemia-Reperfusion Lipoxygenase-derived eicosanoids in myocardial ischaemia-reperfusion injury: the role of sensory C-fibres and TRPV1 Alison Goddard A thesis submitted for the Degree of Doctor of Philosophy University of London 2010 Supervisor: Professor Amrita Ahluwalia Queen Mary University of London Department of Clinical Pharmacology William Harvey Research Institute Charterhouse Square London EC1M 6BQ Email: [email protected] DECLARATION OF OWNERSHIP I declare that the work presented in this thesis is my own. Alison Goddard 2 ABSTRACT It is well established that the 12-lipoxygenase (12-LOX) pathway of arachidonic acid (AA) metabolism is stimulated within the myocardium by episodes of ischaemia, and there is considerable evidence showing that eicosanoids derived via this pathway protect against the damaging effects of myocardial ischaemia-reperfusion (I/R) injury. Recent evidence suggests that transient receptor potential vanilloid receptor 1 (TRPV1), expressed on sensory C-fibres, may play an important protective role against myocardial I/R injury; and in neurones, the 12-LOX metabolite of AA 12(S)- hydroperoxyeicosatetraenoic acid [12(S)-HpETE], has been proposed as an endogenous ligand for TRPV1. However, whether 12(S)-HpETE underlies TRPV1 channel activation during myocardial I/R is unknown. Treatment of isolated Langendorff rat hearts with 12-LOX/AA significantly attenuated I/R injury (~40% inhibition of infarct size), an effect reversed by the 12-LOX inhibitor baicalein or by chemical desensitisation of local C-fibre afferents in vivo using capsaicin. Both 12(S)-HpETE and AA caused dose-dependent coronary vasodilatation (~pEC50s of 18.2 and 6.9, respectively) that was profoundly suppressed by the TRPV1 antagonist capsazepine, or in hearts of TRPV1 knockout mice compared to wild-type mice, or by treatment with the calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP8-37. I/R in vitro reduced expression of myocardial TRPV1 protein, whereas in vivo, TRPV1 protein expression in the heart and dorsal root ganglia (DRG) increased, and DRG TRPV1 messenger ribonucleic acid levels decreased – suggesting that whilst TRPV1 protein may be down-regulated during I/R in vitro, when neurones 3 Abstract innvervating the heart are associated with their cell bodies, TRPV1 expression may be increased, possibly under the control of neurotrophic factors. Together, the findings from this thesis identify a novel 12-LOX/AA/TRPV1 pathway activated and up-regulated during myocardial I/R injury, providing an endogenous damage-limiting mechanism – the targeting of which may prove useful in treating myocardial infarction or protecting against I/R injury associated with common surgical procedures including cardiac transplantation. 4 In memory of my uncle Thomas Michael Goddard (6th January 1934 – 18th October 2005) 5 ACKNOWLEDGEMENTS I would like to thank my supervisor, Professor Amrita Ahluwalia, for all the hours she has devoted to guiding me through my time as a PhD student in her laboratory; for her expertise, honesty, patience, and above all, for her endless supply of encouragement, especially at times when my enthusiasm was fading or my confidence lacking. I would also like to take the opportunity to acknowledge my school teachers Trevor Boulden, Jacky Langton and Ann Port, whose biology lessons originally inspired me to persue a biological sciences education. I am indebted to the British Heart Foundation for funding my research, and making this PhD possible. I would also like to thank the other members of Professor Ahluwalia’s group – past or present – who have helped me with various aspects of this thesis. Particular thanks go to Dr. Paul Foster (originally my secondary supervisor) and Dr. Andrew Webb, for teaching me how to use the Langendorff preparation; Dr. Ramona Scotland, for help with mouse Langendorff work; Dr. Phuong Vo, Dr. Stephanie Francis and Ms Florence Lecomte for teaching me Western blot techniques; and Dr. Cecile Cayla and Dr. Johan Duchene for teaching me PCR techniques. Thanks also go to Professor Chris Thiemermann for collaborating with the in vivo work included in this thesis, especially to Dr. Michelle McDonald who carried out all the in vivo I/R experiments on my behalf. I am very grateful to Dr. Sandro Giuliani for his generous gifts of SR 140333, MEN 11420 and SR 142801. In addition, I would like to thank Sandesh Masih for producing the graphics in Chapter 1, Dr. Natalie Lumsden for preparing and photographing heart tissue for Chapter 2, and Dr. Melissa Chan for her assistance in producing the figures in Chapters 3, 4 and 5. Lastly I would like to thank all my family and friends who have shared the highs and lows of this PhD with me. Very, very special thanks to my parents and my sister, Catherine, for your constant love and support in every possible way. I would never have managed to finish this without your help. And to my son, Oliver, thank you for all the smiles, cuddles and laughs over the past four years - this thesis is dedicated to you. 6 PUBLICATIONS The following publications have resulted from this thesis: Papers SEXTON, A.*, MCDONALD, M., CAYLA, C., THIEMERMANN, C. & AHLUWALIA, A. (2007). 12-Lipoxygenase-derived eicosanoids protect against myocardial ischemia/reperfusion injury via activation of neuronal TRPV1. FASEB J. 21, 2965-2703. Abstracts A. M. Goddard & A. Ahluwalia. Role for sensory neuropeptides in AA- induced coronary vasodilation: a potential mechanism for 12-LOX-induced cardioprotection? Winter British Pharmacological Society Meeting (2005). (Oral) Alison M. D. Sexton*, Michelle C. McDonald, Chris Thiemermann, Amrita Ahluwalia. C-fibres and the non-selective cation channel TRPV1. Experimental Biology Meeting (2006). (Poster) * former married name 7 CONTENTS DECLARATION OF OWNERSHIP 2 ABSTRACT 3 ACKNOWLEDGEMENTS 6 PUBLICATIONS 7 CONTENTS 8 INDEX OF FIGURES 14 INDEX OF TABLES 17 ABBREVIATIONS 18 CHAPTER 1: INTRODUCTION 26 1.1. General background 26 1.2. Myocardial I/R injury 31 1.2.1. Ischaemic injury 31 1.2.2. Reperfusion injury 36 1.2.3. Mechanisms of ischaemic and reperfusion injury 44 1.2.4. Protection against myocardial I/R injury 48 1.3. The PLA2/AA cascade and LOX-derived eicosanoids 51 1.4. Sensory C-fibres 57 1.5. TRPV1 65 1.5.1. TRPV1 structure, function and distribution 65 1.5.2. Modulation of TRPV1 activity 73 8 1.5.3. TRPV1 in the cardiovascular system 77 1.5.4. TRPV1 and cardioprotection 79 1.6. Aims 81 CHAPTER 2: METHODS 83 2.1. Animal preparation 83 2.1.1. Rats 83 2.1.2. Mice 83 2.2. Isolated perfused heart (Langendorff) preparation 84 2.2.1. Measurement of coronary haemodynamics in rat hearts 87 2.2.1.1. Drug administration 88 2.2.1.2. Calculation of changes in CPP 90 2.2.2. Investigation of the vasodilator activity of 12(S)-HETE and 12(S)- 90 HpETE 2.2.2.1. Determination of the role of sensory C-fibres and TRPV1 in 12(S)- 91 HpETE-induced vasodilatation 2.2.2.2. Investigation of the effect of sensory neuropeptide antagonists on 92 12(S)-HpETE-induced vasodilatation 2.2.3. 12-LOX and AA: an alternative approach to studying 12(S)-HpETE- 93 induced vasodilatation? 2.2.4. Investigation of the mechanism of 12-LOX/AA-induced coronary 95 vasodilatation 2.2.4.1. Determination of the role of sensory C-fibres and TRPV1 in 96 12-LOX/AA-induced vasodilatation 2.2.4.2. Investigation of the effect of sensory neuropeptide antagonists on 96 12-LOX/AA-induced vasodilatation 9 2.2.5. Measurement of cardiac function in rat hearts subjected to an I/R insult 97 2.2.6. Investigation of the effects of 12-LOX and AA on I/R injury 100 2.2.7. Determination of the role of sensory C-fibres in 12-LOX/AA-mediated 101 cardioprotection 2.2.8. Measurement of coronary haemodynamics in murine hearts 102 2.2.9. 12-LOX/AA-induced coronary vasodilatation in TRPV1 KO mice 103 2.3. Assessment of TRPV1 mRNA levels and protein expression 103 2.3.1. In vivo model of I/R 103 2.3.2. Sample collection 104 2.3.3. Quantitative real-time polymerase chain reaction (PCR) analysis 105 2.3.3.1. Total mRNA extraction from heart tissue (in vitro and in vivo 105 samples) 2.3.3.2. Total mRNA extraction from DRG (in vivo samples) 106 2.3.3.3. First-strand cDNA synthesis (reverse transcription, RT) 107 2.3.3.4. Optimisation of conditions for quantitative real-time PCR 110 2.3.3.4a. Conditions for conventional PCR 112 2.3.3.4b. Conditions for quantitative real-time PCR 114 2.3.3.5. Quantitative real-time PCR 117 2.3.4. Western blot 118 2.3.4.1. Sample collection 118 2.3.4.2. Preparation of tissue samples for Western blot 119 2.3.4.3. Determination of protein concentration (Bradford assay) 120 2.3.4.4. SDS polyacrylamide gel electrophoresis (SDS-PAGE) 120 2.3.4.5. Preparation of gels 121 2.3.4.6. Electrophoresis 122 10 2.3.4.7. Protein transfer 123 2.3.4.8. Incubation and detection 124 2.3.4.9. Effects of I/R injury on TRPV1 protein expression 125 2.4. Preparation of drugs 125 2.5. Sources of drugs 127 2.6. Data analysis and statistics 128 CHAPTER 3: VASODILATOR RESPONSES IN THE 133 ISOLATED RAT AND MURINE HEART 3.1. Vasodilator activity of 12(S)-HETE and 12(S)-HpETE 133 3.1.1. The role of sensory C-fibres and TRPV1 in 12(S)-HpETE-induced 137 vasodilatation 3.1.2. The effect of sensory neuropeptide antagonists on 12(S)-HpETE-induced 138 vasodilatation 3.2. 12-LOX and AA: an alternative approach to studying 12(S)-HpETE- 141 induced vasodilatation 3.3.
Recommended publications
  • Drug Development for the Irritable Bowel Syndrome: Current Challenges and Future Perspectives
    REVIEW ARTICLE published: 01 February 2013 doi: 10.3389/fphar.2013.00007 Drug development for the irritable bowel syndrome: current challenges and future perspectives Fabrizio De Ponti* Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy Edited by: Medications are frequently used for the treatment of patients with the irritable bowel syn- Angelo A. Izzo, University of Naples drome (IBS), although their actual benefit is often debated. In fact, the recent progress in Federico II, Italy our understanding of the pathophysiology of IBS, accompanied by a large number of preclin- Reviewed by: Elisabetta Barocelli, University of ical and clinical studies of new drugs, has not been matched by a significant improvement Parma, Italy of the armamentarium of medications available to treat IBS. The aim of this review is to Raffaele Capasso, University of outline the current challenges in drug development for IBS, taking advantage of what we Naples Federico II, Italy have learnt through the Rome process (Rome I, Rome II, and Rome III). The key questions *Correspondence: that will be addressed are: (a) do we still believe in the “magic bullet,” i.e., a very selective Fabrizio De Ponti, Pharmacology Unit, Department of Medical and Surgical drug displaying a single receptor mechanism capable of controlling IBS symptoms? (b) IBS Sciences, University of Bologna, Via is a “functional disorder” where complex neuroimmune and brain-gut interactions occur Irnerio, 48, 40126 Bologna, Italy. and minimal inflammation is often documented:
    [Show full text]
  • United States Patent (10) Patent No.: US 8,969,514 B2 Shailubhai (45) Date of Patent: Mar
    USOO896.9514B2 (12) United States Patent (10) Patent No.: US 8,969,514 B2 Shailubhai (45) Date of Patent: Mar. 3, 2015 (54) AGONISTS OF GUANYLATECYCLASE 5,879.656 A 3, 1999 Waldman USEFUL FOR THE TREATMENT OF 36; A 6. 3: Watts tal HYPERCHOLESTEROLEMIA, 6,060,037- W - A 5, 2000 Waldmlegand et al. ATHEROSCLEROSIS, CORONARY HEART 6,235,782 B1 5/2001 NEW et al. DISEASE, GALLSTONE, OBESITY AND 7,041,786 B2 * 5/2006 Shailubhai et al. ........... 530.317 OTHER CARDOVASCULAR DISEASES 2002fOO78683 A1 6/2002 Katayama et al. 2002/O12817.6 A1 9/2002 Forssmann et al. (75) Inventor: Kunwar Shailubhai, Audubon, PA (US) 2003,2002/0143015 OO73628 A1 10/20024, 2003 ShaubhaiFryburg et al. 2005, OO16244 A1 1/2005 H 11 (73) Assignee: Synergy Pharmaceuticals, Inc., New 2005, OO32684 A1 2/2005 Syer York, NY (US) 2005/0267.197 A1 12/2005 Berlin 2006, OO86653 A1 4, 2006 St. Germain (*) Notice: Subject to any disclaimer, the term of this 299;s: A. 299; NS et al. patent is extended or adjusted under 35 2008/0137318 A1 6/2008 Rangarajetal.O U.S.C. 154(b) by 742 days. 2008. O151257 A1 6/2008 Yasuda et al. 2012/O196797 A1 8, 2012 Currie et al. (21) Appl. No.: 12/630,654 FOREIGN PATENT DOCUMENTS (22) Filed: Dec. 3, 2009 DE 19744O27 4f1999 (65) Prior Publication Data WO WO-8805306 T 1988 WO WO99,26567 A1 6, 1999 US 2010/O152118A1 Jun. 17, 2010 WO WO-0 125266 A1 4, 2001 WO WO-02062369 A2 8, 2002 Related U.S.
    [Show full text]
  • Inhibitors of Cytosolic Phospholipase A2 Hemmer Der Zytosolen Phospholipase A2 Inhibiteurs De Phospholipase A2 Cytosolique
    (19) & (11) EP 1 891 006 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 209/14 (2006.01) A61K 31/404 (2006.01) 24.11.2010 Bulletin 2010/47 A61P 11/00 (2006.01) A61P 19/00 (2006.01) A61P 25/00 (2006.01) (21) Application number: 06771540.9 (86) International application number: (22) Date of filing: 26.05.2006 PCT/US2006/020847 (87) International publication number: WO 2006/128142 (30.11.2006 Gazette 2006/48) (54) INHIBITORS OF CYTOSOLIC PHOSPHOLIPASE A2 HEMMER DER ZYTOSOLEN PHOSPHOLIPASE A2 INHIBITEURS DE PHOSPHOLIPASE A2 CYTOSOLIQUE (84) Designated Contracting States: • CLERIN, Valerie AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Watertown, MA 02472 (US) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • MARUSIC, Suzana SK TR Reading, MA 01867 (US) •PONG,Kevin (30) Priority: 27.05.2005 US 685564 P Robbinsville, NJ 08691 (US) (43) Date of publication of application: (74) Representative: Laurent, Claire et al 27.02.2008 Bulletin 2008/09 Pfizer Limited European Patent Department (60) Divisional application: Ramsgate Road 10172388.0 / 2 248 801 Sandwich, Kent CT13 9NJ (GB) (73) Proprietor: Wyeth LLC (56) References cited: Madison, NJ 07940 (US) WO-A2-03/048122 (72) Inventors: • CLARK J D ET AL: "Potential therapeutic uses of • MCKEW, John, C. phospholipase A2 inhibitors" EXPERT OPINION Arlington, MA 02476 (US) ON THERAPEUTIC PATENTS 2004 UNITED • LEE, Katherine, L. KINGDOM, vol. 14, no. 7, 2004, pages 937-950, Newton, MA 02465 (US) XP002405708 ISSN: 1354-3776 • CHEN, Lihren • DATABASE REGISTRY Chemical Abstract Wayland, MA 01778 (US) Service, Columbus, Ohio, US; RN 865200-20-0 13 • VARGAS, Richard October 2005 (2005-10-13), XP002405672 Lexington, MA 02420 (US) • CLARK, James, D.
    [Show full text]
  • Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
    CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • Wo 2009/149279 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 10 December 2009 (10.12.2009) WO 2009/149279 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07K 7/08 (2006.01) A61P 29/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 38/04 (2006.01) A61P 35/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61P 1/04 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/US2009/046288 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 4 June 2009 (04.06.2009) NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, (25) Filing Language: English UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/058,892 4 June 2008 (04.06.2008) US GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (71) Applicant (for all designated States except US): SYNER¬ TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, GY PHARMACEUTICALS INC.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • A Abacavir Abacavirum Abakaviiri Abagovomab Abagovomabum
    A abacavir abacavirum abakaviiri abagovomab abagovomabum abagovomabi abamectin abamectinum abamektiini abametapir abametapirum abametapiiri abanoquil abanoquilum abanokiili abaperidone abaperidonum abaperidoni abarelix abarelixum abareliksi abatacept abataceptum abatasepti abciximab abciximabum absiksimabi abecarnil abecarnilum abekarniili abediterol abediterolum abediteroli abetimus abetimusum abetimuusi abexinostat abexinostatum abeksinostaatti abicipar pegol abiciparum pegolum abisipaaripegoli abiraterone abirateronum abirateroni abitesartan abitesartanum abitesartaani ablukast ablukastum ablukasti abrilumab abrilumabum abrilumabi abrineurin abrineurinum abrineuriini abunidazol abunidazolum abunidatsoli acadesine acadesinum akadesiini acamprosate acamprosatum akamprosaatti acarbose acarbosum akarboosi acebrochol acebrocholum asebrokoli aceburic acid acidum aceburicum asebuurihappo acebutolol acebutololum asebutololi acecainide acecainidum asekainidi acecarbromal acecarbromalum asekarbromaali aceclidine aceclidinum aseklidiini aceclofenac aceclofenacum aseklofenaakki acedapsone acedapsonum asedapsoni acediasulfone sodium acediasulfonum natricum asediasulfoninatrium acefluranol acefluranolum asefluranoli acefurtiamine acefurtiaminum asefurtiamiini acefylline clofibrol acefyllinum clofibrolum asefylliiniklofibroli acefylline piperazine acefyllinum piperazinum asefylliinipiperatsiini aceglatone aceglatonum aseglatoni aceglutamide aceglutamidum aseglutamidi acemannan acemannanum asemannaani acemetacin acemetacinum asemetasiini aceneuramic
    [Show full text]
  • Agonists of Guanylate Cyclase Useful for the Treatment of Gastrointestinal Disorders, Inflammation, Cancer and Other Disorders
    (19) TZZ ¥__T (11) EP 2 998 314 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 23.03.2016 Bulletin 2016/12 C07K 7/08 (2006.01) A61K 38/10 (2006.01) A61K 47/48 (2006.01) A61P 1/00 (2006.01) (21) Application number: 15190713.6 (22) Date of filing: 04.06.2008 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • SHAILUBHAI, Kunwar HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT Audubon, PA 19402 (US) RO SE SI SK TR • JACOB, Gary S. New York, NY 10028 (US) (30) Priority: 04.06.2007 US 933194 P (74) Representative: Cooley (UK) LLP (62) Document number(s) of the earlier application(s) in Dashwood accordance with Art. 76 EPC: 69 Old Broad Street 12162903.4 / 2 527 360 London EC2M 1QS (GB) 08770135.5 / 2 170 930 Remarks: (71) Applicant: Synergy Pharmaceuticals Inc. This application was filed on 21-10-2015 as a New York, NY 10170 (US) divisional application to the application mentioned under INID code 62. (54) AGONISTS OF GUANYLATE CYCLASE USEFUL FOR THE TREATMENT OF GASTROINTESTINAL DISORDERS, INFLAMMATION, CANCER AND OTHER DISORDERS (57) The invention provides novel guanylate cycla- esterase. The gastrointestinal disorder may be classified se-C agonist peptides and their use in the treatment of as either irritable bowel syndrome, constipation, or ex- human diseases including gastrointestinal disorders, in- cessive acidity etc. The gastrointestinal disease may be flammation or cancer (e.g., a gastrointestinal cancer).
    [Show full text]