Tachykinin Receptors and Gastrointestinal Motility: Focus on Humans

Total Page:16

File Type:pdf, Size:1020Kb

Tachykinin Receptors and Gastrointestinal Motility: Focus on Humans European Review for Medical and Pharmacological Sciences 2008; 12(Suppl 1): 69-80 Tachykinin receptors and gastrointestinal motility: focus on humans A. LECCI, M. ALTAMURA, A. CAPRIATI, C.A. MAGGI Clinical Research Department, Menarini Ricerche, Florence (Italy) Abstract. – Peptides of the tachykinin (TK) thors observed that this extract had myotropic ac- family were first discovered in the gastrointesti- tivity on isolated intestinal segments and postu- nal tissue about 75 years ago and supposed to lated that SP (P means powder, the physical form be involved in gastrointestinal (GI) motility. This of the extract) was released in the intestine and hypothesis has been repeatedly proven, al- though the role of TKs on motility is modulatory was the mediator responsible for its movements. rather than pivotal. Furthermore, beyond the well This hypothesis was verified 50 years later when known excitatory role, it has been acknowledged it became evident that TKs were, together with that TKs can also inhibit GI motility. TKs act at 3 acetylcholine, the main excitatory transmitters to 1 receptors termed as TK NK1 (NK1r), NK2 (NK2r), the gastrointestinal (GI) smooth muscle . During and NK3 (NK3r) receptors. The view gained the course of these 50 years the TK family en- through intense preclinical research suggested that motor effects induced by the stimulation of larged. Erspamer discovered, characterized and sequenced from non-mammalian species pep- NK2r were prominently mediated by a direct ac- tion on smooth muscle, those produced by the tides with SP-like biological activity which were 2 stimulation of NK1r were due to both muscular named tachykinins , i.e, fast relaxants of vascular and neuronal effects, whereas the motor effects smooth muscle, which were later shown to have 3 induced by NK3r were exclusively mediated by sequence homology to SP . In the early 1980s, neuronal effects. Recent functional and anatomi- three independent groups discovered novel mam- cal findings in humans are challenging this con- cept since NK r have been found in several kinds malian TKs which were named neurokinin A 2 (NKA) and B (NKB), and soon after elongated of myenteric neurons and selective NK2r antago- nists can, in particular conditions, produce GI forms of NKA were described (neuropeptide- motor effects likely related to a neuronal site of kappa and -gamma). At the eve of the new mil- action. Furthermore, the evidence for a myotrop- lennium, novel mammalian TKs were identified: ic role of NK1r is scarce, and very few studies, if hemokinin-1 (HK-1) and its elongated forms en- any, have documented a functional role for NK3r. 4,5 The findings that an acute or a long lasting dokinin A and B (Table I). TKs must share the common amidated C-ter- blockade of NK2r does not alter normal GI func- tions and that these receptors can modulate vis- minal motif Phe-X-Gly-Leu-Met-NH2 (were X ceral sensitivity are good starting points for test- has to be a non-polar amino acid) to exert biolog- ing this class of drugs in GI diseases charac- ical functions through TK receptors5-7 which terised by altered GI motility. have been termed NK1 (NK1r), NK2 (NK2r), and NK3 receptors (NK3r) (Table I). N-terminal SP Key Words: metabolites, such as SP1-5, also exert biological Clinical studies, Aprepitant, Nepadutant, Talnetant. effects, although these effects are not mediated by TK receptors but could involve a site regulat- ing the expression of delta opioid receptors8. TKs are encoded by 3 genes termed TAC1 (SP, NKA, neuropeptide-gamma and -kappa), TAC3 Introduction (NKB), and TAC4 (HK-1, endokinin A, B, C, and D) and each of these genes produces multi- Substance P (SP), the most famous component ple mRNA isoforms. Thus, both the beta- and of the tachykinin (TK) peptide family, was first gamma-TAC1 mRNAs produce both SP and extracted from the horse brain and intestine by NKA, whereas both alpha- and delta-TAC1 only von Euler and Gaddum in 1931. The same au- encode SP. Corresponding Author: Alessandro Lecci, BS; e-mail: [email protected] 69 A. Lecci, M. Altamura, A. Capriati, C.A. Maggi Table I. Amino acid sequence of tachykinins and tachykinin-related peptides and their receptor preference. In bold, the com- mon C-terminal sequence. Receptor preference has been assessed in functional experiments on Ca2+ mobilization or luciferase 5-7 assay (both responses are dependent on phospholipase C activation) in cells expressing human NK1 NK2 NK3 receptors . Peptides Amino acid sequence Receptor preference Substance P Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2 NK1 > NK3 > NK2 Neurokinin A His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH2 NK2 > NK1 > NK3 Neuropeptide-gamma Asp-Ala-Gly-His-Gly-Gln-Ile-Ser-His-Lys-Arg-His- Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH2 NK2 > NK1 > NK3 Neuropeptide-kappa Asp-Ala-Asp-Ser-Ser-Ile-Glu-Lys-Gln-Val-Ala- NK2 > NK1 > NK3 Leu-Leu-Lys-Ala-Leu-Tyr-Gly-His-Gly-Gln-Ile- Ser-His-Lys-Arg-His-Lys-Thr-Asp-Ser-Phe-Val- Gly-Leu-Met-NH2 Neurokinin B Asp-Met-His-Asp-Phe-Phe-Val-Gly-Leu-Met-NH2 NK3 > NK2 > NK1 Hemokinin-1 Thr-Gly-Lys-Ala-Ser-Gln-Phe-Phe-Gly-Leu-Met-NH2 NK1 > NK3 > NK2 Endokinin A Asp-Gly-Gly-Glu-Glu-Gln-Thr-Leu-Ser-Thr-Glu-Ala- Glu-Thr-Trp-Val-Ile-Val-Ala-Leu-Glu-Glu-Gly-Ala- Gly-Pro-Ser-Ile-Gln-Leu-Gln-Leu-Gln-Glu-Val-Lys- Thr-Gly-Lys-Ala-Ser-Gln-Phe-Phe-Gly-Leu-Met-NH2 NK1 > NK3 > NK2 Endokinin B Asp-Gly-Gly-Glu-Glu-Gln-Thr-Leu-Ser-Thr-Glu- Ala-Glu-Thr-Trp-Glu-Gly-Ala-Gly-Pro-Ser-Ile-Gln- NK1 > NK3 > NK2 Leu-Gln-Leu-Gln-Glu-Val-Lys-Thr-Gly-Lys-Ala-Ser- Gln-Phe-Phe-Gly-Leu-Met-NH2 Endokinin C Lys-Lys-Ala-Tyr-Gln-Leu-Glu-His-Thr-Phe-Gln-Gly-Leu-Leu-NH2 Antagonist at NK1 Endokinin D Val-Gly-Ala-Tyr-Gln-Leu-Glu-His-Thr-Phe-Gln-Gly-Leu-Leu-NH2 Antagonist at NK1 Hemokinin-1* Arg-Ser-Arg-Thr-Arg-Gln-Phe-Tyr-Gly-Leu-Met-NH2 NK1 > NK2 > NK3 *Rat and mouse sequence. TK receptors belong to class 1 (rhodopsin- of GI function such as immune-inflammatory like) seven transmembrane G-protein-coupled re- processes, tissue integrity, intestinal barrier func- ceptors. All tachykinin receptors can activate tion, carcinogenesis, blood supply, secretion, af- classical transduction mechanisms linked to ferent signaling and motor regulation. Although phospholipase C activation, and all natural TKs all these aspects can influence each other, this ar- having the common C-terminal sequence act as ticle is focussed on the role of TKs and their re- full agonists on these pathways, whereas their in- ceptors on GI motor regulation exerted at the pe- trinsic activity can vary when measured on other ripheral level with particular emphasis on evi- G-protein mediated pathways (e.g., increase of dence collected in humans. In this respect, it is cyclic adenosine monophosphate). TKs can also worth noting that TKs can also modulate GI exert biological effects through non G-protein motility by acting at sites located in the central mediated mechanisms (e.g., sustained activation nervous system, as it occurs for the anti-emetic of mitogen-activated kinases) but the agonist or- action produced by blood-brain barrier-penetrat- der of potency or intrinsic activity is unknown ing NK1r antagonists. for this transduction pathway9. Interestingly, en- dokinin C and D, which have been termed as TK-related peptides because both of them have a Expression of TKs and Leu residue replacing the common C-terminal Their Receptors in the GI Tract Met of TKs10 exert an antagonist effect through 11 NK1 receptors . In the GI tract the most abundant TK-encod- In the GI tract TKs and their receptors are lo- ing mRNAs are beta- and gamma-TAC1. TAC4 calized on many cell types, including neurons transcripts have also been detected, although and nerve fibres and exhibit a remarkable degree these are likely to be related to immune, rather of plasticity in response to environmental than motor function. A few papers have de- changes or diseases. As a matter of fact, there is scribed the expression of NKB and none that of evidence that TKs play a role in several aspects TAC3, in spite of the robust evidence (especially 70 Tachykinin receptors and gastrointestinal motility: focus on humans in animals) for the expression of NK3r in the ly emerging from the cell body) where SP could gut12. This pattern of TK gene expression im- colocalize with either somatostatin or calretinin; plies that SP and NKA are the most abundant iv) a small minority (0.5%) of type V neurons TKs in the GI tract and are always colocalized. (neurofilament-positive, small smooth cell body Thus, SP and NKA are expressed on nerve fibres with a single stem process from which very long from both extrinsic neurons and intrinsic neu- dendrites and one axon emerge). rons as well as in somata and varicosities of in- Likewise, Holzer and Holzer-Petsche13 pro- trinsic neurons. A scheme of TK expression in posed a scheme for the distribution of NK1r, the GI tract has been outlined on the basis of NK2r and NK3r based on animal studies. Accord- morphological evidence obtained in laboratory ing to this scheme, smooth muscle cells (both in animals13. According to this scheme, TKs are ex- the CM and LM) and enterocytes express both pressed in: (i) intrinsic primary afferent neurons NK1r and NK2r, whereas blood vessels and inter- (IPANs) which contain both choline acetyltrans- stitial cells of Cajal (ICC) seem to express NK1r ferase and calbindin and project to both circular only.
Recommended publications
  • Drug Development for the Irritable Bowel Syndrome: Current Challenges and Future Perspectives
    REVIEW ARTICLE published: 01 February 2013 doi: 10.3389/fphar.2013.00007 Drug development for the irritable bowel syndrome: current challenges and future perspectives Fabrizio De Ponti* Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy Edited by: Medications are frequently used for the treatment of patients with the irritable bowel syn- Angelo A. Izzo, University of Naples drome (IBS), although their actual benefit is often debated. In fact, the recent progress in Federico II, Italy our understanding of the pathophysiology of IBS, accompanied by a large number of preclin- Reviewed by: Elisabetta Barocelli, University of ical and clinical studies of new drugs, has not been matched by a significant improvement Parma, Italy of the armamentarium of medications available to treat IBS. The aim of this review is to Raffaele Capasso, University of outline the current challenges in drug development for IBS, taking advantage of what we Naples Federico II, Italy have learnt through the Rome process (Rome I, Rome II, and Rome III). The key questions *Correspondence: that will be addressed are: (a) do we still believe in the “magic bullet,” i.e., a very selective Fabrizio De Ponti, Pharmacology Unit, Department of Medical and Surgical drug displaying a single receptor mechanism capable of controlling IBS symptoms? (b) IBS Sciences, University of Bologna, Via is a “functional disorder” where complex neuroimmune and brain-gut interactions occur Irnerio, 48, 40126 Bologna, Italy. and minimal inflammation is often documented:
    [Show full text]
  • United States Patent (10) Patent No.: US 8,969,514 B2 Shailubhai (45) Date of Patent: Mar
    USOO896.9514B2 (12) United States Patent (10) Patent No.: US 8,969,514 B2 Shailubhai (45) Date of Patent: Mar. 3, 2015 (54) AGONISTS OF GUANYLATECYCLASE 5,879.656 A 3, 1999 Waldman USEFUL FOR THE TREATMENT OF 36; A 6. 3: Watts tal HYPERCHOLESTEROLEMIA, 6,060,037- W - A 5, 2000 Waldmlegand et al. ATHEROSCLEROSIS, CORONARY HEART 6,235,782 B1 5/2001 NEW et al. DISEASE, GALLSTONE, OBESITY AND 7,041,786 B2 * 5/2006 Shailubhai et al. ........... 530.317 OTHER CARDOVASCULAR DISEASES 2002fOO78683 A1 6/2002 Katayama et al. 2002/O12817.6 A1 9/2002 Forssmann et al. (75) Inventor: Kunwar Shailubhai, Audubon, PA (US) 2003,2002/0143015 OO73628 A1 10/20024, 2003 ShaubhaiFryburg et al. 2005, OO16244 A1 1/2005 H 11 (73) Assignee: Synergy Pharmaceuticals, Inc., New 2005, OO32684 A1 2/2005 Syer York, NY (US) 2005/0267.197 A1 12/2005 Berlin 2006, OO86653 A1 4, 2006 St. Germain (*) Notice: Subject to any disclaimer, the term of this 299;s: A. 299; NS et al. patent is extended or adjusted under 35 2008/0137318 A1 6/2008 Rangarajetal.O U.S.C. 154(b) by 742 days. 2008. O151257 A1 6/2008 Yasuda et al. 2012/O196797 A1 8, 2012 Currie et al. (21) Appl. No.: 12/630,654 FOREIGN PATENT DOCUMENTS (22) Filed: Dec. 3, 2009 DE 19744O27 4f1999 (65) Prior Publication Data WO WO-8805306 T 1988 WO WO99,26567 A1 6, 1999 US 2010/O152118A1 Jun. 17, 2010 WO WO-0 125266 A1 4, 2001 WO WO-02062369 A2 8, 2002 Related U.S.
    [Show full text]
  • Inhibitors of Cytosolic Phospholipase A2 Hemmer Der Zytosolen Phospholipase A2 Inhibiteurs De Phospholipase A2 Cytosolique
    (19) & (11) EP 1 891 006 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 209/14 (2006.01) A61K 31/404 (2006.01) 24.11.2010 Bulletin 2010/47 A61P 11/00 (2006.01) A61P 19/00 (2006.01) A61P 25/00 (2006.01) (21) Application number: 06771540.9 (86) International application number: (22) Date of filing: 26.05.2006 PCT/US2006/020847 (87) International publication number: WO 2006/128142 (30.11.2006 Gazette 2006/48) (54) INHIBITORS OF CYTOSOLIC PHOSPHOLIPASE A2 HEMMER DER ZYTOSOLEN PHOSPHOLIPASE A2 INHIBITEURS DE PHOSPHOLIPASE A2 CYTOSOLIQUE (84) Designated Contracting States: • CLERIN, Valerie AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Watertown, MA 02472 (US) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • MARUSIC, Suzana SK TR Reading, MA 01867 (US) •PONG,Kevin (30) Priority: 27.05.2005 US 685564 P Robbinsville, NJ 08691 (US) (43) Date of publication of application: (74) Representative: Laurent, Claire et al 27.02.2008 Bulletin 2008/09 Pfizer Limited European Patent Department (60) Divisional application: Ramsgate Road 10172388.0 / 2 248 801 Sandwich, Kent CT13 9NJ (GB) (73) Proprietor: Wyeth LLC (56) References cited: Madison, NJ 07940 (US) WO-A2-03/048122 (72) Inventors: • CLARK J D ET AL: "Potential therapeutic uses of • MCKEW, John, C. phospholipase A2 inhibitors" EXPERT OPINION Arlington, MA 02476 (US) ON THERAPEUTIC PATENTS 2004 UNITED • LEE, Katherine, L. KINGDOM, vol. 14, no. 7, 2004, pages 937-950, Newton, MA 02465 (US) XP002405708 ISSN: 1354-3776 • CHEN, Lihren • DATABASE REGISTRY Chemical Abstract Wayland, MA 01778 (US) Service, Columbus, Ohio, US; RN 865200-20-0 13 • VARGAS, Richard October 2005 (2005-10-13), XP002405672 Lexington, MA 02420 (US) • CLARK, James, D.
    [Show full text]
  • Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
    CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products.
    [Show full text]
  • Modifications to the Harmonized Tariff Schedule of the United States To
    U.S. International Trade Commission COMMISSIONERS Shara L. Aranoff, Chairman Daniel R. Pearson, Vice Chairman Deanna Tanner Okun Charlotte R. Lane Irving A. Williamson Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement the Dominican Republic- Central America-United States Free Trade Agreement With Respect to Costa Rica Publication 4038 December 2008 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 18, 2008, set forth in the Appendix hereto, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement the Dominican Republic- Central America-United States Free Trade Agreement, as approved in the Dominican Republic-Central America- United States Free Trade Agreement Implementation Act, with respect to Costa Rica. (This page is intentionally blank) Annex I Effective with respect to goods that are entered, or withdrawn from warehouse for consumption, on or after January 1, 2009, the Harmonized Tariff Schedule of the United States (HTS) is modified as provided herein, with bracketed matter included to assist in the understanding of proclaimed modifications. The following supersedes matter now in the HTS. (1). General note 4 is modified as follows: (a). by deleting from subdivision (a) the following country from the enumeration of independent beneficiary developing countries: Costa Rica (b).
    [Show full text]
  • LJMU Research Online
    LJMU Research Online Fergani, C, Routly, JE, Jones, DN, Pickavance, LC, Smith, RF and Dobson, H KNDy neurone activation prior to the LH surge of the ewe is disrupted by LPS http://researchonline.ljmu.ac.uk/id/eprint/8794/ Article Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work) Fergani, C, Routly, JE, Jones, DN, Pickavance, LC, Smith, RF and Dobson, H (2017) KNDy neurone activation prior to the LH surge of the ewe is disrupted by LPS. Reproduction, 154 (3). pp. 281-292. ISSN 1470-1626 LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription. For more information please contact [email protected] http://researchonline.ljmu.ac.uk/ 1 1 KNDy neurone activation prior to the LH surge of the ewe is disrupted by LPS 2 C. Fergania, J.E.
    [Show full text]
  • The Determination of Activated Neurokinin B
    Examining High Salt Diet, Puberty, and Interactions of Kisspeptin, Neurokinin B, and the Vasopressin Receptor Department of Zoology and Physiology, University of Wyoming Donal Skinner Dori Pitynski Brooke Fallon Background • Early puberty in females • Copenhagen Puberty Study- 2,095 girls • In 1991, mean age: 10.88 years • In 2006, mean age: 9.86 years • Adverse effects (Aksglaede, Pediatrics, 2009) Innovation (Centers for Disease Control and Prevention, 2009) KNDy cells, GnRH, and the reproductive axis • Kisspeptin, Neurokinin B, Dynorphin • GnRH: Gonadotropin releasing hormone (preoptic area) OVERVIEW Specific Aim of Research: 1. Do NKB/Kiss neurons have vasopressin receptors in rat brains? 2. Does salt increase the expression of NKB in rat brains around the time of puberty? Vasopressin • Arcuate nucleus- site of initiation of puberty • Kisspeptin neurons have V1aR- AVPV • Could the same be occurring in arcuate? • Salt = increased release of vasopressin • Link between salt and puberty via kiss/NKB (Shinji, 2013) Methods Brain tissue • Slicing on the cryostat • 20 micron slices • Fixed to slides and labeled for neurotransmitters via immunohistochemistry Immunohistochemistry • Fluorescence, double label (Dr. Mouktahr, Suez Canal University) Primary Antibody Stain 1% Serum Primary Antibody • 48 hours Rinse: 1% PBS + NaN3 Secondary Antibody Stain • Cover-slipped with Vectashield with DAPI Secondary Antibody Results from Kisspeptin/ V1aR double label DAPI V1aR Kisspeptin Merged Neurokinin B/V1aR double label • Antibodies raised in the same
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • The Significance of NK1 Receptor Ligands and Their Application In
    pharmaceutics Review The Significance of NK1 Receptor Ligands and Their Application in Targeted Radionuclide Tumour Therapy Agnieszka Majkowska-Pilip * , Paweł Krzysztof Halik and Ewa Gniazdowska Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland * Correspondence: [email protected]; Tel.: +48-22-504-10-11 Received: 7 June 2019; Accepted: 16 August 2019; Published: 1 September 2019 Abstract: To date, our understanding of the Substance P (SP) and neurokinin 1 receptor (NK1R) system shows intricate relations between human physiology and disease occurrence or progression. Within the oncological field, overexpression of NK1R and this SP/NK1R system have been implicated in cancer cell progression and poor overall prognosis. This review focuses on providing an update on the current state of knowledge around the wide spectrum of NK1R ligands and applications of radioligands as radiopharmaceuticals. In this review, data concerning both the chemical and biological aspects of peptide and nonpeptide ligands as agonists or antagonists in classical and nuclear medicine, are presented and discussed. However, the research presented here is primarily focused on NK1R nonpeptide antagonistic ligands and the potential application of SP/NK1R system in targeted radionuclide tumour therapy. Keywords: neurokinin 1 receptor; Substance P; SP analogues; NK1R antagonists; targeted therapy; radioligands; tumour therapy; PET imaging 1. Introduction Neurokinin 1 receptor (NK1R), also known as tachykinin receptor 1 (TACR1), belongs to the tachykinin receptor subfamily of G protein-coupled receptors (GPCRs), also called seven-transmembrane domain receptors (Figure1)[ 1–3]. The human NK1 receptor structure [4] is available in Protein Data Bank (6E59).
    [Show full text]
  • Oxytocin Intranasal Administration Affects Neural Networks Upstream of GNRH Neurons
    J Mol Neurosci (2017) 62:356–362 DOI 10.1007/s12031-017-0943-8 Oxytocin Intranasal Administration Affects Neural Networks Upstream of GNRH Neurons Mohammad Saied Salehi1 & Homayoun Khazali1 & Fariba Mahmoudi2 & Mahyar Janahmadi3 Received: 8 May 2017 /Accepted: 20 June 2017 /Published online: 29 June 2017 # Springer Science+Business Media, LLC 2017 Abstract The last decade has witnessed a surge in studies on neurokinin B was increased from the basal levels following the clinical applications of intranasal oxytocin as a method of the intervention. Furthermore, although intranasal-applied enhancing social interaction. However, the molecular and oxytocin decreased hypothalamic RFamide-related peptide- cellular mechanisms underlying its function are not 3 mRNA level, the dynorphin mRNA was not affected. completely understood. Since oxytocin is involved in the These observations are consistent with the hypothesis that regulation of hypothalamic-pituitary-gonadal axis by affect- applications of intranasal oxytocin can affect the GNRH ing the gonadotropin-releasing hormone (GNRH) system, the system. present study addressed whether intranasal application of oxytocin has a role in affecting GNRH expression in the male Keywords Intranasal-applied oxytocin . rat hypothalamus. In addition, we assessed expression of two Gonadotropin-releasing hormone . Kisspeptin . Neurokinin excitatory (kisspeptin and neurokinin B) and two inhibitory B . RFRP-3 (dynorphin and RFamide-related peptide-3) neuropeptides upstream of GNRH neurons as a possible route to relay oxy- tocin information. Here, adult male rats received 20, 40, or Introduction 80 μg oxytocin intranasally once a day for 10 consecutive days, and then, the posterior (PH) and anterior hypothalamus Over recent years, considerable effort has focused on under- (AH) dissected for evaluation of target genes.
    [Show full text]
  • Understanding Peptide Binding in Class a G Protein-Coupled Receptors
    Molecular Pharmacology Fast Forward. Published on July 10, 2019 as DOI: 10.1124/mol.119.115915 This article has not been copyedited and formatted. The final version may differ from this version. MOL# 115915 Understanding peptide binding in Class A G protein-coupled receptors Irina G. Tikhonova, Veronique Gigoux, Daniel Fourmy School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, United Kingdom, (I.G.T.) INSERM ERL1226-Receptology and Therapeutic Targeting of Cancers, Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, F- 31432 Toulouse, France. (V.G., D.F.) Downloaded from molpharm.aspetjournals.org Keywords: peptides, peptide GPCRs, peptide binding at ASPET Journals on September 30, 2021 1 Molecular Pharmacology Fast Forward. Published on July 10, 2019 as DOI: 10.1124/mol.119.115915 This article has not been copyedited and formatted. The final version may differ from this version. MOL# 115915 Running title page: Peptide Class A GPCRs Corresponding author: Irina G. Tikhonova School of Pharmacy, Medical Biology Centre, 97 Lisburn Road, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, United Kingdom Email: [email protected] Tel: +44 (0)28 9097 2202 Downloaded from Number of text pages: 10 Number of figures: 3 molpharm.aspetjournals.org Number of references: 118 Number of tables: 2 Words in Abstract: 163 Words in Introduction: 503 Words in Concluding Remarks: 661 at ASPET Journals on September 30, 2021 ABBREVIATIONS: AT1,
    [Show full text]