Optimisation of Transport Capacity of a Railway Siding Through

Total Page:16

File Type:pdf, Size:1020Kb

Optimisation of Transport Capacity of a Railway Siding Through Open Eng. 2020; 10:245–254 Research Article Lenka Černá*, Anna Dolinayová, and Michal Petr Hranický Optimisation of Transport Capacity of a Railway Siding Through Construction-Reconstruction Measures https://doi.org/10.1515/eng-2020-0012 Received Oct 30, 2019; accepted Nov 19, 2019 1 Introduction Abstract: Railway sidings in the Slovak Republic, despite The analysis of a siding operation implies that in the ter- their reduction, still do not lose their importance. In rail- ritory of the Slovak Republic there decrease performances way transport, a significant part of the realised perfor- realised on sidings as well as the number of sidings trans- mances is represented by transport on railway sidings port performances are realised on. Nowadays the reason and there is therefore a need to continuously develop and is mainly the financial demands on the construction of adapt the siding operation to the requirements of the trans- a new siding, but also high fees charged by siding oper- port market. The reason for the decrease of their number is ators to subjects, i.e. users of sidings, willing to use the nowadays mainly the financial demands on the construc- siding for transport purposes [1]. In spite of this fact in tion of the new siding and its operation. In view of this fact, big enterprises in the Slovak Republic there exist sidings there are sidings in several companies in the Slovak Repub- whose transport performances do not decrease, and the en- lic where the transport performances do not decrease and terprise considers railway transport realised on its siding the performances realised on their railway siding are con- to be dominant and economically profitable. The research sidered as dominant and economically advantageous. The of this project will be aimed at railway sidings when perfor- aim of this paper is based on the analysis of the current mances realised by railway transport are more profitable state of the siding operation in the selected company in for the enterprise. order to solve the problem with insufficient capacity of the The aim of this paper is to propose such measures siding due to the increase in the volume of processed mate- which will be in accordance with requirements put on an rials. The problem with the capacity of the analysed siding increased capacity of railway sidings for specific opera- will be solved through construction-reconstruction mea- tors, and at the same these measures will serve for the sup- sures - namely by construction of a new handling track. port of railway transport in terms of an ecologically more This option is a solution to the problem of an insufficient favourable mode of transport. The problem with capacity capacity of the siding, which affects the current transport of railway sidings there in Slovakia can be solved using sev- performances and costs of railway wagons staying at sta- eral measures, e.g.: construction of a new handling track, tions, too. The proposed measures to support the increase change of a line class on an existing handling track, pur- of a siding capacity will be economically evaluated and the chase of new mechanisms for a sufficient handling ona pay-back period of these solutions will be assessed. siding, support for siding operation, change of technology for shipments processing, or engagement of new employ- Keywords: railway siding, capacity, costs, return, recon- ees to support the siding operation. struction A quality transport infrastructure is a condition of the economy development and it belongs to basic criteria of making decisions regarding a new investment realisation. More favourable economic conditions of business making, *Corresponding Author: Lenka Černá: University of Žilina, Uni- flexibility and ability to respond to requirements of amod- verzitna 1, 010 26 Zilina, Slovak Republic; ern economy have caused that road transport has been Email: [email protected] achieving a decisive market share, and its increase leads to Anna Dolinayová: University of Žilina, Univerzitna 1, 010 26 Zilina, Slovak Republic; Email: [email protected] congestions on main road lines and a negative impact on Michal Petr Hranický: University of Žilina, Univerzitna 1, 010 26 the environment and health of the population in towns [1]. Zilina, Slovak Republic; From the point of view of making the transport green it is Email: [email protected] Open Access. © 2020 L. Černá et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 License 246 Ë L. Černá et al. important to introduce renewable sources of energy within paper for, some operating names will be used, mainly in transport, to develop their utilisation, and to focus on the the following cases: support and development of non-motorised and ecologi- – a manufacturing plant the optimisation solution is be- cal modes of transport. Railway transport is safe and green. ing proposed for: Plant A, Greening will be playing a bigger and bigger role in the – a railway siding as a site of measures realisation: Sid- EU. This, however, means not only the support for produc- ing A, tion of biofuels or utilisation of hybrid engines, but also – a railway station the siding runs into (a connecting the support for an overall greening of individual modes of station of Siding A): RS A, transport [2, 3]. – other: individual names of processed stocks will be operationally called as a commodity A to Z, specific products will be operationally called as a product A 2 Data and Methods to Z, and a project of Plant A (a project which aims to increase the production of specific products) will be A scientific method will be used to solve the problem men- operationally called as a project A, tioned in the introduction of the article. The methodology – a stock which affects the siding capacity after is divided into several parts and its main objective is to the project realisation: commodity C (realised mea- achieve the support for railway transport as the most eco- sures). logically favourable mode of transport, and the support to increase the transport capacity of the analysed siding. The proposed methodology is in compliance with require- 3 The Analysis of a Current State of ments of the siding operator, or user, with siding capabil- ities as well as with the applicable legislation. To accom- the Siding Operation on Siding A plish the scientific method individual steps will be applied. The first part of the methodology describes a problem The operation on Siding A represents a set of transport- being investigated which relates to actual requirements shipping activities which provide a shunting on this siding within siding operation management in the Slovak Repub- at the agreed time. The Siding A operation also includes lic and to an inevitable support for its development. In the performances related to shunting of wagons on tracks of following analytical part of the methodology the follow- the siding in accordance with the requirements and with ing is worked out: the infrastructure characteristics of the the approval of the siding operator, or user, out of the observed siding, the identification of the siding capacity scope of siding operation. problem, the analysis of performances, the analysis of op- A big advantage of Plant A is the existence of its own erations, the technical base, the analysis of operation pro- railway siding whose construction project was prepared in cesses of the siding, etc. The collected information, com- 1979. Thanks to this siding it is possible to deliver stocks plexity and depth of surveyed indicators were the basis to the enterprise also by means of railway transport. Cur- for creating a research plan which exactly identified indi- rently Plant A is planning to realise a planned project xy vidual phases, methods and procedures [4]. Based on the and as part of this project it is anticipated that the trans- performed analysis it is possible to propose some optimisa- port volume will be increased via railway transport in 24%. tion measures. In the next to the last part of the methodol- The position of the siding is of a strategic importance also ogy a specific measure to increase the transport capacity of because of its area [5]. the siding is worked out. The final part of the methodology The permission to operate a railway for Siding A is is- is complemented with a calculation of the economic prof- sued per Art. 36 Act No. 164/1996 Coll. National Council of itability of rationalisation measures in order to support the the Slovak Republic on Railways and on amendment of the siding operation, and it is also complemented with a recal- Act No. 455/1991 Coll. on Trade Licensing by National Rail culation of return of investment period. The methodology Office under the licence number 0004/1997/p. On the basis represents a sequence of steps to ensure the support for a of this permission Plant A may operate the railway (siding). smooth siding operation with an increased volume of pro- The licence to provide services of railway transport was is- cessed stocks on the observed siding, and to ensure the sued by the Transport Authority for Siding A with effect support for railway transport as a more profitable mode from October 5, 2017 sine die. of transport. To protect personal data and sensitive data of subjects who the transport capacity is optimised in this Optimisation of Transport Capacity of a Railway Siding Through Construction-Reconstruction Measures Ë 247 Figure 1: Scheme of a Rail Yard of RS A and Railway Siding A Source: [5] 3.1 The Characteristics of Plant A 3.2 The Characteristics of Siding A Plant A belongs to the biggest manufacturers in Slovakia.
Recommended publications
  • Relative Train Length and the Infrastructure Required to Mitigate Delays from Operating Combinations of Normal and Over-Length F
    Original Article Proc IMechE Part F: J Rail and Rapid Transit 0(0) 1–12 Relative train length and the ! IMechE 2018 Article reuse guidelines: infrastructure required to mitigate sagepub.com/journals-permissions DOI: 10.1177/0954409718809204 delays from operating combinations journals.sagepub.com/home/pif of normal and over-length freight trains on single-track railway lines in North America C Tyler Dick , Ivan Atanassov, F Bradford Kippen III and Darkhan Mussanov Abstract Distributed power locomotives have facilitated longer heavy-haul freight trains that improve the efficiency of railway operations. In North America, where the majority of mainlines are single track, the potential operational and economic advantages of long trains are limited by the inadequate length of many existing passing sidings (passing loops). To alleviate the challenge of operating trains that exceed the length of passing sidings, railways preserve the mainline capacity by extending passing sidings. However, industry practitioners rarely optimize the extent of infrastructure investment for the volume of over-length train traffic on a particular route. This paper investigates how different combinations of normal and over-length trains, and their relative lengths, relate to the number of siding extensions necessary to mitigate the delay performance of over-length train operation on a single-track rail corridor. The experiments used Rail Traffic Controller simulation software to determine train delay for various combinations of short and long train lengths under different directional distributions of a given daily railcar throughput volume. Simulation results suggest a relationship between the ratio of train lengths and the infrastructure expansion required to eliminate the delay introduced by operating over- length trains on the initial route.
    [Show full text]
  • C&O Has Good Ideas In
    Siding thrown over to locate main track signal between main and siding C & 0 Has Good Ideas in CTC Sheet-metal houses not only at switches but also at interme­ diate signals and use of hold-out signals are features of this project. Well organized construction requires no work trains. TO INCREASE TRACK CAPAC­ portant freight line. Numerous Windsor, Ont., and Blenheim, Ont. ITY, facilitate train movements industries , including large, automo­ Previously no signaling was in and reduce operating expenses, the bile factories, are located at Plym­ service on the single track between Chesapeake & Ohio has installed outh , Flint and Saginaw. Also the Plymouth and Kearsley interlock­ centralized traffic control on 55 Plymouth-Saginaw section is part ing at Flint. Two tracks extend miles of single-track between Plym­ of an important route to and from north from Plymouth 1.0 mile to a outh, Mich., and Mount Morris, Ludington, Mich., which is the port power switch which is included in Mich. This project connects with for C&O car ferries, operated all the new CTC. At Wixom there are CTC previously in service on 24 year, across Lake Michigan to and two sidings with power switches miles between Mt. Morris and from Wisconsin ports of Milwau­ included in the CTC. Other sidings Saginaw, Mich., the entire 79 miles kee, Manitowoc and Kewaunee. with power switches included in between Plymouth and Saginaw the CTC are at Clyde and Newark. now being controlled from a ma­ Twenty Trains Dally These sidings were lengthened to chine at Saginaw. hold 112 and 133 cars respectively .
    [Show full text]
  • Derails in Passing Sidings? As 1.5 U 'Ually the Case, It I'> Impo%Ible to Move Tre Insulated Ioiflt
    30 RAILWAY SIGNALING Vol. 24, No.1 i\s the InSUlltld joint i" a :,ecessary part aT the 19nal ( ,,) In torcing rat elK~ - 1)art use a ratl expander It system as well as 0" the t'c.ck, it mturally follows tl1dt It one IS &t haIld DC! not use an )rdinary full tap"'r '"rack belongs neither to one department nor to the other, but chise1. If a chisel muq be usen, use on(; whICh is wider to both, Therefore, both departments should interest th,l11 the rail-head and which has a small japer, 111 order themselves 111 hcping 'nsulated joil'ts in repair in an to 1\ aid d~.ma2ing the rail el d. efficient and er ollomin1 mannu, (0 Do It bend 'lOlts or drive them through btl ~h;ngs. 11o:t men who are ell cdl} responsible for the care If rail end~ a d ;oir,t parts Ir in prope' POSI io 1, he of JO'nts ha\ e found that mp1 r defects, which req~lre bn]ts can be l11::-e ted w thO'lt rr...lt1:'n", n' bending. very little til e to remedy, such a" loose r,ub. lipped (7) Paler 1 .suL i II W 11 nN 'dthstand the erorl"ous rail tnds, rail fins cutting mto 5.11er, low or loose ties fon (' of rail expansion in hot weather. After the proper and defeclive spikl11g, should be corrected Immediately OpUlIllg IS secured between the rail cnus for the ll1 ertion upon being detected a £ the end post: it should be held, a::: much as pOSSIble, Frequent inspection shuuld be made, SIgnal mail­ by the installatlOl1 of ~ail ancile r5.
    [Show full text]
  • Railway Siding Rules and Regulations
    Appendix no. 2 – Characteristics of railway siding infrastructure elements (excerpt) RAILWAY SIDING RULES AND REGULATIONS: CENTRUM LOGISTYCZNO INWESTYCYJNE POZNAŃ II SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ 62-020 SWARZĘDZ - JASIN, UL. RABOWICKA 6, Valid from 1st November 2017 1 1. Technical description of railway siding: 2.1. Location of railway siding: Centrum Logistyczno Inwestycyjne Poznań II sp. z o.o. siding is a station siding with branching turnout no. 6 to station track no. 6b of Swarzędz station at km 291.017 of railway line no. 003 Warsaw West - Kunowice (for the siding it is km 0.000 - beginning of turnout no. 6 is the beginning of the siding track). 2.2. Switch circles and traffic operation positions and their manning: CLIP II Railway siding constitutes five manoeuvring zones. No traffic operation position and manning on the siding. 2.3. Location of delivery-acceptance points at the siding: 1) The acceptance track for wagons, groups of wagons and full train sets brought by the Carrier is track no. 101 or track no. 105 of the siding CENTRUM LOGISTYCZNO INWESTYCYJNE POZNAŃ II. 2) The delivery track for wagons, groups of wagons and full train sets brought by the Carrier is track no. 101 or track no. 103 of the siding CENTRUM LOGISTYCZNO INWESTYCYJNEGO POZNAŃ II. 3) On site, the delivery-acceptance point is marked with a sign “Delivery-acceptance point”, the sign is located at the intertrack space of tracks 101 and 103. 2.4. Tracks on siding: General length of track Usable length of track Capacity - Notes (‰) section section Purpose Track no.
    [Show full text]
  • Transportation Planning for the Richmond–Charlotte Railroad Corridor
    VOLUME I Executive Summary and Main Report Technical Monograph: Transportation Planning for the Richmond–Charlotte Railroad Corridor Federal Railroad Administration United States Department of Transportation January 2004 Disclaimer: This document is disseminated under the sponsorship of the Department of Transportation solely in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof, nor does it express any opinion whatsoever on the merit or desirability of the project(s) described herein. The United States Government does not endorse products or manufacturers. Any trade or manufacturers' names appear herein solely because they are considered essential to the object of this report. Note: In an effort to better inform the public, this document contains references to a number of Internet web sites. Web site locations change rapidly and, while every effort has been made to verify the accuracy of these references as of the date of publication, the references may prove to be invalid in the future. Should an FRA document prove difficult to find, readers should access the FRA web site (www.fra.dot.gov) and search by the document’s title or subject. 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FRA/RDV-04/02 4. Title and Subtitle 5. Report Date January 2004 Technical Monograph: Transportation Planning for the Richmond–Charlotte Railroad Corridor⎯Volume I 6. Performing Organization Code 7. Authors: 8. Performing Organization Report No. For the engineering contractor: Michael C. Holowaty, Project Manager For the sponsoring agency: Richard U. Cogswell and Neil E. Moyer 9. Performing Organization Name and Address 10.
    [Show full text]
  • Maintenance of Railway Siding National Fertilizers Limited, Panipaty Unit Transportation Section Maintenance of Railway Siding
    1 MAINTENANCE OF RAILWAY SIDING NATIONAL FERTILIZERS LIMITED, PANIPATY UNIT TRANSPORTATION SECTION MAINTENANCE OF RAILWAY SIDING 1.0 TECHANICAL SPECIFICATION: GENERAL: 1.1 SCOPE: These specifications contain good practices and procedures for maintenance of Permanent Way and forms a part of tender document. The following Codes and Manuals with all correction slips up to date should be referred for the maintenance of NFL Private Railway Siding (BG): i) Indian Railways Permanent Way Manual, Bridge Manual and Works Manual. ii) Indian Railway Tracks Manual. iii) Indian Railway Code for the Engineering Department. iv) Schedule of Dimensions. v) Indian Railway General & Subsidiary Rules. 1.2 DEFINATION: Reference to Indian Railway and work Manual means reference to latest issue of relevant standard including all its amendments up to date. 1.3 CODE: All maintenance work shall be performed in accordance with provision as described in Indian Railway Way and Works Manual. These Technical Specification shall be supplementary to the specification contained in Indian Railway Way and Work manual wherein variance, these specification shall take precedence over the provisions in the Indian Railway way and works Manual. 1.4 THE MAINTENANCE OF PERMANENT WAY GENERAL INSTRUCTIONS ANNUAL PROGRAMME OF TRACK MAINTENANCE: A) The annual programme of regular track maintenance and works incidental thereto shall be based on Annexure-B with such variations to suit local conditions as may be specified by Officer-in-Charge. B) Consistent with maintaining each gauge length in safe condition for traffic, as many days as possible should be allotted for systematic through packing from one end to the other.
    [Show full text]
  • Rail Accident Report
    Rail Accident Report Collision at Swanage station 16 November 2006 Report 35/2007 September 2007 This investigation was carried out in accordance with: l the Railway Safety Directive 2004/49/EC; l the Railways and Transport Safety Act 2003; and l the Railways (Accident Investigation and Reporting) Regulations 2005. © Crown copyright 2007 You may re-use this document/publication (not including departmental or agency logos) free of charge in any format or medium. You must re-use it accurately and not in a misleading context. The material must be acknowledged as Crown copyright and you must give the title of the source publication. Where we have identified any third party copyright material you will need to obtain permission from the copyright holders concerned. This document/publication is also available at www.raib.gov.uk. Any enquiries about this publication should be sent to: RAIB Email: [email protected] The Wharf Telephone: 01332 253300 Stores Road Fax: 01332 253301 Derby UK Website: www.raib.gov.uk DE21 4BA This report is published by the Rail Accident Investigation Branch, Department for Transport. Rail Accident Investigation Branch 3 Report 35/2007 www.raib.gov.uk September 2007 Collision at Swanage station 16 November 2006 Contents Introduction 6 Summary of the report 7 Key facts about the accident 7 Immediate cause, causal and contributory factors, underlying causes 7 Recommendations 8 The Accident 9 Summary of the accident 9 Location 9 The parties involved 10 External circumstances 10 The infrastructure 10 The train 12 Events
    [Show full text]
  • South Dakota's Railroads
    South Dakota’s Railroads South Dakota State Historic Preservation Office South Dakota’s Railroads: An Historic Context Prepared for: South Dakota State Historic Preservation Office 900 Governors Drive Pierre, South Dakota 57501 Prepared by: Mark Hufstetler and Michael Bedeau Renewable Technologies, Inc. 511 Metals Bank Bldg. Butte, Montana 59701 July 1998 Revised, December 2007 TABLE OF CONTENTS 1. Introduction.................................................................................................................................2 A. Purpose of this Document..............................................................................................2 B. Methodology ..................................................................................................................3 2. The Importance of Railroads to South Dakota ...........................................................................4 3. The History of Railroading in South Dakota..............................................................................5 A. Geographical Background .............................................................................................5 B. Establishment and Expansion: South Dakota Railroads in the Nineteenth Century......6 1. Beginnings (1851-1868) .....................................................................................6 2. The Little Dakota Boom and the First Railroads (1868-1873)...........................8 3. Railway Expansion During the Great Dakota Boom (1878-1887).....................9 4. The Impact and
    [Show full text]
  • The Term 'Siding' May Have a Very Wide Meaning Within the Railway
    ROGS Sidings and Safety Critical Work – Interpretation and Guidance The term ‘siding’ has a very wide meaning within the railway industry and can mean any track where railway vehicles may be left, i.e. are not an operating train for the time being. The duration that such vehicles are in a ‘siding’ may vary from minutes to years. Sidings not included in definition of ‘transport system’ 1. Marshalling Yard or Freight Depot Sidings – These sidings are part of a facility for making up/splitting trains/changing locomotives or for loading/unloading rail freight vehicles. 2. Maintenance Depot Siding – These sidings are part of a traction and rolling stock maintenance facility 3. Stabling, wagon or Carriage Sidings – These sidings are used to stable rail vehicles (motive power, wagons and carriages) which are not in use. The vehicles may be single or formed up to make a train. Whole trains, particularly multiple units, are left in these sidings when not required for use. Most sidings of this type have the overall appearance of yard or depot sidings, although no loading/unloading or maintenance (apart from emergency and light running maintenance) takes place. 4. Exchange/Transfer Sidings – These sidings are used as the connection between private infrastructure (factory, mine, MOD, etc.) and the public railway. Trains may be operated within the sidings by either private or public railway operators. The ‘siding’ referred to in the definition of a “transport system” in ROGS [Reg 2(1) should be interpreted to mean any of the above. This should allow exclusion of facilities not part of or directly affecting the public railway.
    [Show full text]
  • Pandrol" Type Resilient Fastenings
    Engineering Manual Track CRN CM 231 SLEEPERS AND FASTENINGS Version 1.1 Issued January, 2012 CRN DMS REFERENCE: CRN-EMN-AMS-017 Owner: Asset Management & Engineering Services Manager Approved by: C Francis, Principal Civil Engineer Authorised by: G Dewberry, Asset Management & Engineering Services Manager Disclaimer. This document was prepared for use on the CRN Network only. John Holland Rail Pty Ltd makes no warranties, express or implied, that compliance with the contents of this document shall be sufficient to ensure safe systems or work or operation. It is the document user‟s sole responsibility to ensure that the copy of the document it is viewing is the current version of the document as in use by JHR. JHR accepts no liability whatsoever in relation to the use of this document by any party, and JHR excludes any liability which arises in any manner by the use of this document. Copyright. The information in this document is protected by Copyright and no part of this document may be reproduced, altered, stored or transmitted by any person without the prior consent of JHG. UNCONTROLLED WHEN PRINTED Page 1 of 76 CRN Engineering Manual - Track CRN CM 231 Sleepers and Fastenings Document control Revision Date of Approval Summary of change 1.0 November, 2011 First Issue. Includes content from the following former RIC standards: TS 3341, TS 3397, RTS 3648, CTN 01/06, CTN 02/04, CTN 04/06, CTN 04/17, CTN 04/28, TS 20 540 3 01. 1.1 January, 2012 Additions and Correction of errors (See Summary of changes below) Summary of changes from previous version Section Summary of change C1-4.1 Additional reference for steel sleepers C4-1 Deletion of duplicated sentence C4-2 Table 11 – Correction of missing heading C5-2 Correction of Table 16 “clumping of steel sleepers” to match CRN CS 230.
    [Show full text]
  • Crn Cs 220 Rail and Rail Joints
    Engineering Standard Track CRN CS 220 RAIL AND RAIL JOINTS Version 1.7 Issued September, 2019 Owner: Manager Engineering Services Approved by: M Wright, Principal Track and Civil Engineer Authorised by: J Zeaiter, Manager Engineering Services Disclaimer. This document was prepared for use on the CRN Network only. John Holland Rail Pty Ltd makes no warranties, express or implied, that compliance with the contents of this document shall be sufficient to ensure safe systems or work or operation. It is the document user’s sole responsibility to ensure that the copy of the document it is viewing is the current version of the document as in use by JHR. JHR accepts no liability whatsoever in relation to the use of this document by any party, and JHR excludes any liability which arises in any manner by the use of this document. Copyright. The information in this document is protected by Copyright and no part of this document may be reproduced, altered, stored or transmitted by any person without the prior consent of JHR. UNCONTROLLED WHEN PRINTED Page 1 of 47 CRN Engineering Standard - Track CRN CS 220 Rail and Rail Joints Document control Revision Date of Approval Summary of change 1.0 August, 2011 First Issue. Includes content from the following former RIC standards: C 2405, C 2447, C 2501, C 3200, C 3201, C 3361, C 5200, TS 3101, TS 3104, TS 3111, TS 3341, TS 3362, TS 3371, TS 3394, TS 3396, TS 3397, TS 3601, TS 3602, TS 3603, TS 3604, TS 3606, TS 3642, TS 3645, TS 3646, TS 3648, TS 3650, TS 3654, TS 3655, RC.2410, RC.2411, RTS.3602, RTS.3640,
    [Show full text]
  • Track Report 2002
    TRACK SUPPORT SYSTEMS Testing the PANDROL VANGUARD Baseplate on Hong Kong’s MTRCL Test Track by David England, Design Manager (Permanent Way), MTR Corporation Ltd, Hong Kong Hong Kong’s Mass Transit Railway this is both costly and slow to construct. web of the rail with resilient blocks held in place Corporation operates metro railway services An alternative to FST is Isolated Slab Track by cast side plates transferring the load to the in one of the most densely populated areas in (IST), a mass spring system employing a rubber track invert, provides another trackform option the world. Owing to the proximity of the ballast mat. IST trackform is quicker and easier to for vibration sensitive areas. This development is railway to residential, commercial, install but does not provide the exceptional level the Pandrol ‘VANGUARD’ which supports the rail educational and hospital developments it is of vibration attenuation of the FST. However above the track base rather than supporting the often necessary to attenuate noise and there are many locations where IST performance rail on resilient elements beneath it, allowing the vibration levels to a minimum in order to is sufficient to meet requirements and this system to achieve a lower stiffness than any satisfy Hong Kong’s stringent Noise Control trackform was extensively used on the recently conventional baseplate. Ordinance. The foremost method of ensuring opened Tseung Kwan O Extension. MTRCL operates a policy of installing only that railway vibration transmission is tried and tested components on the rail network minimised in environmentally sensitive areas PANDROL VANGUARD and it was agreed to test the Pandrol VANGUARD has been, in MTRCL’s experience, to employ The recent development of a revolutionary on the Test Track located adjacent to Siu Ho Wan sections of Floating Slab Track (FST).
    [Show full text]