Deep-WaterABarkA ccumulationAandABenthosARichness atALogA ransferAandAStorageAFacilities

Ben Kirkpatrick, Thomas C. Shirley, and Charles E. O'Clair

ReprintedWfromWthe AlaskaWFisheryWResearchWBulletin Vol.W5WNo.W2,W interW1998 TheWAlaskaWFisheryWResearchWBulletinWcanWfoundWonWtheW orldW ideW eb atWURL:WWhttp://www.state.ak.us/adfg/geninfo/pubs/afrb/afrbhome.htmW. Alaska Fishery Research Bulletin 5(2):103-115. 1998. Copyright © 1998 by the Alaska Department of and Game

Deep-WaterABarkA ccumulationAandABenthosARichness atALogA ransferAandAStorageAFacilities

Ben Kirkpatrick, Thomas C. Shirley, and Charles E. O'Clair

ABSTRACT: A small, manned submersible was used to determine the extent of bark accumulation and its effects on the epifaunal macrobenthos at depths from 20-130 m at log transfer facilities (LTFs) and log rafting facilities (LRFs) in Dora Bay, Prince of Wales Island, Alaska. Continuous videotaping from an external fixed camera was conducted along 6 transects located near LTFs and LRFs and along 3 transects in a similar, adjacent area not used as an LTF or LRF. Bark and woody debris accumulations and kinds and numbers of organisms were recorded by depth for 3 general habitat types (steep, rocky; moderate incline, cobble; flat, silty) with and without bark. Bark accumulation was found to 40-m depth on 6 dives, and to 70-m depth on 3 dives. Of 91 taxa observed during the study, most (69 species) were found on rocky, bark-free habitat; significantly reduced species richness was found in all bark-dominated habitats. Bark and debris from LTFs appeared to be displaced down slope into adjacent, deeper areas; this is the first published account of bark and woody debris accumulation below 20-m depth. In suitable habitats, manned submersibles or remotely operated vehicles appear to be useful tools for monitoring bark accumulation and investigating the effects of logging facilities.

INTRODUCTION TechnicalWCommitteeW1985).WAllWLTFsWandWLRSsWre­ sultWinWbarkWlossWtoWsomeWdegreeW(Robinson- ilson SoutheastWA laskaWhasWsupportedWcommercialWtimber andWJacksonW1986),WandWtheWbarkWoftenWaccumulatesWin harvestWsinceWtheWearlyW1900s.WHarvestWincreasedWdra­ extensiveWbenthicWdepositsW(SchultzWandWBergW1976). maticallyWinWtheW1950sWfollowingWtheWsigningWofWexclu­ LTFWguidelinesW(LTFWGuidelinesWTechnicalWCom­ siveWtimberWcontractsWwithWKetchikanWPulpWCompany mitteeW1985)WhaveWbeenWusedWbyWtheWtimberWindustry andWAlaskaWPulpWCompanyW(SelkreggW1974).WAWsecond sinceW1986WtoWanswerWstateWandWfederalWagencyWcon­ dramaticWincreaseWoccurredWinWtheWearlyW1980s,Wwhen cernsWregardingWcomplianceWwithWtheWCleanW aterWAct. NativeWcorporationsWinitiatedWloggingWoperations.WThe TheseWguidelinesWandWstateWandWfederalWpermitsWrequire majorityWofWharvestedWtimberWhasWbeenWtransportedWin thatWcertainWsitingWcriteriaWareWfollowedWandWthatWannual theWwaterWinWlargeWlogWraftsWtoWprocessingWlocationsWor monitoringWforWbarkWaccumulationWisWconductedWatWall toWtransferWlocationsWforWexport.WRaftsWareWgenerally activeWLTFs.WRequirementsWincludeW(1)WselectingWsites formedWnearWlogWtransferWfacilitiesW(LTFs)WandWareWof­ inWareasWthatWhaveWtheWleastWproductiveWintertidalWand tenWtemporarilyWleftWatWlogWraftWstorageWfacilitiesW(LRSs) subtidalWzones,W(2)WminimizingWtheWlogWbundleWspeedWat inWrouteWtoWpulpWandWsawWmillsWandWshippingWexportWfa­ waterWentry,W(3)WlimitingWtheWzoneWofWbarkWdepositW(ZOD) cilities.WVariousWmethods,Wdesigns,WandWguidelinesWat­ toW1Wacre,WandW(4)WannualWmonitoringWofWbarkWaccumula­ temptWtoWminimizeWimpactsWatWtheseWfacilitiesWonWmarine tion.WMonitoringWrequiresWpermanentWtransectsWand resourcesW(FarisWandW VaughnW1985;WLTFWGuidelines measurementsWofWarealWextent,Wthickness,WandWpercent

Authors: BEN KIRKPATRICK is a habitat biologist with the Alaska Department of Fish and Game, Habitat and Restoration Division, P.O. Box 240020-0020, Douglas, AK 99824. THOMAS C. SHIRLEY is a professor with the Juneau Center School of Fisheries & Ocean Sciences, University of Alaska Fairbanks, 11120 Glacier Highway, Juneau, Alaska 99801. CHARLES E. O'CLAIR is a research biologist with the Auke Bay Fisheries Laboratory, National Marine Fisheries Service, 11305 Glacier Highway, Juneau, AK 99801-8626. Acknowledgments: Clayton Hawkes (ADF&G), Dr. Cindy Van Dover (NURC), Karen Scheding (JCSFOS), Catherine Coon (JCSFOS), and Moria Ingle (ADF&G) - participated in the dives. The captain and crew of the MIV Cavalier and the pilots and support personnel of Delta Oceanographics - provided submersible dives. Kevin Brownlee (ADF&G) - provided GIS support and layout assistance. Jim Blick (ADF&G) - performed the statistical analyses and review. Project Sponsorship: Funding was provided by the West Coast & Polar Regions Undersea Research Center, National Undersea Research Program (NURC) and the U.S. Environmental Protection Agency through the Alaska Department of Environmental Conservation.

103 104 Articles

coverageWofWbarkWdebrisWfromWmeanWhighWwaterWtoWap­ pographyWofWtheWlandWsurroundingWtheWbayWmirrorsWthe proximatelyW20WmWbelowWmeanWlowerWlowWwater.WTo ruggedWconfigurationWofWtheWmarineWbottom. date,WnoWstudyWhasWbeenWconductedWtoWdetermineWthe SinceW1985,WDoraWBayWhasWbeenWusedWbyWprivate regionalWeffectivenessWofWtheWguidelinesWinWminimizing nativeWcorporationsWasWaWcentralWlogWstorageWandWtrans­ impactsWtoWtheWmarineWenvironment. ferWlocationWforWsouthernWSoutheastWAlaska.WTheWfirst ConsiderableWresearchWnearWLTFsWhasWdocumented loggingWsupportWfacilityWinWDoraWBayWpermittedWbyWfed­ distributionWpatternsWofWbarkWaccumulationWwithinWthe eralWandWstateWagenciesWwasWaWsingle­pointWmoorage depthWrangeWofWrequiredWmonitoringW( ≤20Wm),WasWwell systemWwithWanWassociatedWLRS.WItWwasWdesignedWfor asWbiologicalWeffectsWincludingWreducedWabundanceWof transferringWlogsWfromWraftsWontoWaWlogWship.WInW1986Wan benthicWinfaunaW(PeaseW1974;WJacksonW1986),Wreduced LTF/LRSWandWaWfloatWcampWwereWpermittedWonWtheWwest diversityWofWbenthicWepifaunaWandWmacroalgaeW(Schultz sideWofWDoraWBay.WInW1987WanWLTF/LRSWandWfloatWcamp andWBergW1976;WConlanW&WEllisW1979),WreducedWfitness wereWpermittedWonWtheWeastWsideWofWDoraWBay.WInW1989 andWsurvivalWofWbivalvesW(FreeseWandWO'ClairW1987), aWsecondWshipWmooringWfacilityWandWtemporaryWfloatWcamp andWreducedWfecundityWandWincreasedWeggWmortalityWin wereWpermitted.WTheWsteepWnearshoreWterrainWinWDora DungenessWcrabW(O'ClairWandWFreeseW1988).WTheseWstud­ BayWresultsWinWaWlimitedWareaW<20WmWinWdepth,Wwhich iesWreportWnegativeWeffectsWonWtheWmarineWenvironment, minimizesWtheWareaWforWwhichWmonitoringWofWbarkWac­ butWalsoWpointWoutWaWneedWforWmoreWresearchWtoWfillWin­ cumulationWandWbenthicWimpactsWisWrequired. formationWgaps,WelucidateWmechanismsWofWimpact,Wrep­ ThisWrapidWdevelopmentWofWfacilitiesWinWDoraWBay licateWkeyWstudiesWuponWwhichWspecificWguidelinesWare wasWnotWwithoutWcontroversy.WAWsubstantialWcommer­ based,WandWexamineWmoreWcarefullyWtopicsWofWresearch cialWshrimpWharvest,WfrequentWhumpbackWwhale forWwhichWresultsWareWpresentlyWinconclusive.WTheWcom­ sightings,WsealWhauloutsWandWpuppingWareas,WandW4 plexityWofWtheWmarineWecosystemWinWSoutheastWAlaska nearbyWsalmonWstreamsWwereWtheWprimaryWissuesWraised oftenWconfoundsWtheWanalysisWofWloggingWeffects.WMany byWnearbyWprivateWpropertyWownersWandWresourceWagen­ ofWtheseWstudiesWshouldWbeWreplicatedWtoWbetterWquantify ciesWduringWtheWpublicWreviewWinWtheWpermitWprocess. benthicWimpactsWfromWloggingWactivitiesWinWshallowWma­ IncreasedWvesselWtrafficWandWhumanWactivityWandWdirect rineWwaters.WHowever,WfundingWforWsuchWresearchWhas andWindirectWimpactsWtoWtheWfoodWchainWthroughWbark notWbeenWavailable. accumulationWwereWtheWprimaryWconcernsWrelatedWto ThoughWnotWcompletelyWquantified,WtheWnegativeWef­ theseWdevelopments.WTheWcombinationWofWsteepWsub­ fectsWofWbarkWaccumulationWareWfairlyWwellWestablished marineWterrain,WmultipleWloggingWsupportWfacilities,Wand inWshallowWwaterW≤ 20WmW(TetraWTechW1996),WandWthere­ publicWcontroversyWfavoredWDoraWBayWasWaWlocationWfor foreWfacilityWownersWandWresourceWmanagersWhaveWbeen theWstudyWofWdeep­waterWbarkWaccumulation. inclinedWtoWsiteWLTFsWadjacentWtoWdeeperWwatersW(>20 m),WwhereWpossible,WassumingWthatWimpactsWwillWnotWbe asWgreatWonWtheWdeeperWbenthosW(CH�MWHillW1982).WHow­ METHODS ever,WthereWisWscantWliteratureWonWbarkWdispersal,Waccu­ mulationWpatternsWandWbiologicalWimpactsWinWdeeper Field Investigations waterW(>20Wm)WonWwhichWtoWbaseWthatWassumption. eWdesignedWaWfeasibilityWstudyWusingWaWmannedWor TheWDeltaWOceanographicsW2­personWresearchWsubmers­ remotelyWoperatedWsubmersible,WtoWdetermineWifWbark ibleW(FigureW2)WwasWusedWtoWmakeW9Wdives,WrangingWfrom accumulationsWinWdeeperWwaterWwereWvisuallyWidentifi­ 24WminWtoW114Wmin,WinWDoraWBayWonWJulyW3WandW4,W1997. able.WIfWso,WthenWtheWstudyWwouldWdetermineWtheWfeasi­ ContinuousWvideotapeWfromWanWexternalWfixedWcamera bilityWofWcontrastingWhabitatWuseWbyWbenthicWorganisms recordedWeachWdiveWandWincludedWdepth,Wtime,Wwater inWbark­dominatedWareasWversusWbark­freeWareas.W e temperature,WandWobserverWcomments.WTheWsupportWves­ hopeWthisWfeasibilityWstudyWwillWstimulateWfurtherWre­ selWtrackedWtheWsubmersible'sWlocationWandWprovided searchWtoWbetterWquantifyWtheWimpactsWofWbarkWaccumu­ GPS/GIS­compatibleWnavigationWinformation.WAddi­ lationWonWdeep­waterWbenthos. tionally,WexternalWfixedWandWinternalWhand­heldW35mm DoraWBay,WlocatedWonWtheWsouthWsideWof camerasWprovidedWphotographs.WAWmanipulatorWarmWwas CholmondelayWSoundWonWsouthernWPrinceWofW ales capableWofWprobingWtheWbottomWtoWdetermineWtheWthick­ Island,WAlaska,WwasWselectedWasWtheWsiteWforWthisWstudy. nessWofWbarkWdepositsWandWtheWthicknessWofWsedimentWif ItWisWapproximatelyW4WkmWlongWbyW1.5WkmWwideWandWis presentWcoveringWbarkWdeposits. orientedWsouthwestWtoWnortheastW(FigureW1).WSteepWsub­ eWconductedW6WdivesWinWportionsWofWDoraWBayWthat marineWslopesWnearWtheWshoreWdescendWtoWaWrelatively wereWsuspectedWtoWhaveWbarkWaccumulations,WsuchWas flat,WdeepW(80WtoW120Wm)WbasinWinWtheWmiddle.WTheWto­ nearWLTFs,WLRSs,WandWshipWmooringWareas.WThreeWdives Bark Accumulation and Benthos Richness at Log Facilities • Kirkpatrick et al. 105

wereWconductedWinWadjacentWareasWwithWsimilarWterrain, 1980)WtestedWtheWnullWhypothesisWthatWwithinWaWgiven farWenoughWawayWfromWtheWsurfaceWfacilitiesWthatWnoWbark habitatWtypeWaWspeciesWisWasWlikelyWtoWbeWfoundWinWbark­ accumulationWwasWexpectedWbutWnearWenoughWthatWthe dominatedWareasWasWinWbark­freeWareas.WThisWanalysis habitatsWobservedWwereWprobablyWcomparableWtoWthe comparesWtheWnumberWofWspeciesWfoundWinWbark­free bark­coveredWhabitatsWpriorWtoWtheWconstructionWofWthe areasWwithWtheWnumberWfoundWinWbark­dominatedWareas. loggingWfacilities.WStraight­lineWtransectsWwereWdifficult Second,WFriedman'sW2­wayWanalysisWofWranksW(Conover, toWexecuteWbecauseWofWtheWruggedWterrain.WAWgeneral 1980)WtestedWwhetherWtheWdistributionWofWabundanceWdif­ courseWwasWgivenWbyWaWscientistWonWtheWbridgeWofWthe feredWamongWallW6Whabitat­barkWcombinationsWandWthen supportWvesselWwhoWtrackedWtheWcourseWofWtheWsubmers­ determinedWwhichWcombinationsWspecificallyWdiffer.WFor ibleWandWcommunicatedWcourseWcorrectionsWtoWitsWcrew. thisWanalysis,WtheWabundanceWwasWrankedWfromW1W(not TheWsubmersibleWcrewWattemptedWtoWmaintainWdepthsWof present)WtoW5W(abundant)WbyWcategory,WthenWanWanalysis ≥20Wm. ofWvarianceWwasWperformedWwithWspeciesWasWblocksWand BarkWandWdebrisWaccumulationsWwereWgenerallyWeasy habitat­barkWcombinationsWasWfactors.WBothWofWthese toWidentifyWvisually.WRandomWprobingWwithWtheWmanipu­ analysesWassumeWthatWeachWspeciesWdoesWnotWinfluence latorWarmWdidWallowWbarkWdepthWtoWbeWestimated,WbutWdid theWdistributionWofWotherWspecies.WAlthoughWthisWisWprob­ notWrevealWanyWhiddenWbarkWaccumulations.WBarkWdepth ablyWnotWtrue,WstrongWinteractionsWhaveWyetWtoWbeWdem­ measurementsWcouldWbeWusefulWinWfutureWstudies,Wbut onstratedWforWtheWspeciesWincludedWinWthisWstudyW(Paine wasWnotWmeasuredWinWthisWstudy.W henWbarkWcoverage 1980),WandWstrongWinteractionsWwouldWprobablyWbeWnec­ wasW>50%WofWanWareaWitWwasWdesignatedW"bark­domi­ essaryWforWoneWspeciesWtoWhaveWaWsignificantWeffectWon nated,"WandWallWspeciesWnotedWwereWconsideredWwithin theWdistributionWofWanotherWspeciesWforWtheWpurposesWof bark­dominatedWhabitat.W henWbarkWcoverageWwas thisWanalysis.WAlso,WneitherWanalysisWcompensatedWfor <50%WitWwasWconsideredWtoWbeW"bark­free,"WandWspe­ theWdifferentWamountWofWareaWsurveyedWforWeachWhabitat­ ciesWwereWconsideredWwithinWaWbark­freeWhabitatWevenWif barkWcombination,WsoWthatWaWspecies­areaWeffectWmay scatteredWbarkWwasWpresent.WHighlyWmotileWspecies,Wsuch haveWsomeWinfluence.WFinally,WaWsubjectiveWappraisalWof asWfish,WthatWmovedWoverWareasWwhereWbarkWwasWpresent abundanceWmayWbeWbiasedWifWtheWobserverWhasWprecon­ andWthereforeWcouldWbeW"exposed"WtoWbark­coveredWhabi­ ceivedWnotionsWaboutWtheWeffectWbeingWstudied. tatWwereWconsideredWtoWoccupyWbark­dominatedWhabi­ tat,WwhereasWsedentaryWspecies,WsuchWasWsponges,Wthat wereWattachedWtoWrockWinWaWcleanWareaWsurroundedWby RESULTS scatteredWbarkWaccumulationsWwereWconsideredWtoWoc­ cupyWbark­freeWhabitat. BarkWandWdebrisWaccumulationsWwereWnotedWprimarily eWdividedWtheWbenthicWsubstrateWintoWthreeWgen­ onWinclinesWandWsteepWterrain.WLittleWbarkWwasWnotedWon eralWtypes:WW(1)WlevelWwithWaWpredominatelyWsiltyWsub­ theWlevelWterrain,WwhichWwasWgenerallyWatWtheWgreatest strate,W(2)WmoderateWinclineWslopeWwithWaWpredominately depthsWandWtheWgreatestWdistanceWfromWsurfaceWfacili­ cobbleWsubstrate,WandW(3)WsteepWwithWaWpredominately ties. rockyWsubstrate.WTheseW3WsubstrateWtypesWwereWfurther categorizedWasWbark­dominatedWorWbark­free,WforWaWtotal Habitat Differences ofW6WhabitatWtypes. AWdiverseWbenthicWcommunityWexistsWinWDoraWBayWbe­ Analysis lowW20WmWdepth.WOnWtheW9WdivesW8WanimalWphylaWwere identifiedWandW90WtaxaWwereWidentified,W74WtoWspecies TheWvideotapesWfromWtheW9WsubmersibleWdivesWinWDora andW13WtoWgenusWorWfamilyW(TableW1).WCommercially BayWwereWexaminedWtoWdetermineWbarkWaccumulation harvestedWspeciesWwereWobserved,WincludingWdock areasWandWdepths,WtoWlistWanimalWspeciesWobservedWand shrimp,WAlaskanWpinkWshrimp,WcoonstripedWshrimp,Wspot theirWrelativeWabundance,WandWtoWrecordWtheWgeneralWhabi­ shrimp,WTannerWcrab,WCaliforniaWseaWcucumbers,WPacific tatWtypesWwhereWtheWspeciesWwereWobserved.WThisWin­ halibut,WredWurchins,WandWseveralWrockfishWspeciesW(Table volvedWreviewingWtheWvideotapesWandWlisteningWtoWthe 1).WItWshouldWbeWnotedWthatWthisWstudyWonlyWsampled observer'sWcomments.WThisWsemiquantitativeWanalysis epifaunaWandWdidWnotWconsiderWinfauna. wasWdoneWonWsiteWwithWtheWobserver,WtoWtheWextentWpos­ AlthoughWtheWdistributionWofWbarkWwasWmodifiedWby sible,WandWuponWreturnWtoWJuneau. localWtopographyWandWcurrents,Wbark­dominatedWareas TwoWstatisticalWtestsWwereWconductedWtoWdetermine wereWgenerallyWassociatedWwithWsurfaceWloggingWfacili­ ifWtheWpresenceWofWbarkWisWrelatedWtoWtheWdistributionWof tiesW(FigureW1).WBarkWandWdebrisWaccumulationsWwere speciesWwithinWhabitats.WMcNemar'sWtestW(Conover visiblyWnotedWinWtheW3WgeneralWhabitatWtypesW(FigureW3) 10� Articles Figure 1. Island, Alaska, July 1997. Prince of Wales Submersible transects in Dora Bay, Bark AccumulationandBenthosRichnessatLogFacilities•Kirkpatricketal. 10� Figure 1. �continued�. 108 Articles

andWthroughoutWtheWrangeWofWdepthsWtoW>70WmW(Fig­ ,WseaWstars,WbrittleWstars,WandWseaWcucumbersWwere ure 4). theWmostWcommonWinvertebrates,WandW9WspeciesWofWfish TheWsteep,Wrocky,Wbark­freeWhabitatWcontainedWthe wereWnotedWonWthisWhabitat.WTheWbark­dominatedWcoun­ mostWdiverseWtaxonomicWassemblage,WincludingW68Wof terpartWofWthisWhabitatWhadWmuchWlowerWspeciesWrich­ theW90WidentifiedWtaxaW(FigureW3).WManyWorganismsWwere ness.WOnlyW13WtaxaWwereWobservedWonWthisWhabitat, foundWalmostWexclusivelyWonWthisWhabitat,WsuchWasWthe primarilyWseaWcucumbersWandWseaWstarsWandW7WspeciesWof anemones,WepibenthicWworms,Wgastropods,WandWbrachio­ fish. pods.WInWaddition,WmostWofWtheWsponges,WseaWstars,Wtuni­ TheWflat,Wsilty,Wbark­freeWhabitatWwasWthirdWinWspe­ cates,WandWrockfishWwereWonlyWfoundWinWthisWhabitat.WBy ciesWrichnessWwithW25WtaxaW(FigureW3).WThisWhabitat comparison,WtheWsteep,WrockyWbark­dominatedWhabitat tendedWtoWbeWlocatedWtowardWtheWcenterWofWDoraWBay wasWfourthWinWspeciesWrichness,WfollowingWtheW3Wbark­ andWwasWfoundWatWtheWgreatestWdepths.WAreasWwithWno freeWhabitats;WonlyW18WtaxaWwereWrecordedWonWtheseWar­ apparentWbarkWaccumulationWhadWhighWdensitiesWofWsome eas.WSeaWstarsWandWseaWcucumbersWhadWtheWgreatest shrimpWandWfishWspecies.WTheseWhighWdensitiesWwere speciesWrichness,WaccountingWforWhalfWtheWspeciesWre­ noticeablyWabsentWinWtheWbark­dominatedWcounterpart, cordedWinWthisWhabitat.WFiveWspeciesWofWfishWwereWob­ butWbarkWinWthisWhabitatWtypeWwasWencounteredWduring served. <1%WofWtheWbottomWtime,WpresumablyWbecauseWitWwas TheWmoderateWincline,Wcobble,Wbark­freeWhabitatWwas furthestWremovedWfromWtheWsurfaceWfacilities. secondWinWspeciesWrichnessWwithW36WtaxaW(FigureW3); SolidWwasteWdisposalWisWspecificallyWprohibitedWac­ cordingWtoWtheWfederalWandWstateWpermitsWunderWwhich theseWfacilitiesWoperate.WLargeWquantitiesWofWsolidWwaste wereWobservedWinWallWareasWcontainingWbarkWaccumula­ tions.WCableWwasWtheWmostWabundantWitemWnoted;WitWwas presentWinWallWbarkWaccumulationWareas,WoftenWinWlarge quantities.WTheWcableWobservedWwasWmostlyWinWtheWform ofWshortWpieces,WbutWlongerWpiecesWandWwholeWcoilsWwere present.WBeverageWcansWandWsunkenWboomWlogsWwere common;WworkWimplementsWandWhouseholdWitemsWwere alsoWnoted.

Bark-Dominated vs. Bark-Free Areas TheWnumberWofWspeciesWwasWhighlyWsignificantlyWdiffer­ entWbetweenWbark­dominatedWandWbark­freeWareasWwithin habitatWtypeW(McNemar'sW test).WT ableW2WdisplaysWthe distributionWofWspeciesWforWeachWhabitat,WalongWwithWthe chi­squareWvalueWandWtheWP­valueWfromWtheWtest.WCom­ paredWtoWbark­dominatedWhabitats,WmoreWtaxaWwere presentWinWallWbark­freeWhabitats.WTheWdistributionsWof taxaWabundanceWwereWhighlyWsignificantlyWdifferent (Friedman'sWtest,WP<0.0001)WamongWtheW6Whabitat­bark combinations,WbutWofWgreaterWinterestWisWtheWpair­wise comparisonWofWmeansWofWtheWranksW(TableW3).WAllWbark­ freeWhabitatsWhadWsignificantlyWgreaterWmeanWranksWthan theirWrespectiveWcounterpartsWwithWbark.

DISCUSSION

ReducedWbenthicWinfaunalWandWepifaunalWdiversityWand abundanceWhaveWbeenWdocumentedWinWshallow­water (<20Wm)WbarkWaccumulationWareasWbyWseveralWauthors Figure 2. Delta Oceanographics submersible in Dora Bay, (PeaseW1974;WSchultzWandWBergW1976;WConlonWandWEllis Prince of Wales Island, Alaska, July 1997. 1979;WJacksonW1986).WAlthoughWthisWstudyWwasWnotWrigor­ Bark Accumulation and Benthos Richness at Log Facilities • Kirkpatrick et al. 109

TableW1.WWListWofWspeciesWobservedWduringWsubmersibleWdives,WnumberWofWtransectsWwhereWtheWspeciesWwereWencoun­ tered,WandWrelativeWabundanceWbyW6WhabitatWtypesW(rW=Wrare,WuW=Wuncommon,WcW=Wcommon,WandWaW=Wabundant); inWDoraWBay,WAlaska,WJulyW1997. Habitat Type No Bark Bark Level (Silt) <1% Level (Silt) 25% Steep (Rocky) 16% Steep (Rocky) 26% Incline (Cobble) 19% Incline (Cobble) 14%

Scientific Name Co mmon Name On Occurring Transects # Porifera vastus Cloud 3 U Cliona sp. 1 R Leucandra heathi Spiny vase s ponge 3 A Polymastia pacifica Aggregated nipple sponge 4 C Porifera, unidentified 4 R U A U

Cnidaria Unidentified Jellyfish 4 U C Anthozoa Virgularia sp. Sea Whip 1 R Anemones Cribrinopsis fernaldi Crimson anemone 3 U Epiactis sp. Sea anemone 2 R Metridium giganteum White Plumed anemone 1 R Pachycerianthus fimbriatus Tube dwelling anemone 3 U Stomphia coccina Swimmin g a nemone 2 R Urticina crassicornis Sea anemone 1 R Mol lus ca Gastropoda Prosobranchia Snails Oregon triton 2 R Opisthobranchia Nudibranchs Archidoris montereyensis Monterey sea-lemon 1 U Archidoris odhneri White night doris 3 U Tochuina tetraquetra Giant orange tochui 1 R Nudibranchia, unidentified Nudibranch 1 U Chlamys rubida Reddish scallop 5 R U C U Crassedoma giganteum Giant rock s callop 1 U Mytilus trossulus Blue mussel 2 U U Tresus nuttallii Pacific gaper 1 C

Cephalopoda Rossia pacifica Squid 1 R Annelida Polychaeta Myxicola infundibulum Sab ellid worm 3 A Pseudochitonopoma occidentalis Serpulid worm 1 A Serpula vermicularis Serpulid worm 4 A Serpulid worms – no id 1 A

- continued - 110 Articles

TableW1.WW(continued) Habitat Type No Bark Bark Level (Silt) <1% Level (Silt) 25% Steep (Rocky) 16% Steep (Rocky) 26% Incline (Cobble) 19% Incline (Cobble) 14%

Scientific Name Common Name On Occurring Transects # Arthr opoda Crustacea Mysids 3 A C Caridea Shrimp Pandalus danae Dock shrimp 4 U R Pandalus borealis Alaskan pink shrimp 7 A U Pandalus hypsinotus Coonstriped shrimp 6 C R Pandalus platyceros Spot shrimp 6 C A U Crabs Acantholithodes hispidus Spiny lithode 2 U U U foraminatus Brown box crab 1 R Munida quadrispina Squat lobster 7 C C C C Paguridae, unidentified Hermit crabs 5 U Brachyura Crabs Chionoecetes bairdi Tanner crab 3 C R R Hyas lyratus Pacific lyre crab 2 U U R Oregonia gracilis Graceful decorator crab 3 R Telmessus cheiragonus Helmet crab 1 R Brachiopoda Terebratalia transversa Lamp s hells 3 C Echinodermata Asteroidea Sea Stars patagonicus Co okie s tar 3 U Crossaster papposus Rose star/ snowflake star 2 U Dermasterias imbricata Leather Star 1 R Evasterias troschelii Mottled star 4 U U U Gephyreaster swifti Sea star 6 U C Henricia leviuscula Blood star (white) 8 U C R R Lethasterias nanimensis Sea star 3 U U Mediaster aequalis Vermilion star 3 C Orthasterias koehleri Rainb ow s tar 3 C Pisaster ochraceus Purple/ Ochre star 2 R C U Pteraster tesselatus Cushion star 3 U U Pycnopodia helianthoides Sunflower s tar 7 C C C C Dawson’s Sun star 3 U U U Stylasterias forreri Fish eating star 4 C C U Ophiuroidea Brittle Stars Ophiuroids Unidentified Brittle Stars 3 C C C C Ophiura sarsi Brittle Star 2 R C Echinoidea Strongylocentrotus franciscanus Red urchin 3 R U

- continued - Bark Accumulation and Benthos Richness at Log Facilities • Kirkpatrick et al. 111

TableW1.WW(continued) Habitat Type No Bark Bark Level (Silt) 25% Level (Silt) <1% Steep (Rocky) 26% Steep (Rocky) 16% Incline (Cobble) 14% Incline (Cobble) 19%

Scientific Name Commo n Name On Occurring Transects # Holothuroidea Cucumaria piperata Sea cucumber 3 C U Parastichopus californicus California sea cucumber 8 A A C A Psolus chitonoides Slipper sea cucumber 4 U A C Chordata Urochordates Ascidia paratropa Glas sy 3 U 1 C C Didemnum sp. Tunicate- compound 1 U aurantium Sea peach 5 U Halocynthia igaboja Tunicate 2 C Pyura haustor 1 C Styela sp.sp. 1 C Vertebrata Cottid Sculpin 2 R R Hemilepidotus hemilepidotus Red Irish lord 2 R Hexagrammos decagrammus Kelp greenling 7 U U C Hexagrammos stelleri Whitespotted greenling 1 U Hippoglossus stenolepis Pacific halibut 7 C U U U Hydrolagus colliei Spotted Ratfish 2 C Lumpenus sagitta Snake prickleback 7 A U U U Microgadus proximus Pacific Tomcod 4 U Myoxocephalus polyacanthocephalus Great sculpin 1 R Platichthys stellatus Starry flounder 2 C Pleu ro nect id , uniden tified Flat fis h 1 C Lepidopsetta bilineata Rock sole 3 U U Sebastes caurinus Copper rockfish 1 U Sebastes ciliatus Dusky rockfish 1 R Sebastes maliger Quillback rockfish 7 R U A C Sebastes melanops Black rockfish 1 C Sebastes nigrocinctus Tiger rockfish 4 U Sebastes reedi Yellowmouth rockfish 1 R R Sebastes ruberrimus Yelloweye rockfish 3 U U U U Sebastes nebulosus China rockfish 2 U Sebastes spsp.. Unidentified Rockfish 1 A C Zoarcidae Eelpout 9 A C U C U Level Incline Steep Level Incline Steep Bark-free Bark-dominated .Porifera 5 ElCnidaria 8 Molluscs 10 Annelida 4 l.54 Arthropoda 13 El Brachiopoda 1 Echinodermata 20 .Chordata 29

Figure 3. Distribution of number of species by phylum observed in bark-free and bark-dominated habitats in Dora Bay, Prince of Wales Island, Alaska, July 1997. Bark Accumulation and Benthos Richness at Log Facilities • Kirkpatrick et al. 113

TableW2.WWResultsWofWMcNemar'sWtestWcomparingWnumberWofWspeciesWinWbark­freeWversusWbark­dominatedWareasWby substrateWtype.

Substrate: Level Bark-Dominated

Present Absent Total x2 p-value Bark-free Present 4 21 25 21.00 <0.0001 Absent 0 66 66

Total 4 87 91

Substrate: Incline Bark-Dominated

Present Absent Total x2 p-value Bark-free Present 12 24 36 23.04 <0.0001 Absent 1 54 55

Total 13 78 91

Substrate: Steep Bark-Dominated

Present Absent Total x2 p-value Bark-free Present 18 51 69 51.00 <0.0001 Absent 0 22 22

Total 18 73 91

160

140 no bark

120 bark

100

80

60

40 Number of Minutes On the Bottom

20

0 20M 30M 40M 50M 60M 70M 80M 90M 100M 110M 120M 130M Depth In Meters

Figure 4. Amount of time submersible spent on bottom by bathymetric depth in July 1997. 114 Articles

TableW3.WComparisonWofWmeanWranksWofWhabitat­bark CommercialWDiversW1994)WgrosslyWunderestimatedWthe typeWderivedWfromWFriedman'sW2­wayWanalysisWof arealWextentWofWbarkWaccumulation.WTheseW2WsurveysWalso variance.WWHabitat­barkWtypesWwithWtheWsameWgroup­ indicatedWthatWbarkWaccumulationWwasWdecreasingWdur­ ingWlettersWareWnotWsignificantlyWdifferentWatWtheW0.05 ingWperiodsWofWLTFWinactivity.WInWareasWnearWsteepWsub­ levelW(theWleastWsignificantWdifferenceWinWmeanWranks marineWslopes,WsimilarWtoWDoraWBay,WitWisWlikelyWthatWthe isW0.2766). barkWisWdisplacedWdownWslopeWandWwillWaccumulateWin deeperWareasWadjacentWtoWtheWmonitoringWarea,Wessen­ tiallyWexpandingWtheWimpactsWfromWshallowWwaterWinto Grouping Mean Rank Habitat-Bark Type deepWwater.WSchultzWandWBergW(1976)WandWFreezeWetWal. A 2.8571 Steep, Bark-free (1988)WfoundWthatWaccumulationsWofWbarkWandWwood debrisWpersistedWupWtoW26Wyears. B 1.8022 Incline, Bark-free IfWthereWisWadequateWvisibilityWunderWwater, submersiblesW(mannedWorWremotelyWoperated)Wappear C B 1.6593 Level, Bark-free toWbeWaWusefulWtoolWforWmonitoringWbarkWaccumulation andWdeterminingWtheWeffectsWofWthisWaccumulationWon C D 1.4286 Steep, Bark-dominated benthicWcommunitiesWinWdeepWwaterWnearWloggingWfa­

E D 1.3077 Incline, Bark-dominated cilities.WUseWofWthisWtoolWshouldWaidWfacilityWownersWand resourceWmanagersWinWmakingWdecisionsWthatWareWmore E 1.0989 Level, Bark-dominated informedWwhenWconsideringWlocationsWandWdesignsWfor LTFsWandWLRSs,WtoWbetterWquantifyWimpactsWfromWexist­ ingWfacilitiesWtoWtheWbenthicWinfauna,WandWtoWimprove ousWenoughWtoWquantifyWtheWreducedWabundanceWonWa monitoringWofWcomplianceWwithWpermitWstipulations. scaleWmoreWexactWthanWtheWordinalWscale,WitWcorroborates ThisWstudyWalsoWindicatesWthereWisWaWneedWtoWmonitor theseWfindings.W eWalsoWfoundWreducedWspeciesWrich­ solidWwasteWdisposal.WCurrently,WpermitWstipulationsWdo nessWinWareasWwithWbarkWextendingWtoWdepthsW>70Wm, notWrequireWsolidWwasteWbeWnotedWduringWbarkWsurveys whichWisWwellWbelowWtheWapproximatelyW20­mWdepth orWremovedWinWaWtimelyWfashion. aboveWwhichWbarkWmonitoringWisWrequired. ThisWstudyWwasWdesignedWtoWbeWaWpreliminaryWstudy, ReducedWspeciesWrichnessWwasWnotedWinWallWbark­ notWaWquantitativeWanalysisWofWbarkWaccumulationWim­ dominatedWareas.WCertainWphylaWincludingWPorifera, pacts.WStatisticalWanalysesWconductedWwithWthisWreport Cnidaria,WMollusca,W Annelida,W Arthropoda,Wand areWonlyWindicatorsWofWtheWeffectWbarkWaccumulationWis BrachiopodaWwereWnotablyWabsentWfromWbark­dominated havingWonWDoraWBay.WFutureWstudiesWofWtheWimpactWof areas.WTheseWphylaWincludedW41WofWtheW90WtaxaWobserved bottomWbarkWdepositsWonWbenthicWcommunitiesWmust overall.WSeveralWtaxaWappearedWtoWbeWlittleWaffectedWby rigorouslyWquantifyWbenthicWbiota.WForWbiotaWthatWare barkWaccumulationWincluding:WseaWcucumbers,Wespe­ observedWinWsubstantialWnumbers,WdensityWestimates ciallyWParastichopus californicus,WandWseveralWseaWstars. couldWbeWmadeWwithWlineWtransectsWtoWdetectWspeciesWdis­ TheseWspeciesWwereWobservedWevenWinWareasWwithWheavy tributionWpatternsWrelativeWtoWdepth,Wsubstrate,WandWlo­ barkWaccumulation.WSeveralWfishWspeciesWwereWalsoWob­ cationW(ZhouWandWShirleyW1996,WThompsonW1992). servedWinWbark­dominatedWareas;WbecauseWofWtheirWmo­ TheWpresentWstudyWhasWshownWthatWthereWareWsignifi­ bility,WweWcouldWnotWdetermineWifWtheWfishWwereWutilizing cantWimpactsWoccurringWtoWbenthicWhabitatWinWwaterW>20 theWbark­dominatedWareasWinWsomeWwayWorWsimplyWswim­ mingWacrossWthem. m.WBecauseWthereWisWcurrentlyWnoWmonitoringWofWdeeper sites,WweWhaveWlittleWknowledgeWofWbarkWdistributionWin CurrentWfederalWandWstateWpermitsWforWoperating LTFsWrequireWmonitoringWforWbarkWaccumulationWtoWa deepWwaterWatWotherWbaysWwithWloggingWfacilitiesWin depthWofWapproximatelyW<20Wm,WwhichWisWconsidered SoutheastWAlaska,WandWweWhaveWlittleWunderstandingWof standard,WsafeWscubaWsurveyWdepth.WInWDoraWBay,Wbark theWimpactsWofWbarkWdepositsWonWtheWdeepWbenthos. accumulationsWatWdepthsWofWatWleastW40WmWwereWfound MonitoringWimpactsWatWsomeWlevelWatWgreaterWdepthsWis onW6WofW9Wdives,WandW3WdivesWrecordedWsignificantWbark needed,WasWwellWasWfurtherWinvestigationsWdesignedWto accumulationsWatW70­mWdepths.WOurWresultsWindicateWthat quantifyWtheWimpactsWofWbarkWaccumulationWonWdeep theWWdiveWsurveysWconductedWforWtheW2WLTFsW(Alaska waterWhabitat. Bark Accumulation and Benthos Richness at Log Facilities • Kirkpatrick et al. 115

REFERENCES

Alaska Commercial Divers. 1994. Dora Bay, East Log Trans- LTF Guidelines Technical Committe. 1985. Log transfer fa- fer Facility Debris Study and Dora Bay, West Log Trans- cility siting, construction, operation, and monitoringIreport- fer Facility Debris Study. Reports for Kootznoowoo, Inc., ing guidelines. U.S. Forest Service Interagency Log Trans-

Ketchikan, Alaska. fer Facility Committee, Juneau, Alaska. O'Clair, C. E., and J. L. Freese. 1988. Reproductive condition CH2M Hill. 1982. Environmental review of the Shee Atika Cube Cove Log Transfer Facility. Prepared for Shee Atika, of Dungeness crabs, Cancer magister, at or near log trans- fer facilities in southeastern Alaska. Marine Environmen- Inc., Sitka, Alaska. CH M Hill, Inc., Bellevue, Washing- 2 tal Research 26:57-81. ton. Paine, R. T. 1980. Food webs: linkage, interaction strength Conlan, K. E., and D. V. Ellis. 1979. Effects of wood waste on and community infrastructure. Journal Ecology sand-bed benthos. Marine Pollution Bulletin 10:262-267. 49:667-685.

Conover, W. J. 1980. Practical nonparametric statistics, 2nd Pease, B. C. 1974. Effects of log dumping and rafting on the edition. John Wiley & Sons. Pp. 299-305. marine environment of Southeast Alaska. U.S. Forest Ser- Faris, T. L., and K. D. Vaughan. 1985. Log transfer and stor- vice. General Technical Report PNW-22, Portland, Oregon. age facilities in Southeast Alaska: a review. U.S. Depart- Robinson-Wilson, E. F., and R. Jackson. 1986. Relationship ment of Agriculture, Forest Service, Pacific Northwest between bark loss and log transfer method at five log trans- Forest Range Experiment Station, General Technical Re- fer facilities in southeast Alaska. U.S. Forest Service, port PNW-174, Portland, Oregon. Alaska Region Administrative Document Number 157. Freese, J. L., and C. E. O'Clair. 1987. Reduced survival and Schultz, R. D., and R. J. Berg. 1976. Some effects of log dump- condition of the bivalves Protothaca staminea and Mytilus ing on estuaries. National Oceanic Atmospheric Adminis- tration, National Marine Fisheries Service, Alaska Region, edulis buried by decomposing bark. Marine Environmen- tal Research 23:49-64. Processed Report, Juneau. Tetra Tech, Inc. 1996. Ocean discharge criteria evaluation of Freese, J. L., R. P. Stone, and C. E. O'Clair. 1988. Factors the NPDES general permit for Alaskan log transfer facili- affecting benthic deposition of bark debris at log transfer ties. Prepared for U.S. Environmental Protection Agency, facilities in southeastern Alaska: a short-term retrospec- Region 10, Seattle, Washington. tive evaluation. National Marine Fisheries Service, Alaska Thompson, S. K. 1992. Sampling. John Wiley & Sons, Inc.

Region, NOAA Technical Memorandum NMFS FINWC- New York. 136, Juneau. Zhou, S. and T. C. Shirley. 1996. Habitat and depth distribu- Jackson, R. G. 1986. Effects of bark accumulation on benthic tion of the red sea cucumber Parastichopus caliiornicus in infaunal at a log transfer facility in Southeast Alaska. Ma- a Southeast Alaska bay. Alaska Fishery Research Bulletin rine Pollution Bulletin 17(6):258-262. 3(2):123-131. TheWAlaskaWDepartmentWofWFishWandWGameWadministersWallWprogramsWandWactivitiesWfreeWfromWdiscrimina­ tionWonWtheWbasesWofWrace,Wreligion,Wcolor,WnationalWorigin,Wage,Wsex,WmaritalWstatus,Wpregnancy,Wparenthood, orWdisability.WForWinformationWonWalternativeWformatsWforWthisWandWotherWdepartmentWpublications, pleaseWcontactWtheWdepartmentWADAWCoordinatorWatW(voice)W907­465­4120,W(TDD)W1­800­478­3648,Wor FA�W907­465­6078.WAnyWpersonWwhoWbelievesWshe/heWhasWbeenWdiscriminatedWagainstWshould writeWto:WWADF&G,WP.O.WBoxW25526,WJuneau,WAKW99802­5526WorWO.E.O.,WU.S.WDepartmentWofWtheWInterior, ashington,WDCW20240.