“An Expert Is a Person Who Has Made All the Mistakes That Can Be Made in a Very Narrow Field.” -- Niels Bohr
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hexasterophoran Glass Sponges of New Zealand (Porifera: Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida
Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida Aulocalycoida and Lychniscosida Hexactinellida: Hexasterophora): Orders Hexactinosida, The Marine Fauna of New Zealand: Hexasterophoran Glass Sponges Zealand (Porifera: ISSN 1174–0043; 124 Henry M. Reiswig and Michelle Kelly The Marine Fauna of New Zealand: Hexasterophoran Glass Sponges of New Zealand (Porifera: Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida Henry M. Reiswig and Michelle Kelly NIWA Biodiversity Memoir 124 COVER PHOTO Two unidentified hexasterophoran glass sponge species, the first possibly Farrea onychohexastera n. sp. (frilly white honeycomb sponge in several bushy patches), and the second possibly Chonelasma lamella, but also possibly C. chathamense n. sp. (lower left white fan), attached to the habitat-forming coral Solenosmilia variabilis, dominant at 1078 m on the Graveyard seamount complex of the Chatham Rise (NIWA station TAN0905/29: 42.726° S, 179.897° W). Image captured by DTIS (Deep Towed Imaging System) onboard RV Tangaroa, courtesy of NIWA Seamounts Programme (SFAS103), Oceans2020 (LINZ, MFish) and Rob Stewart, NIWA, Wellington (Photo: NIWA). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH (NIWA) The Marine Fauna of New Zealand: Hexasterophoran Glass Sponges of New Zealand (Porifera: Hexactinellida: -
An Integrative Systematic Framework Helps to Reconstruct Skeletal
Dohrmann et al. Frontiers in Zoology (2017) 14:18 DOI 10.1186/s12983-017-0191-3 RESEARCH Open Access An integrative systematic framework helps to reconstruct skeletal evolution of glass sponges (Porifera, Hexactinellida) Martin Dohrmann1*, Christopher Kelley2, Michelle Kelly3, Andrzej Pisera4, John N. A. Hooper5,6 and Henry M. Reiswig7,8 Abstract Background: Glass sponges (Class Hexactinellida) are important components of deep-sea ecosystems and are of interest from geological and materials science perspectives. The reconstruction of their phylogeny with molecular data has only recently begun and shows a better agreement with morphology-based systematics than is typical for other sponge groups, likely because of a greater number of informative morphological characters. However, inconsistencies remain that have far-reaching implications for hypotheses about the evolution of their major skeletal construction types (body plans). Furthermore, less than half of all described extant genera have been sampled for molecular systematics, and several taxa important for understanding skeletal evolution are still missing. Increased taxon sampling for molecular phylogenetics of this group is therefore urgently needed. However, due to their remote habitat and often poorly preserved museum material, sequencing all 126 currently recognized extant genera will be difficult to achieve. Utilizing morphological data to incorporate unsequenced taxa into an integrative systematics framework therefore holds great promise, but it is unclear which methodological approach best suits this task. Results: Here, we increase the taxon sampling of four previously established molecular markers (18S, 28S, and 16S ribosomal DNA, as well as cytochrome oxidase subunit I) by 12 genera, for the first time including representatives of the order Aulocalycoida and the type genus of Dactylocalycidae, taxa that are key to understanding hexactinellid body plan evolution. -
Formation of Giant Spicules in the Deep-Sea Hexactinellid Monorhaphis Chuni (Schulze 1904): Electron-Microscopic and Biochemical Studies
Cell Tissue Res (2007) 329:363–378 DOI 10.1007/s00441-007-0402-x REGULAR ARTICLE Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies Werner E. G. Müller & Carsten Eckert & Klaus Kropf & Xiaohong Wang & Ute Schloßmacher & Christopf Seckert & Stephan E. Wolf & Wolfgang Tremel & Heinz C. Schröder Received: 25 November 2006 /Accepted: 19 February 2007 / Published online: 4 April 2007 # Springer-Verlag 2007 Abstract The siliceous sponge Monorhaphis chuni (Hexa- spicules; it harbors the axial filament and is surrounded by ctinellida) synthesizes the largest biosilica structures on an axial cylinder (100–150 μm) of electron-dense homo- earth (3 m). Scanning electron microscopy has shown that geneous silica. During dissolution of the spicules with these spicules are regularly composed of concentrically hydrofluoric acid, the axial filament is first released arranged lamellae (width: 3–10 μm). Between 400 and 600 followed by the release of a proteinaceous tubule. Two lamellae have been counted in one giant basal spicule. An major proteins (150 kDa and 35 kDa) have been visualized, axial canal (diameter: ~2 μm) is located in the center of the together with a 24-kDa protein that cross-reacts with antibodies against silicatein. The spicules are surrounded by a collagen net, and the existence of a hexactinellidan Carsten Eckert was previously with the Museum für Naturkunde, collagen gene has been demonstrated by cloning it from Invalidenstrasse 43, 10115 Berlin, Germany. Aphrocallistes vastus. During the axial growth of the The collagen sequence from Aphrocallistes vastus reported here, viz., spicules, silicatein or the silicatein-related protein is [COL_APHRO] APHVACOL (accession number AM411124), has been deposited in the EMBL/GenBank data base. -
Estimating Confidence in Trawl Efficiency and Catch Quantification for the Eastern Bering Sea Shelf Survey
NOAA Technical Memorandum NMFS-AFSC-335 doi:10.7289/V5/TM-AFSC-335 Estimating Confidence in Trawl Efficiency and Catch Quantification for the Eastern Bering Sea Shelf Survey D. E. Stevenson, K. L. Weinberg, and R. R. Lauth U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center November 2016 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Stevenson, D. E., K. L. Weinberg, and R. R. Lauth. 2016. Estimating confidence in trawl efficiency and catch quantification for the eastern Bering Sea shelf survey. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-335, 51 p. doi:10.7289/V5/TM-AFSC-335. Document available: http://www.afsc.noaa.gov/Publications/AFSC-TM/NOAA-TM-AFSC-335.pdf Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-335 doi:10.7289/V5/TM-AFSC-335 Estimating Confidence in Trawl Efficiency and Catch Quantification for the Eastern Bering Sea Shelf Survey D. -
Ecology of the Hexactinellid Sponge Reefs on the Western Canadian Continental Shelf
Ecology of the Hexactinellid Sponge Reefs on the Western Canadian Continental Shelf Sarah Emily Cook B.Sc., University of Victoria, 1999 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Biology O Sarah Emily Cook, 2005 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. Supervisor: Dr. Henry M. Reiswig Co-Supervisor: Dr. Verena J. Tunnicliffe ABSTRACT Hexactinosidan sponges have built seven reef complexes in the Queen Charlotte and Georgia Basins on the Western Canadian continental shelf. These reefs are composed of a matrix of sediment mixed with dead sponge fkagments, which remain remarkably intact after the death of the sponge, with live reef-building sponges growing on the tops of the reef mounds. The reef complexes discontinuously cover over 1000 km2 of the continental shelf and are found at depths between 150 and 230 metres. The objectives of this thesis are to describe quantitatively the megafaunal community of the reefs using video transects and the macrofaunal polychaete community from grab samples, to compare the reef community to the off-reef communities, and to describe how organisms are utilizing the reef substrate. The video used to compare the megafaunal community of live reef, dead reef and off- reef habitat was collected on two reef complexes during cruise PGC990 1. The video was analyzed by taking 'snapshots' at every ten seconds along the transect or at each GPS fix and at each snapshot habitat type was recorded and each megafaunal organism was identified and counted. -
Translation List of Underwater Life of the Canadian Pacific Northwest
TRANSLATION LIST OF UNDERWATER LIFE OF THE CANADIAN PACIFIC NORTHWEST Collected by: Peter Mieras Version: 2010-1 Copyright: © 2010 Rendezvous Dive Adventures Suggestions and corrections can be send to: [email protected] © 2010 P.Mieras Rendezvous Dive Adventures Ltd www.rendezvousdiving.com Mammalia Mammals Mamifères Saugetiere Zoogdieren Seals and sealions Latin English French German Dutch Danish Phoca vitulina richardsi Pacific Harbour seal Phoque commun Robbe gewone zeehond Mirounga Northern Elephant angustirostris seal Eléphant de mer Seeelefant Zee olifant Otarie Steller, lion de mer Eumetopias jubatus Steller sea lion Steller Steller Seelöwe Steller zeeleeuw Zalophus Otarie Califoniènne, lion de californianus Californian sea lion mer Califoniènne Kalifornische Seelöwe Californische zeeleeuw Callorhinus ursinus Northern fur seal Phoque à forrure du Nord Nördliche Pelzrobbe Noordelijke pelsrob Orca's, Dolphins and Whales Latin English French German Dutch Danish Orcinus orca Killerwhale (orca) Épaulard Schwertwal Orka Lagenorhynchus Pacific white sided Dauphin à flancs blancs du Pazifischer Weiẞseiten obliquidens dolphin pacifique Delphin Pacifische witflank dolfijn Phocoena Phocoena Harbour porpoise Marsouin commun Schweinswal Gewone bruinvis Phoncoenoides dalli Dall's porpoise Marsouin de Dall Dall's Schweinswal Dall's bruinvis Eschrichtius robustus Gray whale Baleine grise du pacifique Grauwal Grijze walvis Balaeanoptera acutorostrata acutorostrata Minke Whale Petit rorqual Zwerg Blauwal Dwerg vinvis Megaptera novaeangliae -
2010 Aleutian Islands Bottom Trawl Survey
NOAA Technical Memorandum NMFS-AFSC-215 Data Report: 2010 Aleutian Islands Bottom Trawl Survey by P.G. von Szalay, C.N. Rooper, N.W. Raring, and M.H. Martin U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center February 2011 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: von Szalay, P. G., C.N. Rooper, N.W. Raring, and M.H. Martin. 2011. Data Report: 2010 Aleutian Islands bottom trawl survey. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-215, 153 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-215 Data Report: 2010 Aleutian Islands Bottom Trawl Survey by P.G. von Szalay, C.N. Rooper, N.W. Raring, and M.H. Martin Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle, WA 98115 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Gary F. Locke, Secretary National Oceanic and Atmospheric Administration Jane Lubchenco, Under Secretary and Administrator National Marine Fisheries Service Eric C. -
The Sponge Pump: the Role of Current Induced Flow in the Design of the Sponge Body Plan
The Sponge Pump: The Role of Current Induced Flow in the Design of the Sponge Body Plan Sally P. Leys1*, Gitai Yahel2,3, Matthew A. Reidenbach4, Verena Tunnicliffe2,5, Uri Shavit6, Henry M. Reiswig2,7 1 Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, 2 Department of Biology, University of Victoria, Victoria, British Columbia, Canada, 3 The School of Marine Sciences, Ruppin Academic Center, Michmoret, Israel, 4 Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, United States of America, 5 School of Earth & Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada, 6 The Department of Civil and Environmental Engineering, Technion, Israel Institute of Technology, Haifa, Israel, 7 Natural History Section, Royal British Columbia Museum, Victoria, British Columbia, Canada Abstract Sponges are suspension feeders that use flagellated collar-cells (choanocytes) to actively filter a volume of water equivalent to many times their body volume each hour. Flow through sponges is thought to be enhanced by ambient current, which induces a pressure gradient across the sponge wall, but the underlying mechanism is still unknown. Studies of sponge filtration have estimated the energetic cost of pumping to be ,1% of its total metabolism implying there is little adaptive value to reducing the cost of pumping by using ‘‘passive’’ flow induced by the ambient current. We quantified the pumping activity and respiration of the glass sponge Aphrocallistes vastus at a 150 m deep reef in situ and in a flow flume; we also modeled the glass sponge filtration system from measurements of the aquiferous system. Excurrent flow from the sponge osculum measured in situ and in the flume were positively correlated (r.0.75) with the ambient current velocity. -
Glass Sponge Reefs: a New Opportunity for Conservation Research
OCEAN WATCH | Howe Sound Edition SPECIES AND HABITATS Glass Sponge Reefs: a new opportunity for conservation research AUTHOR Jeff Marliave, Ph.D., Senior Research Scientist, What’s happening with Howe Sound Research Group, Coastal Ocean Research Institute, Vancouver Aquarium Marine Science Center glass sponge reefs? REVIEWER Lena Clayton, B.Sc., Researcher, Marine Life In 2015, Fisheries and Oceans Canada (DFO) closed bottom contact fishing Sanctuaries Society (i.e., all commercial and recreational bottom contact fishing activities for prawn, shrimp, crab and groundfish, including halibut, were prohibited) at nine glass sponge reefs in the Strait of Georgia, including reefs surround- ing Passage Island at the entrance to Howe Sound, and at Defence Islands northeast of Anvil Island.1 During the process leading to those closures, cit- izen scientists Glen Dennison and Lena Clayton were actively using a new method of drop-camera drift transects to identify locations of glass sponge reefs in Howe Sound (Figure 1). These newly identified Howe Sound sponge reefs were not considered during that earlier federal process, so they remain unprotected, with the exception of the Passage Island sponge reefs. Photo: Adam Taylor Glass SPONGE REEFS | Page 116 OCEAN WATCH | Howe Sound Edition SPECIES AND HABITATS Therefore, citizen scientist divers, dive industry rep- ages of the sponges together with these location iden- resentatives (guides, instructors) and the Vancouver tifier stakes, in order to allow monitoring of sponge Aquarium’s Howe Sound divers met in May 2015 to growth and health over time at this site. discuss approaches to protecting these Howe Sound sponge reefs. In an about-face on previous secrecy In late May, the annual prawn fishing season took about reef locations in order to protect sponges from place, with many observations of fishing on Howe accidental anchor damage, it was decided to go public Sound glass sponge reefs noted by conservationists. -
Cruise Report for the Finding Coral Expedition
CRUISE REPORTREPORT R/V FORFOR THETHE FINDINGFINDING CORALCORAL EXPEDITIONEXPEDITION Cape Flattery June 8th –23rd, 2009 Living Oceans Society PO Box 320 Sointula, BC V0N 3E0 Canada February 2010 PAGE 1 Putting the Assumptions To the Test Report Availability Electronic copies of this report can be downloaded at www.livingoceans.org/files/PDF/sustainable_fishing/cruise_report.pdf or mailed copies requested from the address below. Photo credits Cover photo credit: Red tree coral, Primnoa sp., Living Oceans Society Finding Coral Expedition All other photos in report: Living Oceans Society Finding Coral Expedition Suggested Citation McKenna SA , Lash J, Morgan L, Reuscher M, Shirley T, Workman G, Driscoll J, Robb C, Hangaard D (2009) Cruise Report for Finding Coral Expedition. Living Oceans Society, 52pp. Contact Jennifer Lash Founder and Executive Director Living Oceans Society P.O. Box 320, Sointula, British Columbia V0N 3E0 Canada office (250) 973-6580 cell (250) 741-4006 [email protected] www.livingoceans.org PAGE 2 Cruise Report Finding Coral Expedition © 2010 Living Oceans Society Contents Introduction and Objectives. 5 Background . 7 Expedition Members . 9 Materials and Methods . 11 Prelminary Findings. 21 Significance of Expedition . 39 Recommendtions for Future Research. 41 Acknowledgements . 43 References. 45 Appendices Appendix 1: DeepWorker Specifications . 47 Appendix 2: Aquarius Manned Submersible . 49 Appendix 3: TrackLink 1500HA System Specifications. 51 Appendix 4: WinFrog Integrated Navigation Software . 53 Figures Figure 1: Map of submersible dive sites during the Finding Coral Expedition.. 6 Figure 2: Map of potential dive sites chosen during pre-cruise planning. 12 Figure 3: Transect Map from Goose Trough. 14 Figure 4: Transect Map from South Moresby Site I. -
Appendix G.21 Brown Passage Subtidal Survey
Appendix G.21 Brown Passage Subtidal Survey Brown Passage Subtidal Survey Pacific NorthWest LNG Limited Partnership Prepared for: Pacific NorthWest LNG Limited Partnership Oceanic Plaza, Suite 1900 – 1066 West Hastings Street Vancouver, BC V6E 3X1 Prepared by: Stantec Consulting Ltd. 4370 Dominion Street, 5th Floor Burnaby, BC V5G 4L7 Tel: (604) 436-3014 Fax: (604) 436-3752 December 12, 2014 BROWN PASSAGE SUBTIDAL SURVEY Table of Contents ABBREVIATIONS .......................................................................................................................... III GLOSSARY .................................................................................................................................. IV 1.0 INTRODUCTION ............................................................................................................. 1.1 2.0 STUDY AREA................................................................................................................... 2.2 3.0 FIELD STUDIES ................................................................................................................. 3.2 3.1 METHODS ........................................................................................................................... 3.2 3.2 RESULTS ............................................................................................................................... 3.4 3.2.1 Study Area 1 ................................................................................................... 3.5 3.2.2 Study Area 2 .................................................................................................. -
Cross-Shelf Habitat Suitability Modeling: Characterizing Potential Distributions of Deep-Sea Corals, Sponges, and Macrofauna Offshore of the US West Coast
SCCWRP #1171 OCS Study BOEM 2020-021 Cross-Shelf Habitat Suitability Modeling: Characterizing Potential Distributions of Deep-Sea Corals, Sponges, and Macrofauna Offshore of the US West Coast US Department of the Interior Bureau of Ocean Energy Management Pacific OCS Region OCS Study BOEM 2020-021 Cross-Shelf Habitat Suitability Modeling: Characterizing Potential Distributions of Deep-Sea Corals, Sponges, and Macrofauna Offshore of the US West Coast October 2020 Authors: Matthew Poti1,2, Sarah K. Henkel3, Joseph J. Bizzarro4, Thomas F. Hourigan5, M. Elizabeth Clarke6, Curt E. Whitmire7, Abigail Powell8, Mary M. Yoklavich4, Laurie Bauer1,2, Arliss J. Winship1,2, Michael Coyne1,2, David J. Gillett9, Lisa Gilbane10, John Christensen2, and Christopher F.G. Jeffrey1,2 1. CSS, Inc., 10301 Democracy Ln, Suite 300, Fairfax, VA 22030 2. National Centers for Coastal Ocean Science (NCCOS), National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, 1305 East West Hwy SSMC4, Silver Spring, MD 20910 3. Oregon State University, Hatfield Marine Science Center, 2030 Marine Science Drive, Newport, OR 97365 4. Institute of Marine Sciences, University of California, Santa Cruz & Fisheries Ecology Division, Southwest Fisheries Science Center (SWFSC), NOAA National Marine Fisheries Service (NMFS), Santa Cruz, CA 95060 5. Deep Sea Coral Research & Technology Program, NOAA NMFS, 1315 East West Hwy, Silver Spring, MD 20910 6. Northwest Fisheries Science Center (NWFSC), NOAA NMFS, 2725 Montlake Blvd East, Seattle, WA 98112 7. Fishery Resource Analysis and Monitoring Division, NWFSC, NOAA NMFS, 99 Pacific St, Bldg 255-A, Monterey, CA 93940 8. Lynker Technologies under contract to the NWFSC, NOAA NMFS, 2725 Montlake Blvd East, Seattle, WA 98112 9.