Use of Reprocessed Uranium

Total Page:16

File Type:pdf, Size:1020Kb

Use of Reprocessed Uranium IAEA-TECDOC-CD-1630 Use of Reprocessed Uranium Proceedings of a Technical Committee Meeting held in Vienna, August 2007 The originating Section of this publication in the IAEA was: Nuclear Fuel Cycle and Materials Section International Atomic Energy Agency Vienna International Centre P.O. Box 100 1400 Vienna, Austria USE OF REPROCESSED URANIUM IAEA, VIENNA, 2009 IAEA-TECDOC-CD-1630 ISBN 978–92–0–157109–0 ISSN 1684-2073 © IAEA, 2009 Printed by the IAEA in Austria November 2009 FOREWORD The subject of the recycling of valuable material is essential for all industries, including the nuclear energy industry. Recent proposals for an ‘internationalisation of the nuclear fuel cycle’ entail an implicit need for the development of the closed nuclear fuel cycle with efficient use of uranium resources. Continuous attention is being given by the IAEA to the collection, analysis and exchange of information on the back end of the fuel cycle and innovative fuel cycles which are considered complex. The IAEA’s role in this area is to provide a forum for exchanging information and to coordinate and encourage closer co-operation among Member States in achieving resolutions of these issues which are of great interest to Member States. Several countries reprocess their spent nuclear fuel, either in their own facilities or through commercial contracts and possess reprocessed uranium (RepU) in large quantities. Recognizing the importance of this subject, the IAEA has prepared a report aiming to review and summarize the information on the management of RepU. A working group (WG) was formed to formulate and conduct a technical meeting (TM) on ‘re-use options for reprocessed uranium’. However, during the preparation of the TM, the WG recognized the necessity to prepare a document in the form of a handbook elaborating technical aspects of the processes involved in the utilization of RepU. It is being published separately as a publication in the Nuclear Energy Series. The TM was held in Vienna on 29-31 August 2007. The TM was attended by 52 participants from 13 Member States and 2 international organizations viz., IAEA and NEA/OECD. A total of 23 manuscripts were submitted. The TM was conducted in six sessions. They encompassed technical issues such as RepU storage, chemical conversion, re-enrichment, fuel fabrication, transport, in-core fuel management, subsequent reprocessing and disposal options, as well as assessments and comparisons of economic issues and of long-term perspectives. The IAEA wishes to express its appreciation to all the participants (listed at the end of this document) who contributed to the success of this meeting. The IAEA wishes to express its gratitude to A. Max for his critical review of the proceedings. The IAEA officer responsible for the organization of the TM and for this publication was H.P. Nawada of the Division of Nuclear Fuel Cycle and Waste Technology. EDITORIAL NOTE This CD-ROM has been prepared from the original material as submitted by contributors. Neither the IAEA nor its Member States assume any responsibility for the information contained on this CD- ROM. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. CONTENTS SUMMARY MANAGEMENT OF RepU: RECENT IAEA AND OECD ANALYSES (Session 1) Management of RepU: Recent analyses of the IAEA and new approach towards technical issues A. Max Management of reprocessed uranium: Main findings from an NEA study E. Bertel STORAGE, PACKAGING AND TRANSPORT OF RepU (Session 2) Key aspects of transporting reprocessed UF6 G. Owen Cost effective transport of industrial fissile packages by sea M. Flynn RepU FUEL ASSEMBLY MANUFACTURING (Session 3) Manufacture and operational experience of reprocessed uranium in WWER reactors V. Proselkov, Yu.. Pimenov The ERU fuel manufacturing at AREVA NP J.-M. Romary PROCESSING OF RepU (Session 4) Reprocessed uranium experience and UK options for NDA and Springfields Fuels Limited R.D. Grimoldby, S. Marshall, F. Munro, P. Gilchrist Reprocessed uranium handling at Siberian Group of Chemical Enterprises V.M. Korotkevich, T.G. Shikerun, AREVA’s experience and future project for reprocessed uranium management B. Morel, C. Evans Reprocessing of spent nuclear fuel at the PA ‘Mayak’ and reprocessed uranium using D. Kolupaev, V. Nikipelov Reprocessed uranium experience on conversion and enrichment in Japan M. Murata UTILITY EXPERIENCE AND POTENTIAL USE (Session 5) Reprocessed uranium: 5 years operational experience in the Gundremmingen B BWR M. Schrader The use of reprocessed uranium in light water reactors: Problem identification and solution finding M. Baumgärtner Necessary conditions for the development of reprocessed uranium recycling J. Olive, B. Calani, S. Beguin, Hing-Ip Wong Neutronic aspects of in-core fuel management with enriched reprocessed uranium – Belgian experience H. Druenne, H. de Baenst Thirty years of experience with reprocessed uranium management in Borssele J. Wieman Reprocessed uranium recycled in PWRs: Impact on the core of reactor and on the fuel cycle J.P. Grouiller, M. Delpech, J.P. Quaegebeur Utilization of reprocessed uranium in Indian reactors K. Anantharaman, V. Shivakumar, R.K. Sinha Technical feasibility of the use of RU-43 fuel in CANDU-6 reactors of the Cernavoda NPP G. Horhoianu, I. Patrulescu ECONOMICS, MARKET ASPECTS AND LONG-TERM PERSPECTIVES OF RepU UTILIZATION (Session 6) The current status of reprocessing plants and MOX fuel fabrication facility in Japan N. Tanaka, M. Murata Reprocessed uranium: Commercial resource or liability G. Varley Can reprocessed uranium become the most natural substitute to uranium P. Teyssier, M. Giroux Impact of market conditions on the economics of RepU utilization H. Bairiot ABBREVIATIONS LIST OF PARTICIPANTS SUMMARY Recent international initiatives with emphasis on the recycling of nuclear material and a significant rise of the natural uranium (Unat) spot market price have stimulated increased interest in the potential for the use of reprocessed uranium (RepU). In addition, there is a significant interest in IAEA Member States to develop advanced technologies for the recycling of fissile and fertile nuclear materials that would minimize the arising nuclear waste and reduce environmental impacts. Furthermore, the recycling and re-use of potentially valuable nuclear material is important regarding the sustainable development of nuclear energy. However, while several technologies for the recycling of RepU already exist, in some areas experience appears to be still limited and shared knowledge may not be widely available. As per the suggestion of Technical Working Group on Nuclear Fuel Cycles Options and Spent Fuel Management and to provide a forum for exchanging information as well as to coordinate and encourage closer cooperation among Member States in the area of innovative fuel cycle development a Technical Meeting (TM) on the options for the utilization of RepU was conducted. The TM was held at the IAEA Headquarters in Vienna from 29 to 31 August 2007. It was attended by 48 experts from Belgium, France, Germany, India, Italy, Japan, the Republic of Korea, The Netherlands, Romania, the Russian Federation, Switzerland, the Ukraine, the United Kingdom, OECD/NEA and 4 staff members from IAEA (see the list of participants at the end of this document). Some experts viz., from Canada, France, The Netherlands, the Russian Federation, Spain, the United Kingdom and the USA were not able to participate, due to last minute cancellations. Nonetheless, some of them have sent their presentation materials. The TM provided 23 technical presentations which were classified into 6 categories (see also Content): 1) Management of RepU: Recent analyses of IAEA and OECD; 2) Storage, packaging and transport of RepU; 3) RepU fuel assembly manufacturing; 4) Processing of RepU; 5) Utility experience and potential use; and 6) Economics, market aspects and long-term perspectives of RepU utilization. According to the titles of the different sessions, the TM discussed technical issues such as RepU storage, purification, conversion, enrichment and re-conversion, fuel fabrication, transport, in-core fuel management, subsequent ERU fuel reprocessing and disposal options. Furthermore, logistic, strategic and economic issues were discussed, assessments and comparisons of different RepU management options were made and long-term perspectives and visions were contemplated. Thus, this TM complemented in closing the information gap on the current status and future trends in the management of RepU. It identified - to the extent possible - major issues to be considered for future projects, and it supplemented the preparation of the new IAEA-TECDOC on this subject by the IAEA. 1. Session 1: Management of RepU: Recent analyses of the IAEA and OECD Two papers were presented in the 1st session. While there is currently no shortage in nuclear fuel for the operating and firmly planned reactors, the prudent management of fissile and fertile materials is a key component of sustainable future nuclear energy development which simultaneously addresses efficient use of nuclear materials including
Recommended publications
  • Depleted Uranium Technical Brief
    Disclaimer - For assistance accessing this document or additional information,please contact [email protected]. Depleted Uranium Technical Brief United States Office of Air and Radiation EPA-402-R-06-011 Environmental Protection Agency Washington, DC 20460 December 2006 Depleted Uranium Technical Brief EPA 402-R-06-011 December 2006 Project Officer Brian Littleton U.S. Environmental Protection Agency Office of Radiation and Indoor Air Radiation Protection Division ii iii FOREWARD The Depleted Uranium Technical Brief is designed to convey available information and knowledge about depleted uranium to EPA Remedial Project Managers, On-Scene Coordinators, contractors, and other Agency managers involved with the remediation of sites contaminated with this material. It addresses relative questions regarding the chemical and radiological health concerns involved with depleted uranium in the environment. This technical brief was developed to address the common misconception that depleted uranium represents only a radiological health hazard. It provides accepted data and references to additional sources for both the radiological and chemical characteristics, health risk as well as references for both the monitoring and measurement and applicable treatment techniques for depleted uranium. Please Note: This document has been changed from the original publication dated December 2006. This version corrects references in Appendix 1 that improperly identified the content of Appendix 3 and Appendix 4. The document also clarifies the content of Appendix 4. iv Acknowledgments This technical bulletin is based, in part, on an engineering bulletin that was prepared by the U.S. Environmental Protection Agency, Office of Radiation and Indoor Air (ORIA), with the assistance of Trinity Engineering Associates, Inc.
    [Show full text]
  • Spent Fuel Reprocessing
    Spent Fuel Reprocessing Robert Jubin Oak Ridge National Laboratory Reprocessing of used nuclear fuel is undertaken for several reasons. These include (1) recovery of the valuable fissile constituents (primarily 235U and plutonium) for subsequent reuse in recycle fuel; (2) reduction in the volume of high-level waste (HLW) that must be placed in a geologic repository; and (3) recovery of special isotopes. There are two broad approaches to reprocessing: aqueous and electrochemical. This portion of the course will only address the aqueous methods. Aqueous reprocessing involves the application of mechanical and chemical processing steps to separate, recover, purify, and convert the constituents in the used fuel for subsequent use or disposal. Other major support systems include chemical recycle and waste handling (solid, HLW, low-level liquid waste (LLLW), and gaseous waste). The primary steps are shown in Figure 1. Figure 1. Aqueous Reprocessing Block Diagram. Head-End Processes Mechanical Preparations The head end of a reprocessing plant is mechanically intensive. Fuel assemblies weighing ~0.5 MT must be moved from a storage facility, may undergo some degree of disassembly, and then be sheared or chopped and/or de-clad. The typical head-end process is shown in Figure 2. In the case of light water reactor (LWR) fuel assemblies, the end sections are removed and disposed of as waste. The fuel bundle containing the individual fuel pins can be further disassembled or sheared whole into segments that are suitable for subsequent processing. During shearing, some fraction of the radioactive gases and non- radioactive decay product gases will be released into the off-gas systems, which are designed to recover these and other emissions to meet regulatory release limits.
    [Show full text]
  • Fuel Cycle Flexibility in CANDU P.G
    IAEA-SM-353-5P Fuel Cycle Flexibility in CANDU P.G. Boczar XA9949933 Director, Fuel and Fuel Cycle Division, AECL Chalk River Laboratories, Chalk River, Ontario, Canada No single fuel-cycle path is appropriate for all countries. Many local and global factors will affect the best strategy for an individual country. Fuel-cycle flexibility is an important factor in an ever-changing, and unpredictable world. CANDU is an evolutionary reactor, offering a custom fuel cycle to fit local requirements. Its unsurpassed fuel-cycle flexibility can accommodate the widest range of fuel-cycle options in existing CANDU stations. In the short term, the CANFLEX® bundle is nearing power reactor implementation. The demonstration irradiation of 26 bundles in the Pt. Lepreau power station in New Brunswick, Canada, started this September, and a water-CHF test will take place later this year that will confirm the improvement in thermalhydraulic performance. CANFLEX provides enhanced operating and safety performance through a reduction in peak linear element ratings, and a significant increase in critical channel power. CANFLEX will be the near-term carrier of advanced fuel cycles. While natural uranium fuel provides outstanding advantages, the use of slightly enriched uranium (SEU) in CANDU offers even lower fuel cycle costs and other potential benefits, such as uprating capability through flattening the radial channel power distribution. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. The use of SEU/RU is the first logical step from natural uranium in CANDU. For countries having LWR reactors, the ability to use low-fissile material in CANDU reactors offers a range of unique synergistic fuel cycle opportunities.
    [Show full text]
  • Advanced Reactors with Innovative Fuels
    Nuclear Science Advanced Reactors with Innovative Fuels Workshop Proceedings Villigen, Switzerland 21-23 October 1998 NUCLEAR•ENERGY•AGENCY OECD, 1999. Software: 1987-1996, Acrobat is a trademark of ADOBE. All rights reserved. OECD grants you the right to use one copy of this Program for your personal use only. Unauthorised reproduction, lending, hiring, transmission or distribution of any data or software is prohibited. You must treat the Program and associated materials and any elements thereof like any other copyrighted material. All requests should be made to: Head of Publications Service, OECD Publications Service, 2, rue AndrÂe-Pascal, 75775 Paris Cedex 16, France. OECD PROCEEDINGS Proceedings of the Workshop on Advanced Reactors with Innovative Fuels hosted by Villigen, Switzerland 21-23 October 1998 NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed: − to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining financial stability, and thus to contribute to the development of the world economy; − to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and − to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations. The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States.
    [Show full text]
  • NPR81: South Korea's Shifting and Controversial Interest in Spent Fuel
    JUNGMIN KANG & H.A. FEIVESON Viewpoint South Korea’s Shifting and Controversial Interest in Spent Fuel Reprocessing JUNGMIN KANG & H.A. FEIVESON1 Dr. Jungmin Kang was a Visiting Research Fellow at the Center for Energy and Environmental Studies (CEES), Princeton University in 1999-2000. He is the author of forthcoming articles in Science & Global Security and Journal of Nuclear Science and Technology. Dr. H.A. Feiveson is a Senior Research Scientist at CEES and a Co- director of Princeton’s research Program on Nuclear Policy Alternatives. He is the Editor of Science and Global Security, editor and co-author of The Nuclear Turning Point: A Blueprint for Deep Cuts and De-alerting of Nuclear Weapons (Brookings Institution, 1999), and co-author of Ending the Threat of Nuclear Attack (Stanford University Center for International Security and Arms Control, 1997). rom the beginning of its nuclear power program could reduce dependence on imported uranium. During in the 1970s, the Republic of Korea (South Ko- the 1990s, the South Korean government remained con- Frea) has been intermittently interested in the cerned about energy security but also began to see re- reprocessing of nuclear-power spent fuel. Such repro- processing as a way to address South Korea’s spent fuel cessing would typically separate the spent fuel into three disposal problem. Throughout this entire period, the constituent components: the unfissioned uranium re- United States consistently and effectively opposed all maining in the spent fuel, the plutonium produced dur- reprocessing initiatives on nonproliferation grounds. We ing reactor operation, and the highly radioactive fission review South Korea’s evolving interest in spent fuel re- products and transuranics other than plutonium.
    [Show full text]
  • THE NEXT GENERATION CANDU 6 J.M. HOPWOOD XA0053559 Atomic Energy of Canada Ltd, Mississauga, Ontario, Canada
    IAEA-SM-353/29 THE NEXT GENERATION CANDU 6 illinium J.M. HOPWOOD XA0053559 Atomic Energy of Canada Ltd, Mississauga, Ontario, Canada Abstract AECL's product line of CANDU 6 and CANDU 9 nuclear power plants are adapted to respond to chang- ing market conditions, experience feedback and technological development by a continuous improvement process of design evolution. The CANDU 6 Nuclear Power Plant design is a successful family of nuclear units, with the first four units entering service in 1983, and the most recent entering service this year. A further four CANDU 6 units are under construction. Starting in 1996, a focused forward-looking development program is under way at AECL to incorporate a series of individual improvements and integrate them into the CANDU 6, leading to the evolutionary development of the next-generation enhanced CANDU 6. The CANDU 6 improvements program includes all aspects of an NPP project, including engineering tools improvements, design for improved constructability, scheduling for faster, more streamlined commissioning, and improved operating performance. This enhanced CANDU 6 product will combine the benefits of design provenness (drawing on the more than 70 reactor-years experience of the seven operating CANDU 6 units), with the advantages of an evolutionary next- generation design. Features of the enhanced CANDU 6 design include: • Advanced Human Machine Interface - built around the Advanced CANDU Control Centre. • Advanced fuel design - using the newly demonstrated CANFLEX fuel bundle. • Improved Efficiency based on improved utilization of waste heat. • Streamlined System Design - including simplifications to improve performance and safety system reliability. • Advanced Engineering Tools, - featuring linked electronic databases from 3D CADDS, equipment specifi- cation and material management.
    [Show full text]
  • Management of Reprocessed Uranium Current Status and Future Prospects
    IAEA-TECDOC-1529 Management of Reprocessed Uranium Current Status and Future Prospects February 2007 IAEA-TECDOC-1529 Management of Reprocessed Uranium Current Status and Future Prospects February 2007 The originating Section of this publication in the IAEA was: Nuclear Fuel Cycle and Materials Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria MANAGEMENT OF REPROCESSED URANIUM IAEA, VIENNA, 2007 IAEA-TECDOC-1529 ISBN 92–0–114506–3 ISSN 1011–4289 © IAEA, 2007 Printed by the IAEA in Austria February 2007 FOREWORD The International Atomic Energy Agency is giving continuous attention to the collection, analysis and exchange of information on issues of back-end of the nuclear fuel cycle, an important part of the nuclear fuel cycle. Reprocessing of spent fuel arising from nuclear power production is one of the strategies for the back end of the fuel cycle. As a major fraction of spent fuel is made up of uranium, chemical reprocessing of spent fuel would leave behind large quantities of separated uranium which is designated as reprocessed uranium (RepU). Reprocessing of spent fuel could form a crucial part of future fuel cycle methodologies, which currently aim to separate and recover plutonium and minor actinides. The use of reprocessed uranium (RepU) and plutonium reduces the overall environmental impact of the entire fuel cycle. Environmental considerations will be important in determining the future growth of nuclear energy. It should be emphasized that the recycling of fissile materials not only reduces the toxicity and volumes of waste from the back end of the fuel cycle; it also reduces requirements for fresh milling and mill tailings.
    [Show full text]
  • Background, Status and Issues Related to the Regulation of Advanced Spent Nuclear Fuel Recycle Facilities
    NUREG-1909 Background, Status, and Issues Related to the Regulation of Advanced Spent Nuclear Fuel Recycle Facilities ACNW&M White Paper Advisory Committee on Nuclear Waste and Materials NUREG-1909 Background, Status, and Issues Related to the Regulation of Advanced Spent Nuclear Fuel Recycle Facilities ACNW&M White Paper Manuscript Completed: May 2008 Date Published: June 2008 Prepared by A.G. Croff, R.G. Wymer, L.L. Tavlarides, J.H. Flack, H.G. Larson Advisory Committee on Nuclear Waste and Materials THIS PAGE WAS LEFT BLANK INTENTIONALLY ii ABSTRACT In February 2006, the Commission directed the Advisory Committee on Nuclear Waste and Materials (ACNW&M) to remain abreast of developments in the area of spent nuclear fuel reprocessing, and to be ready to provide advice should the need arise. A white paper was prepared in response to that direction and focuses on three major areas: (1) historical approaches to development, design, and operation of spent nuclear fuel recycle facilities, (2) recent advances in spent nuclear fuel recycle technologies, and (3) technical and regulatory issues that will need to be addressed if advanced spent nuclear fuel recycle is to be implemented. This white paper was sent to the Commission by the ACNW&M as an attachment to a letter dated October 11, 2007 (ML072840119). In addition to being useful to the ACNW&M in advising the Commission, the authors believe that the white paper could be useful to a broad audience, including the NRC staff, the U.S. Department of Energy and its contractors, and other organizations interested in understanding the nuclear fuel cycle.
    [Show full text]
  • Radiation Safety Information Computational Center
    Radiation Safety Information Computational Center Oak Ridge National Laboratory POST OFFICE BOX 2008 OAK RIDGE, TENNESSEE 37831-6362 Managed by UT-Battelle, LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725 Phone No. 865-574-6176 FAX 865-574-6182 Internet: [email protected] http://www-rsicc.ornl.gov/rsic.html No. 448 June 2002 "The measure of a man's real character is what he would do if he knew he never would be found out." -- Thomas B. Macaulay Printable PDF file of this newsletter available at: http://www-rsicc.ornl.gov/NEWSLETTER.html. Azmy Elected as Fellow to ANS Congratulations to Dr. Yousry Azmy, ORNL, for being elected to Fellow Membership of the American Nuclear Society. The ANS is recognizing Dr. Azmy's contributions to the advancement of nuclear science and technology through the years. Dr. Azmy is a member of the Radiation Protection and Shielding Division and Mathematics and Computation Division. He will be honored at the Awards Luncheon June 11, in Hollywood, Florida. NOTICE RSICC will be offering a few data, processing, and computational tools free of handling, testing, and other fees associated with package transmittal. A ***NO FEE*** label will appear next to the package name on the web request page. The ability to provide these packages at no charge is due in part to advanced funding from the sponsors. To acquire these tools, follow the normal registration procedure for first-time or updated users. Then complete the WWW Request Form. The license and export control statements will need the user signatures, which is standard procedure.
    [Show full text]
  • A Review of the Nuclear Fuel Cycle Strategies and the Spent Nuclear Fuel Management Technologies
    energies Review A Review of the Nuclear Fuel Cycle Strategies and the Spent Nuclear Fuel Management Technologies Laura Rodríguez-Penalonga * ID and B. Yolanda Moratilla Soria ID Cátedra Rafael Mariño de Nuevas Tecnologías Energéticas, Universidad Pontificia Comillas, 28015 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-91-542-2800 (ext. 2481) Received: 19 June 2017; Accepted: 6 August 2017; Published: 21 August 2017 Abstract: Nuclear power has been questioned almost since its beginnings and one of the major issues concerning its social acceptability around the world is nuclear waste management. In recent years, these issues have led to a rise in public opposition in some countries and, thus, nuclear energy has been facing even more challenges. However, continuous efforts in R&D (research and development) are resulting in new spent nuclear fuel (SNF) management technologies that might be the pathway towards helping the environment and the sustainability of nuclear energy. Thus, reprocessing and recycling of SNF could be one of the key points to improve the social acceptability of nuclear energy. Therefore, the purpose of this paper is to review the state of the nuclear waste management technologies, its evolution through time and the future advanced techniques that are currently under research, in order to obtain a global vision of the nuclear fuel cycle strategies available, their advantages and disadvantages, and their expected evolution in the future. Keywords: nuclear energy; nuclear waste management; reprocessing; recycling 1. Introduction Nuclear energy is a mature technology that has been developing and improving since its beginnings in the 1940s. However, the fear of nuclear power has always existed and, for the last two decades, there has been a general discussion around the world about the future of nuclear power [1,2].
    [Show full text]
  • Tritium Resources Available for Fusion Reactors 1: Nuclear Energy Hervé Nifenecker
    PAPER Related content - Future electricity production methods. Part Tritium resources available for fusion reactors 1: Nuclear energy Hervé Nifenecker To cite this article: M. Kovari et al 2018 Nucl. Fusion 58 026010 - European DEMO design strategy and consequences for materials G. Federici, W. Biel, M.R. Gilbert et al. - Materials-related issues in the safety and licensing of nuclear fusion facilities View the article online for updates and enhancements. N. Taylor, B. Merrill, L. Cadwallader et al. This content was downloaded from IP address 194.81.223.66 on 23/03/2018 at 14:11 IOP Nuclear Fusion International Atomic Energy Agency Nuclear Fusion Nucl. Fusion Nucl. Fusion 58 (2018) 026010 (10pp) https://doi.org/10.1088/1741-4326/aa9d25 58 Tritium resources available for fusion 2018 reactors © 2017 EURATOM M. Kovari1, M. Coleman1,2, I. Cristescu3 and R. Smith1 NUFUAU 1 CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom 2 EUROfusion Consortium, Boltzmannstraße 2, 85748 Garching, Germany 3 Tritium Laboratory, Karlsruhe Institute of Technology, Karlsruhe, Germany 026010 E-mail: [email protected] M. Kovari et al Received 11 July 2017, revised 22 November 2017 Accepted for publication 24 November 2017 Published 21 December 2017 Abstract Printed in the UK The tritium required for ITER will be supplied from the CANDU production in Ontario, but while Ontario may be able to supply 8 kg for a DEMO fusion reactor in the mid-2050s, it will not be able to provide 10 kg at any realistic starting time. The tritium required to start DEMO NF will depend on advances in plasma fuelling efficiency, burnup fraction, and tritium processing technology.
    [Show full text]
  • Enrichment Effects on Candu-Seu Spent Fuel Monte Carlo Shielding Analysis
    ENRICHMENT EFFECTS ON CANDU-SEU SPENT FUEL MONTE CARLO SHIELDING ANALYSIS CRISTINA ALICE MARGEANU, PETRE ILIE Institute for Nuclear Research Pitesti, [email protected]; [email protected] (Received June 22, 2005) Abstract: For CANDU type reactors, the most attractive solution trend in order to raise the discharge fuel burnup seems to be SEU and RU fuels utilization. The paper aims to study the effects induced by fuel enrichment variation on CANDU SEU spent fuel photon dose rates for a Monte Carlo shielding analysis. In order to obtain the spent fuel inventories and photon source profiles the ORIGEN-S code has been used. The shielding calculations have been performed by using the Monte Carlo MORSE-SGC code. Both codes are included in the ORNL’s SCALE 5 programs package. A comparison for different fuel enrichments has been performed regarding both spent fuel characteristics and photon dose rates. Key words: CANDU-SEU spent fuel, fuel enrichment, spent fuel transport, photon dose rate, shipping cask 1. INTRODUCTION The promises for higher nuclear fuel utilization have lead to advanced cycles development need, but all the problems associated with radioactive waste have generated an increase in the interest for these fuel cycles. Last decade, both for operating reactors and future reactor projects, a general trend to raise the discharge fuel burnup has been registered. The fuel burnup raise associated consequences are very important: spent fuel mass reduction for 1 MWh generated electric power; actinides mass significant reduction in the spent fuel; more rarely refueling, leading to impressing raises in installed capacity utilization; about 15%-35% reduction in costs associated with nuclear fuel, for 1 MWh generated electric power.
    [Show full text]