The Ecology of Carrion Decomposition: Necrophagous Invertebrate

Total Page:16

File Type:pdf, Size:1020Kb

The Ecology of Carrion Decomposition: Necrophagous Invertebrate THE ECOLOGY OF CARRION DECOMPOSITION: NECROPHAGOUS INVERTEBRATE ASSEMBLY AND MICROBIAL COMMUNITY METABOLIC ACTIVITY DURING DECOMPOSITION OF SUS SCROFA CARCASSES IN A TEMPERATE MID-WEST FOREST Thesis Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree Master of Science in Biology By Andrew Joseph Lewis UNIVERSITY OF DAYTON Dayton, OH December, 2011 THE ECOLOGY OF CARRION DECOMPOSITION: NECROPHAGOUS INVERTEBRATE ASSEMBLY AND MICROBIAL COMMUNITY METABOLIC ACTIVITY DURING DECOMPOSITION OF SUS SCROFA CARCASSES IN A TEMPERATE MID-WEST FOREST Name: Lewis, Andrew Joseph APPROVED BY: ________________________________________________________ M. Eric Benbow, Ph.D. Faculty Advisor ________________________________________________________ Carl Friese, Ph.D. Committee Member ________________________________________________________ Ryan McEwan, Ph.D. Committee Member ________________________________________________________ Jayne Robinson, Ph.D. Department Chairperson ii ABSTRACT THE ECOLOGY OF CARRION DECOMPOSITION: NECROPHAGOUS INVERTEBRATE ASSEMBLY AND MICROBIAL COMMUNITY METABOLIC ACTIVITY DURING DECOMPOSITION OF SUS SCROFA CARCASSES IN A TEMPERATE MID-WEST FOREST Name: Lewis, Andrew Joseph University of Dayton Advisor: Dr. M. Eric Benbow Decomposition is a fundamental process to ecosystem function and energy flow where nutrients are recycled and reintroduced into food webs. Vertebrate carrion decomposition can provide significant resource pulses for habitats and can range from large whale carcasses to small rodents. Necrophagous invertebrates have been documented to be a predominant driver of vertebrate carrion decomposition. However, microorganisms also participate in the utilization of this common food fall, microorganisms. Little is known about the structure and composition of the microbial communities associated with carrion, or if they follow a pattern of succession as decomposition progresses, although this process is important for nutrient and energy cycling in ecosystems. The objective of this study was to evaluate both the microbial and invertebrate community succession during iii carrion decomposition. It was hypothesized that microbial and invertebrate communities on decomposing carcasses would vary both over decomposition time and between seasons, as well demonstrates inter-carcass variation among the replicates. To test these hypotheses, Sus scrofa carcasses (N=3-6) were placed in a forested habitat near Xenia, OH during spring (15 March – 8 June 2009) summer (23 July – 31 August 2009), autumn (11 November 2009 – 1 May 2010) and winter (2 February – 1 May 2010). For the microbial sample collections skin biopsies and swabs of the anus and buccal of each carcass along with cores of soil underneath and 1m away were collected to compare with microbial community metabolic succession during decomposition. Biolog EcoPlates, phenotypic microarray 96 well plates were used to monitor the differential use of 31 different carbon sources to provide a community level physiological profile (CLPPs) as a measure of microbial community metabolic activity. In addition, standardized insect samples involving aerial sweep nets, pitfall traps and hand collections were used to evaluate the arthropod communities through the entire process of carrion decomposition. One and two-way ANOVA with Bonferroni Post-tests, non-metric multidimensional scaling (NMDS), multi-response permutation procedure (MRPP) and indicator species analysis (ISA) were employed to evaluate the microbial community metabolic activity and invertebrate community change over decomposition, between replicates, and between seasons. For the microbial communities, there were significant differences (p<0.001) between seasons for both carrion and soil samples. Carrion samples were significantly different from soil samples (p<0.001), but the control and soil under body were not (p=0.271). For the invertebrates, iv while most taxa remained constant among seasons, five taxa demonstrated significant differences (One-way ANOVA; p<0.05) in presence across seasons. Necrophagous insect communities had significant differences across the different stages of decomposition (MRPP; p<0.001) for each season in multivariate analyses. According to pairwise comparisons while there were significantly different necrophagous insect communities between summer and fall (p=0.001) and summer and winter (p< 0.001), the communities were similar between fall and winter trials (p=0. 073). Another observation was a undocumented phenomenon concerning en masse larval dispersal of the blow fly Phormia regina.. We highly recommend that future studies related to carrion decomposition increase replication of carcasses and make comparisons across seasons and year. v DEDICATION To my mother and father for showing me the way. To my brothers and sister for pushing me in the right direction. To my grandparents for providing guidance. To my wife for keeping me going when times get rough. To my friends who help make sure I stay sane. And lastly to my advisor, who gave me the chance to prove myself. vi ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Eric Benbow for providing me with the chance to go to graduate school and receive my Master’s. Thank you to my committee members, Dr. Carl Friese and Dr. Ryan McEwan for providing guidance and figuring out the best course I should take to reach my goals with school. Thanks to all of the undergraduates who helped out with the research; Tiffany Blair, Maureen Berg, Allison Gansel, Elizabeth Gazdick, An Lai, Jessica Teater, Carolyn Teter, Sandra Tilton, and Jon White. Thanks as well to the past and present graduate students that aided me as well; Meg Shoda, Kathy Gorbach, Ryan Kimirakaus, Jen Lang, Mollie MacIntosh, Jennifer Pechal, and Jennifer Rosati. I greatly appreciate all the other professors and graduate students for teaching me and lending a helping hand or sound advice when needed. Thanks to my parents Alice and Kevin Lewis and my wife Caitlin Powell for going out into the field with me when I needed help and for always being willing to do some proof reading. I am also grateful to the Greene County Parks District for allowing me to use the Morris Bean Reserve for my research. Lastly, thanks to the University of Dayton for providing me with the education and ability to perform this research and obtain my degree. vii TABLE OF CONTENTS ABSTRACT………………………………………………………………………………………………………….iii LIST OF ILLUSTRATIONS……………………………………………………………………………………..ix LIST OF TABLES…………………………………………………………………………………………………xii CHAPTER 1: Microbial Metabolic Community Change During Vertebrate Carrion Decomposition……………………………………………………………………………………………………..1 ABSTRACT……………………………………………………………………………………..........1 INTRODUCTION…………………………………………………………………………………...2 METHODS……………………………………………………………………………………………8 RESULTS……………………………………………………………………………………………15 DISCUSSION……………………………………………………………………………………….18 CHAPTER 2: Necrophagous Insect Community Assembly During Vertebrate Carrion Decomposition: Seasonal and Inter-Carcass Variation..………………...................................34 ABSTRACT………………………………………………………………………………………...34 INTRODUCTION…………………………………………………………………………………36 METHODS………………………………………………………………………………………….39 RESULTS……………………………………………………………………………………………44 DISCUSSION……………………………………………………………………………………….47 CHAPTER 3: When Entomological Evidence Crawls Away: Phormia regina En Masse Larval Dispersal..………………………………………………………………………………………………..62 ABSTRACT…………………………………………………………………………………………62 INTRODUCTION…………………………………………………………………………………63 METHODS………………………………………………………………………………………….66 RESULTS……………………………………………………………………………………………68 DISCUSSION……………………………………………………………………………………….71 BIBLIOGRAPHY………………………………………………………………………………………………….84 viii LIST OF ILLUSTRATIONS Chapter 1 Figure 1: Mean (SD) non-normalized (A) and normalized (B) carrion microbial metabolic community activity during each season compared to non-normalized (C) and normalized (D) activity for soil underneath (Under) and 1 m away from the carcass (Control). Each figure shows the overall microbial community metabolic activity for each date, standardized for ADH, through the process of decomposition in each season. In Figure 1A, the number beside each point represents the number of days since death for each sampling date in each season. ………………………………….22 Figure 2: Non-metric multidimensional scaling ordinations of microbial community level physiological profiles for carrion communities (A) during decomposition time is represented by ADH ranges and among seasons (B), and soil communities during decomposition (C) represented by ADH ranges and among seasons (D). The MRPP statistics indicate significant differences where p<0.05, and the amount of variation explained by each axis is also provided in the axes labels…………………………………….23 Figure 3: Non-metric multidimensional scaling ordinations of microbial community level physiological profiles for carrion communities over decomposition time represented as ADH during each season: A) spring, B) summer, C) autumn, and D) winter. The MRPP statistics indicate significant differences where p<0.05, and the amount of variation explained by each axis is also provided in the axes labels……...24 Figure 4: Non-metric multidimensional scaling ordinations of microbial community level physiological profiles for soil communities over decomposition time represented as ADH during each season; A) spring, B) summer, C) autumn, and D) winter. The MRPP statistics indicate significant differences
Recommended publications
  • Midsouth Entomologist 5: 39-53 ISSN: 1936-6019
    Midsouth Entomologist 5: 39-53 ISSN: 1936-6019 www.midsouthentomologist.org.msstate.edu Research Article Insect Succession on Pig Carrion in North-Central Mississippi J. Goddard,1* D. Fleming,2 J. L. Seltzer,3 S. Anderson,4 C. Chesnut,5 M. Cook,6 E. L. Davis,7 B. Lyle,8 S. Miller,9 E.A. Sansevere,10 and W. Schubert11 1Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, e-mail: [email protected] 2-11Students of EPP 4990/6990, “Forensic Entomology,” Mississippi State University, Spring 2012. 2272 Pellum Rd., Starkville, MS 39759, [email protected] 33636 Blackjack Rd., Starkville, MS 39759, [email protected] 4673 Conehatta St., Marion, MS 39342, [email protected] 52358 Hwy 182 West, Starkville, MS 39759, [email protected] 6101 Sandalwood Dr., Madison, MS 39110, [email protected] 72809 Hwy 80 East, Vicksburg, MS 39180, [email protected] 850102 Jonesboro Rd., Aberdeen, MS 39730, [email protected] 91067 Old West Point Rd., Starkville, MS 39759, [email protected] 10559 Sabine St., Memphis, TN 38117, [email protected] 11221 Oakwood Dr., Byhalia, MS 38611, [email protected] Received: 17-V-2012 Accepted: 16-VII-2012 Abstract: A freshly-euthanized 90 kg Yucatan mini pig, Sus scrofa domesticus, was placed outdoors on 21March 2012, at the Mississippi State University South Farm and two teams of students from the Forensic Entomology class were assigned to take daily (weekends excluded) environmental measurements and insect collections at each stage of decomposition until the end of the semester (42 days). Assessment of data from the pig revealed a successional pattern similar to that previously published – fresh, bloat, active decay, and advanced decay stages (the pig specimen never fully entered a dry stage before the semester ended).
    [Show full text]
  • Enhancing Forensic Entomology Applications: Identification and Ecology
    Enhancing forensic entomology applications: identification and ecology A Thesis Submitted to the Committee on Graduate Studies in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Faculty of Arts and Science TRENT UNIVERSITY Peterborough, Ontario, Canada © Copyright by Sarah Victoria Louise Langer 2017 Environmental and Life Sciences M.Sc. Graduate Program September 2017 ABSTRACT Enhancing forensic entomology applications: identification and ecology Sarah Victoria Louise Langer The purpose of this thesis is to enhance forensic entomology applications through identifications and ecological research with samples collected in collaboration with the OPP and RCMP across Canada. For this, we focus on blow flies (Diptera: Calliphoridae) and present data collected from 2011-2013 from different terrestrial habitats to analyze morphology and species composition. Specifically, these data were used to: 1) enhance and simplify morphological identifications of two commonly caught forensically relevant species; Phormia regina and Protophormia terraenovae, using their frons-width to head- width ratio as an additional identifying feature where we found distinct measurements between species, and 2) to assess habitat specificity for urban and rural landscapes, and the scale of influence on species composition when comparing urban and rural habitats across all locations surveyed where we found an effect of urban habitat on blow fly species composition. These data help refine current forensic entomology applications by adding to the growing knowledge of distinguishing morphological features, and our understanding of habitat use by Canada’s blow fly species which may be used by other researchers or forensic practitioners. Keywords: Calliphoridae, Canada, Forensic Science, Morphology, Cytochrome Oxidase I, Distribution, Urban, Ecology, Entomology, Forensic Entomology ii ACKNOWLEDGEMENTS “Blow flies are among the most familiar of insects.
    [Show full text]
  • Terry Whitworth 3707 96Th ST E, Tacoma, WA 98446
    Terry Whitworth 3707 96th ST E, Tacoma, WA 98446 Washington State University E-mail: [email protected] or [email protected] Published in Proceedings of the Entomological Society of Washington Vol. 108 (3), 2006, pp 689–725 Websites blowflies.net and birdblowfly.com KEYS TO THE GENERA AND SPECIES OF BLOW FLIES (DIPTERA: CALLIPHORIDAE) OF AMERICA, NORTH OF MEXICO UPDATES AND EDITS AS OF SPRING 2017 Table of Contents Abstract .......................................................................................................................... 3 Introduction .................................................................................................................... 3 Materials and Methods ................................................................................................... 5 Separating families ....................................................................................................... 10 Key to subfamilies and genera of Calliphoridae ........................................................... 13 See Table 1 for page number for each species Table 1. Species in order they are discussed and comparison of names used in the current paper with names used by Hall (1948). Whitworth (2006) Hall (1948) Page Number Calliphorinae (18 species) .......................................................................................... 16 Bellardia bayeri Onesia townsendi ................................................... 18 Bellardia vulgaris Onesia bisetosa .....................................................
    [Show full text]
  • Development and Validation of a New Technique for Estimating a Minimum Postmortem Interval Using Adult Blow Fly (Diptera: Calliphoridae) Carcass Attendance
    Int J Legal Med DOI 10.1007/s00414-014-1094-x ORIGINAL ARTICLE Development and validation of a new technique for estimating a minimum postmortem interval using adult blow fly (Diptera: Calliphoridae) carcass attendance Rachel M. Mohr & Jeffery K. Tomberlin Received: 6 May 2014 /Accepted: 6 October 2014 # Springer-Verlag Berlin Heidelberg 2014 Abstract Understanding the onset and duration of adult Introduction blow fly activity is critical to accurately estimating the period of insect activity or minimum postmortem interval (minPMI). When an animal dies, it attracts a variety of scavengers that Few, if any, reliable techniques have been developed and break down the body and return its nutrients to the soil [1]. consequently validated for using adult fly activity to deter- The preeminent mechanism of that mechanical breakdown is mine a minPMI. In this study, adult blow flies (Diptera: the feeding of immature arthropods such as blow flies Calliphoridae) of Cochliomyia macellaria and Chrysomya (Diptera: Calliphoridae). Although the mobile adult insects rufifacies were collected from swine carcasses in rural central arrive before their progeny, blow fly larvae have predictable, Texas, USA, during summer 2008 and Phormia regina and thermally dependent development, which can be used to esti- Calliphora vicina in the winter during 2009 and 2010. Carcass mate a “postmortem interval” (PMI) [2]. Therefore, most attendance patterns of blow flies were related to species, sex, existing research on insect/carcass interaction has focused on and oocyte development. Summer-active flies were found to the immature stages in studies with human decedents [3, 4], arrive 4–12 h after initial carcass exposure, with both dogs [5], and swine [6].
    [Show full text]
  • Forensic Entomology: the Use of Insects in the Investigation of Homicide and Untimely Death Q
    If you have issues viewing or accessing this file contact us at NCJRS.gov. Winter 1989 41 Forensic Entomology: The Use of Insects in the Investigation of Homicide and Untimely Death by Wayne D. Lord, Ph.D. and William C. Rodriguez, Ill, Ph.D. reportedly been living in and frequenting the area for several Editor’s Note weeks. The young lady had been reported missing by her brother approximately four days prior to discovery of her Special Agent Lord is body. currently assigned to the An investigation conducted by federal, state and local Hartford, Connecticut Resident authorities revealed that she had last been seen alive on the Agency ofthe FBi’s New Haven morning of May 31, 1984, in the company of a 30-year-old Division. A graduate of the army sergeant, who became the primary suspect. While Univercities of Delaware and considerable circumstantial evidence supported the evidence New Hampshin?, Mr Lordhas that the victim had been murdered by the sergeant, an degrees in biology, earned accurate estimation of the victim’s time of death was crucial entomology and zoology. He to establishing a link between the suspect and the victim formerly served in the United at the time of her demise. States Air Force at the Walter Several estimates of postmortem interval were offered by Army Medical Center in Reed medical examiners and investigators. These estimates, Washington, D.C., and tire F however, were based largely on the physical appearance of Edward Hebert School of the body and the extent to which decompositional changes Medicine, Bethesda, Maryland. had occurred in various organs, and were not based on any Rodriguez currently Dr.
    [Show full text]
  • Bird's Nest Screwworm
    Beneficial Species Profile Photo credit: Copyright © 2013 Mardon Erbland, bugguide.net Common Name: Bird’s Nest Screwworm Fly / Holarctic Blow Fly Scientific Name: Protophormia terraenovae Order and Family: Diptera / Calliphoridae Size and Appearance: Length (mm) Appearance Egg 1mm Larva/Nymph Small and white, with about 12 1-12mm segments Adult Dark anterior thoracic spiracle, dark metallic blue in color. 8-12 mm Similar to Phormia regina, however P. terraenovae has longer dorsocentral bristles with acrostichal (set in highest row) bristles short or absent. Pupa (if applicable) 8-9mm Type of feeder (Chewing, sucking, etc.): Sponging in adults / Mouthhooks in larvae Host/s: Larvae develop primarily in carrion. Description of Benefits (predator, parasitoid, pollinator, etc.): This insect is used in Forensic and Medical fields. Maggot Debridement Therapy is the use of maggots to clean and disinfect necrotic flesh wounds. To be usable in this practice, the creature must only target the necrotic tissues. This species ‘fits the bill.’ P. terraenovae is known to produce antibiotics as they feed, helping to fight some infections. P. terraenovae is one of the only blow fly species usable in this way. Blow flies are also one of the first species to arrive on a cadaver. Due to early arrival, they can be the most informative for postmortem investigations. Scientists will collect, note, rear, and identify the species to determine life cycles and developmental rates. Once determined, they can calculate approximate death. This species is also known to cause myiasis in livestock, causing wound strike and death. References: Species Protophormia terraenovae. (n.d.). Retrieved September 04, 2020, from https://bugguide.net/node/view/862102 Byrd, J.
    [Show full text]
  • Key for Identification of European and Mediterranean Blowflies (Diptera, Calliphoridae) of Forensic Importance Adult Flies
    Key for identification of European and Mediterranean blowflies (Diptera, Calliphoridae) of forensic importance Adult flies Krzysztof Szpila Nicolaus Copernicus University Institute of Ecology and Environmental Protection Department of Animal Ecology Key for identification of E&M blowflies, adults The list of European and Mediterranean blowflies of forensic importance Calliphora loewi Enderlein, 1903 Calliphora subalpina (Ringdahl, 1931) Calliphora vicina Robineau-Desvoidy, 1830 Calliphora vomitoria (Linnaeus, 1758) Cynomya mortuorum (Linnaeus, 1761) Chrysomya albiceps (Wiedemann, 1819) Chrysomya marginalis (Wiedemann, 1830) Chrysomya megacephala (Fabricius, 1794) Phormia regina (Meigen, 1826) Protophormia terraenovae (Robineau-Desvoidy, 1830) Lucilia ampullacea Villeneuve, 1922 Lucilia caesar (Linnaeus, 1758) Lucilia illustris (Meigen, 1826) Lucilia sericata (Meigen, 1826) Lucilia silvarum (Meigen, 1826) 2 Key for identification of E&M blowflies, adults Key 1. – stem-vein (Fig. 4) bare above . 2 – stem-vein haired above (Fig. 4) . 3 (Chrysomyinae) 2. – thorax non-metallic, dark (Figs 90-94); lower calypter with hairs above (Figs 7, 15) . 7 (Calliphorinae) – thorax bright green metallic (Figs 100-104); lower calypter bare above (Figs 8, 13, 14) . .11 (Luciliinae) 3. – genal dilation (Fig. 2) whitish or yellowish (Figs 10-11). 4 (Chrysomya spp.) – genal dilation (Fig. 2) dark (Fig. 12) . 6 4. – anterior wing margin darkened (Fig. 9), male genitalia on figs 52-55 . Chrysomya marginalis – anterior wing margin transparent (Fig. 1) . 5 5. – anterior thoracic spiracle yellow (Fig. 10), male genitalia on figs 48-51 . Chrysomya albiceps – anterior thoracic spiracle brown (Fig. 11), male genitalia on figs 56-59 . Chrysomya megacephala 6. – upper and lower calypters bright (Fig. 13), basicosta yellow (Fig. 21) . Phormia regina – upper and lower calypters dark brown (Fig.
    [Show full text]
  • SPATIAL and TEMPORAL DISTRIBUTION of the FORENSICALLY SIGNIFICANT BLOW FLIES of LOS ANGELES COUNTY, CALIFORNIA, UNITED STATES (DIPTERA: CALLIPHORIDAE) Royce T
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Natural Resources Natural Resources, School of Spring 4-19-2019 SPATIAL AND TEMPORAL DISTRIBUTION OF THE FORENSICALLY SIGNIFICANT BLOW FLIES OF LOS ANGELES COUNTY, CALIFORNIA, UNITED STATES (DIPTERA: CALLIPHORIDAE) Royce T. Cumming University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/natresdiss Part of the Entomology Commons, Natural Resources and Conservation Commons, and the Other Ecology and Evolutionary Biology Commons Cumming, Royce T., "SPATIAL AND TEMPORAL DISTRIBUTION OF THE FORENSICALLY SIGNIFICANT BLOW FLIES OF LOS ANGELES COUNTY, CALIFORNIA, UNITED STATES (DIPTERA: CALLIPHORIDAE)" (2019). Dissertations & Theses in Natural Resources. 284. https://digitalcommons.unl.edu/natresdiss/284 This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SPATIAL AND TEMPORAL DISTRIBUTION OF THE FORENSICALLY SIGNIFICANT BLOW FLIES OF LOS ANGELES COUNTY, CALIFORNIA, UNITED STATES (DIPTERA: CALLIPHORIDAE) By Royce T. Cumming A THESIS Presented to the Graduate Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Natural Resource Sciences Under the Supervision of Professor Leon Higley Lincoln, Nebraska April 2018 SPATIAL AND TEMPORAL DISTRIBUTION OF THE FORENSICALLY SIGNIFICANT BLOW FLIES OF LOS ANGELES COUNTY, CALIFORNIA, UNITED STATES (DIPTERA: CALLIPHORIDAE) Royce T. Cumming M.S. University of Nebraska, 2019 Advisor: Leon Higley Forensic entomology although not a commonly used discipline in the forensic sciences, does have its niche and when used by investigators is respected in crinimolegal investigations (Greenberg and Kunich, 2005).
    [Show full text]
  • Studying Vibrational Communication Animal Signals and Communication
    Animal Signals and Communication 3 Reginald B. Cocroft Matija Gogala Peggy S. M. Hill Andreas Wessel Editors Studying Vibrational Communication Animal Signals and Communication Volume 3 Series editors Vincent M. Janik School of Biology University of St Andrews Fife, UK Peter McGregor Centre for Applied Zoology Cornwall College Newquay, UK For further volumes: http://www.springer.com/series/8824 Reginald B. Cocroft • Matija Gogala Peggy S. M. Hill • Andreas Wessel Editors Studying Vibrational Communication 123 Editors Reginald B. Cocroft Andreas Wessel Division of Biological Sciences Museum für Naturkunde, Leibniz-Institut University of Missouri-Columbia für Evolutions- und Columbia, MO Biodiversitätsforschung USA Humboldt-Universität zu Berlin Berlin Matija Gogala Germany Slovenian Academy of Sciences and Arts Ljubljana and Slovenia Zoologisches Museum Peggy S. M. Hill Universität Hamburg Faculty of Biological Sciences Hamburg University of Tulsa Germany Tulsa, OK USA ISSN 2197-7305 ISSN 2197-7313 (electronic) ISBN 978-3-662-43606-6 ISBN 978-3-662-43607-3 (eBook) DOI 10.1007/978-3-662-43607-3 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2014942315 Ó Springer-Verlag Berlin Heidelberg 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
    [Show full text]
  • Carrion Fly (Diptera: Calliphoridae) Larval Colonization of Sunlit and Shaded Pig Carcasses in West Virginia
    Forensic Science International 164 (2006) 183–192 www.elsevier.com/locate/forsciint Carrion fly (Diptera: Calliphoridae) larval colonization of sunlit and shaded pig carcasses in West Virginia, USA James E. Joy a,*, Nicole L. Liette b, Heather L. Harrah b a Department of Biological Sciences, Marshall University, One John Marshall Way, Huntington, WV 25755, USA b Department of Integrated Sciences and Technology, Marshall University, One John Marshall Way, Huntington, WV 25755, USA Received 4 February 2005; received in revised form 25 August 2005; accepted 11 January 2006 Available online 23 February 2006 Abstract Two pig (Sus scrofta L.) carcasses were placed in sunlit and shaded plots in September 2003, and again in May 2004. Mean ambient temperatures between sunlit and shaded plots were not significantly different in either September or May,but mean ambient temperatures at sunlit and shaded plots in 2004 were significantly higher than corresponding means for sunlit and shaded plots in 2003. Mean maggot mass temperatures were significantly higher than ambient plot temperatures for all four experimental plots (i.e., sunlit and shaded carcasses in both 2003 and 2004). In addition, maggot mass temperatures on sunlit carcasses were positively, and significantly, correlated with ambient temperatures, whereas there was no significant correlation between maggot mass and ambient temperatures at shaded plots. Carcass decomposition proceeded more rapidly in 2004 in the presence of higher ambient temperatures, and sunlit carcasses decomposed faster than shaded ones in both 2003 and 2004 experiments. Phaenecia coeruleiviridis (Macquart) and Phormia regina (Meigen) third instars dominated collections on all four carcasses, but there was little temporal overlap between these species with third instars of the former dominating collections in the early portion (40%) of each experimental period (with the exception of the shaded carcass in 2004 where both species were co-dominant), and the latter assuming dominance in the latter portion (60%).
    [Show full text]
  • The Forensically Important Calliphoridae (Insecta: Diptera) of Pig Carrion in Rural North-Central Florida
    THE FORENSICALLY IMPORTANT CALLIPHORIDAE (INSECTA: DIPTERA) OF PIG CARRION IN RURAL NORTH-CENTRAL FLORIDA By SUSAN V. GRUNER A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2004 Copyright 2004 by Susan V. Gruner For Jack, Rosamond, and Michael ACKNOWLEDGMENTS The successful completion of this thesis would not have been possible without the support, encouragement, understanding, guidance, and physical help of many colleagues, friends, and family. My mother, Rosamond, edited my thesis despite her obvious distaste for anything related to maggots. My husband, Michael, cheerfully allowed more than most spouses could bear. And when it got really cold outside, he only complained two or three times when I kept multiple containers of stinking liver and writhing maggots on the kitchen counter. He also took almost all of the fantastic photos presented in this thesis and for my presentation. Finally, Michael had the horrible job of inserting an arrow with twelve temperature probes into pig “E.” I am also indebted to Dan and Jenny Slone, Jon Allen, Debbie Hall, Jane and Buthene Haskell, Dan and Zane Greathouse, owners of Greathouse Butterfly Farm, Aubrey Bailey, and the National Institute of Justice. My professional colleagues, John Capinera, Marjorie Hoy, and Neal Haskell, guided and encouraged me through my research and writing every step of the way. Although I doubt that John Capinera was greatly interested in maggots, his support and enthusiasm in response to my enthusiasm are very much appreciated. Marjorie Hoy’s beneficial advice was always appreciated and on occasion, she offered a shoulder on which to cry.
    [Show full text]
  • Bacillus Sphaericus Taxonomy
    B Babesia Bacillus sphaericus A genus of Protozoa that is transmitted to animals colin berry by ticks. Cardiff University, Cardiff, Wales, United Babesiosis Kingdom Piroplasmosis The bacterium Bacillus sphaericus is best-known to entomologists because of the toxicity of some Babesiosis strains to the larval stages of mosquitoes. This tox- icity will be examined below but first, some con- Several related diseases caused by infection sideration of the taxonomic group that is known with Babesia protozoans, and transmitted by as “Bacillus sphaericus” is necessary. ticks. Piroplasmosis Taxonomy Identification of a bacterium as aB. sphaericus iso- Bacillary Paralysis late is based on relatively few morphological fea- tures (e.g., the possession of a spherical terminal A disease of silkworm larvae caused by ingestion spore) and a limited number of biochemical tests of spores and parasporal crystals of Bacillus (e.g., inability to ferment sugars). As a result, the thuringiensis. classification contains a heterogeneous collection of strains and it has been shown that, at the DNA level, these can be divided into five major homol- Bacillus larvae (=Paenibacillus ogy groups (groups I-V), each of which could be larvae; Bacteria) considered as a separate species. All of the insecti- cidal strains of B. sphaericus are found within a The bacterium responsible for causing American subdivision of one of these groups – Group IIA; foulbrood in honey bees; it is now known as however, not all strains that fall within this group Paenibacillus larvae. are insecticidal. It is the insecticidal strains of American Foulbrood B. sphaericus and their properties that will be con- Paenibacillus sidered further below.
    [Show full text]