Excimer Lasers J.-P

Total Page:16

File Type:pdf, Size:1020Kb

Excimer Lasers J.-P EXCIMER LASERS J.-P. Girardeau-Montaut To cite this version: J.-P. Girardeau-Montaut. EXCIMER LASERS. Journal de Physique Colloques, 1987, 48 (C7), pp.C7- 225-C7-228. 10.1051/jphyscol:1987750. jpa-00227054 HAL Id: jpa-00227054 https://hal.archives-ouvertes.fr/jpa-00227054 Submitted on 1 Jan 1987 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C7, suppl6ment au n012, Tome 48, decembre 1987 EXCIMER LASERS J.-P. GIRARDEAU-MONTAUT Universitk Claude Bernard, Lyon I, Laboratoire des Interactions ~aser-~atgriau,41, Bd du 11 novembre 1918, F-69622 Villeurbame Cedex, France A review of excimer laser systems is presented, including basic physical data, technology, performances and applications. The last few years have seen a rapid development of this new type of gas lasers and of many commercial systems pro- ducing efficient high power pulses of ultra-violet radiation. After a short recall of physical principles, we give a description of the internal structure of nanose- cond and picosecond excimer lasers, followed by the analysis of principal beam cha- racteristics : output power, efficiency, pulse stability, beam profile and lifetime. Some cost considerations are also examined. The presentation of principal applica- tions in various domains as photochemistry, material processing, non linear proces- ses and medecine, shows how these lasers are definitely an useful tool. The term "excimer laser" does not describe a single device, but a group of pulsed gas lasers that deliver optical radiation at very high peak and average po- wers. All emit pulses lasting nanoseconds or tens of nanoseconds, or picoseconds for some ones at wavelengths in or near the ultra-violet. Their comon feature is the lasing species : a diatomic molecule that is bound only in electronically excited states, while its electronic ground state is repulsive or weakly bound (Figure 1). Examples include homonuclear diatomics, e.g, He2 and Xe2 /I/. The "excimer" word originated as a contraction of "excited dimer". It is now used in a broader sense for heteronuclear and polyatomic molecules as well, in which the component atoms are only bound in the excited state. All comercially available excimer lasers operate with the rare gas-halides compounds such as : A~F*(193 nm), ~r~l*(222 nm), K~F* (244 nm), ~e~l"(308 nm) and XeF* (351 nm), which do not occur in nature. Excimer lasers can also operate with non-excimer media like N2, F2 and C02 as well. The upper state of the excimer is formed by chemical reaction from its constituents after one or both of them have been electronically excited or ionized in a very fast high voltage discharge. When an excimer drops from the excited state to the ground state, the force between the two atoms change from attraction to repul- sion and the molecule breaks up, free constituents entering in the pumping cycle again. This energy level structure makes excimers very good laser materials, with high gain, the population inversion being as long as there are molecules in the ex- cited states 1 I I Figure 1 - Potential curves and laser transitions for the K~F*excimer molecule. Laser transition 1 - 249 nrn Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987750 JOURNAL DE PHYSIQUE Active medium In discharge excitation, excimer lasers contain a gas-mixture at total pressure usually below five atmospheres. The bulk of the mixture, higher than 88 % is a buffer gas, which mediates energy transfer : normally He or Ne, although Ar is used in some cases. The rare gas that does combine to form excimer molecules is pre- sent in much smaller concentrations 0.5 % to 12 % of the total pressure. The halogen donor is present in concentrations of 0.5 % or less. It may be either a diatomic halogen such as F2, or a halogen containing molecule such as HCl or NF3. A typical gas mixture for K~F*will contain 4 torr F2, 120 torr Kr and 2400 torr He. The opti- mum gas mixture is a complex function of gas kinetics and operating conditions. It is different for different models of lasers and there are also large difference bet- ween different excimer molecules. Pump mechanism The detailed dynamic processes that lead to emission from excimer lasers are complicated 12-51. However, one can get an understanding of some key features of laser design from the simplified scheme of KrF as given in Figure 1. The upper laser level is an ionically bound state formed by three-body re- combination of the Kr+ and F- ions in the presence of a collision partner. The life- time of spontaneous deactivation depends on pressure and is approximatively 2.5 nsec. In order to acheive a sizable population (* 1015 cm-3), its ionic precursors have to be prepared on a time scale and with concentrations such that the formation reaction can produce several 1023 excimers x cm-3 x s-1. The necessary ions can be prepared from the atomic species by fast avalanche discharge, e-beam or microwave discharge. It is the avalanche discharge excitation which is used in all commercial systems. To make efficient pumping, there are further requirements 121 : electron densities of a 1015 cm-3, current densities of lo3 ~/crn~,so that enough electtan can 'provide the14 evionization energy of Kr. To meet these conditions, a breakdown volta- ge of 10-15 kV/cm is need and therefore most lasers operate with electrode spacing of 2 to 3 cm and breakdown voltages of 25-35 kV. To improve energy-transfer dynamics and avoid arcing, the laser gas is normally "pre-ionized" before the main discharge is fired. Pre-ionization is normally accomplished with a pulse of W light from sparks, or by coronna effect 161. In order to the principal excitation pulse break: down homogeneously the gas mixture, the start-up electron density must be about lo7- 108 a-3. Technology When broken down, the excimer gas mixtures have very low impedance * 10-1 fi so that efficient excitation requires very fast low inductance, high voltage circuitry(Figure 2). Lasers are pumped by discharging a high voltage capacitor through a suitable switch over the two laser electrodes inside the laser chamber. Switching is usually with thyratrons which have jitter of 1 to 2 nsec only. The upper limit on pulse length is functionally limited to the range of tens of nanose- conds by discharge instabilities. Pulse lengths of hundred of nanoseconds can be reached only with electron beam or microwave excitation, but that's about the upper limit. Very recently 171, shortening of pulse length has been obtained by pulse com- pression in dye until %10 psec. An excimer laser contains a tube filled with laser-gas mixture through which an excitation pulse passes. In discharge-driven lasers, the electrical pulse is perpendicular to the laser beam axis. The laser gas lies in a reservoir outside of the excitation region, and the gas may be actively flowed through the discharge zone. The laser cavity can be repeatedly refilled with different gas mixtures. This is necessary because the laser gas degradcsduring use. After the gas is spent, the cavity must be emptied and refilled. The laser cavity, optics and electrodes are designed to resist corrosion by the halogens. Figure 2 - Basic excimer laser circuitry. THY : Thyratron, : storage self, Csi, Cs2.: storage capacitors, Cp : peaking capacitor, 2: laser chamber, PC : pre~onirationcircuitry. Optics Excimer lasers have such high internal gain -typically g % 5 to 15 per centlcm- tha? they are virtually superradiant and require little optical feedback. The standard stable resonator consists of a plane A1/MgF2 or dielectric coated full reflector and an uncoated CaF2 or MgF2 output coupler whose 8 % reflectivity provi- des sufficient feedback. The windows are affixed directly to the laser cavity and hence are exposed directly to the laser gas. To prevent damage, reflective coatings are deposited on the outside of the rear cavity window. Laser emission in discharge pumped excimer lasers occuring for only 10 to 25 nsec, optical feedback from the optical resonator can only be of use if at least two to three optical round trips are possible in the resonator during laser emission. Thislimits resonator lengths to 'L 100 cm. Beam characteristics Wavelength output power and temporal characteristics of the major excimer laser gases are shown in Table 1. As indicates, there are major differences in out- put power available from different excimers. With excellent focusability of nearly diffraction -limited W radiation, allowsthe generation of very high intensities- up to 1017 ~/cmZ. Due to discharge parameters, pulses last from a few nanoseconds to a few tens of nanoseconds. Pulse lengths vary significantly among different gases used in the same laser and individual pulses of ten have structure within them. Pulses as long as 250 ns have been obtained in the laboratory by ballasting the discharge. Using saturable absorbers it was possible to produce pulses as short as 10 ps. Table 1 - Wavelength, maximum output power and pulse length of excimer lasers Laser gas F2 ArF KrCl KrF XeCl XeF Wavelength (nm) 157 193 222 249 308 351 Pulse energy (mJ) 12 1000 25 1500 1000 400 Ang.
Recommended publications
  • Main Types of Lasers Used for Manufacturing- Key Properties and Key Applications
    Main Types of Lasers Used for Manufacturing- Key Properties and Key Applications Tom Kugler Fiber Systems Mgr. Laser Mechanisms, Inc. www.lasermech.com LME 2011 Topics • Laser Output Wavelengths • Laser Average Power • Laser Output Waveforms (Pulsing) • Laser Peak Power • Laser Beam Quality (Focusability) • Key Properties • Key Applications • Beam Delivery Styles 2 Tom Kugler- Laser Mechanisms Compared to standard light sources… • Laser Light is Collimated- the light rays are parallel to and diverge very slowly- they stay concentrated over long distances- that is a “laser beam” • Laser Light has high Power Density- parallel laser light has a power density in watts/cm2 that is over 1000 times that of ordinary incandescent light • Laser Light is Monochromatic- one color (wavelength) so optics are simplified and perform better • Laser light is highly Focusable- low divergence, small diameter beams, and monochromatic light mean the laser can be focused to a small focal point producing power densities at focus 1,000,000,000 times more than ordinary light. 3 Tom Kugler- Laser Mechanisms Laser Light • 100W of laser light focused to a diameter of 100um produces a power density of 1,270,000 Watts per square centimeter! 4 Tom Kugler- Laser Mechanisms Examples of Laser Types • Gas Lasers: Electrical Discharge in a Gas Mixture Excites Laser Action: – Carbon Dioxide (CO2) – Excimer (XeCl, KrF, ArF, XeF) • Light Pumped Solid State Lasers: Light from Lamps or Diodes Excites Ions in a Host Crystal or Glass: – Nd:YAG (Neodymium doped Yttrium Aluminum
    [Show full text]
  • Detection of Lead in Soil with Excimer Laser Fragmentation Fluorescence Spectroscopy (ELFFS)
    Detection of Lead in Soil with Excimer Laser Fragmentation Fluorescence Spectroscopy (ELFFS) J. H. Choi1, C. J. Damm2, N. J. O’Donovan1, R. F. Sawyer1, C. P. Koshland2, and D. Lucas3† 1Mechanical Engineering Department, University of California, Berkeley, CA 94720 2Science & Technology Department, Sierra Nevada College, NV 89451 3School of Public Health, University of California, Berkeley, CA 94720 4Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720 Date: 2/2/04 † Corresponding Author [email protected] PH: (510) 486-7002 FAX: (510) 486-7303 Index Headings: Photofragmentation; Fluorescence; Photochemistry; Plasma; Lead. 1 ABSTRACT Excimer laser fragmentation fluorescence spectroscopy (ELFFS) is used to monitor lead in soil sample and investigate laser-solid interactions. Pure lead nitrate salt and soil doped with lead nitrate are photolyzed with 193 nm light from an ArF excimer at fluences from 0.4 to 4 J/cm2. Lead emission is observed at 357.2, 364.0, 368.3, 373.9 and 405.8 nm. Time-resolved data show the decay time of the lead emission at 405.8 nm grows with increasing fluence, and a plasma is formed above fluences of 2 J/cm2, where a strong continuum emission interferes with the analyte signal. Fluences below this threshold allow us to achieve a detection limit of approximately 200 ppm in soil. INTRODUCTION Lead (Pb) poisoning from environmental and occupational exposure remains one of the most common and preventable diseases. There are numerous serious and detrimental health effects from inhalation or ingestion of lead, including poisoning or even death in extreme circumstances1. Various in situ, real-time methods to measure heavy metals in soil have been developed as a replacement for conventional wet-chemistry techniques that require laborious and time consuming processes, such as preparation, dissolution, chelation, and ion exchange2,3.
    [Show full text]
  • D'évaluation Des Technologies De La Santé Du Québec
    (CETS 2000-2 RE) Report – June 2000 A STATE-OF-KNOWLEDGE UPDATE THE EXCIMER LASER IN OPHTHALMOLOGY: Conseil d’Évaluation des Technologies de la Santé du Québec Report submitted to the Minister of Research, Science And Technology of Québec Conseil d’évaluation des technologies de la santé du Québec Information concerning this report or any other report published by the Conseil d'évaluation des tech- nologies de la santé can be obtained by contacting AÉTMIS. On June 28, 2000 was created the Agence d’évaluation des technologies et des modes d’intervention en santé (AÉTMIS) which took over from the Conseil d’évaluation des technologies de la santé. Agence d’évaluation des technologies et des modes d’intervention en santé 2021, avenue Union, Bureau 1040 Montréal (Québec) H3A 2S9 Telephone: (514) 873-2563 Fax: (514) 873-1369 E-mail: [email protected] Web site address: http://www.aetmis.gouv.qc.ca Legal deposit - Bibliothèque nationale du Québec, 2001 - National Library of Canada ISBN 2-550-37028-7 How to cite this report : Conseil d’évaluation des technologies de la santé du Québec. The excimer laser in ophtalmology: A state- of-knowledge update (CÉTS 2000-2 RE). Montréal: CÉTS, 2000, xi- 103 p Conseil d’évaluation des technologies de la santé du Québec THE EXCIMER LASER IN OPHTHALMOLOGY: A MANDATE STATE-OF-KNOWLEDGE UPDATE To promote and support health technology assessment, In May 1997, the Conseil d’évaluation des technologies de disseminate the results of the assessments and la santé du Québec (CETS) published a report dealing spe- encourage their use in decision making by all cifically with excimer laser photorefractive keratectomy stakeholders involved in the diffusion of these (PRK).
    [Show full text]
  • Patient Guide to Excimer Laser Refractive Surgery
    A Patients’ Guide to Excimer Laser Refractive Surgery July 2011 Contents 1. Introduction 2. Understanding your refractive error 3. Changing the eye’s focus by surgery (refractive surgery) 4. Indications and contraindications to refractive surgery 5. Assessment for excimer laser refractive surgery 6. The day of surgery 7. The period after surgery 8. Results 9. Complications 10. Standards for laser refractive surgery 11. Glossary Royal College of Ophthalmologists 2 1. Introduction Focusing (refractive) errors such as short-sightedness (myopia), astigmatism, and long-sightedness (hyperopia) are usually corrected by wearing spectacles or contact lenses. Over the years a number of surgical techniques have been used to treat refractive errors and reduce the need for glasses (Table 1.1). The most common treatment uses an excimer laser. The following information explains the different excimer techniques, their advantages and disadvantages and the various terms used. Its aim is to help you come to an informed decision about any prospective treatment. If you have any further questions, your ophthalmic surgeon who will be performing the treatment should answer them. There are other surgical techniques as well as using the excimer laser. These other techniques are summarised in Table 1. Some are much more commonly used than others. (Please see section 2 for an explanation of the focusing problems of the eye). Site of Treatment Technique Procedure Indications Corneal techniques Excimer laser PRK – Photo- Low, mod & high: Refractive myopia Keratectomy
    [Show full text]
  • Worldwide Market for Lasers Trends and Five-Year Forecast (2017 – 2023)
    The Worldwide Market for Lasers Trends and Five-Year Forecast (2017 – 2023) Table of Contents Chapter 1: Executive Summary & Totals ............................................................................................. 13 1.1 The Overall Laser Market ....................................................................................................... 13 1.2 Good News From 2017 .......................................................................................................... 13 1.3 Things Troubling in 2017 ....................................................................................................... 14 1.4 Historic Laser Revenue .......................................................................................................... 14 1.4.1 The Laser Market by Segment .......................................................................................... 15 1.5 Laser Market by Laser Type ................................................................................................... 20 1.5.1 Fiber Lasers .................................................................................................................... 21 1.5.2 Low-Power Diode Lasers .................................................................................................. 23 1.5.3 High-Power Laser Diodes ................................................................................................. 24 1.5.4 Solid-State Lasers ...........................................................................................................
    [Show full text]
  • Laser Disposal Guide
    Laser Disposal Guide Introduction Lasers have a finite lifetime, which is based on use, experimental needs or technological advances. The goal of this guide is to provide guidance for the laser user and in particular, the LBNL Surplus/Excess staff and EHS waste disposal staff when dealing with lasers at the end of their life cycle. For the purpose of this guide, we will break lasers into several different types: gas, solid-state rod, liquid, and semiconductor. Laser systems also come in a variety of sizes, which does not relate to their optical laser output. In addition, when a laser is disposed of, a power supply often travels with it. Standard electrical safety protocols adequately address the power supply and will not be addressed in this document. All lasers that utilize electricity as their main energy source and were manufactured prior to July 1, 2006, will most likely have Lead in their printed circuit boards. Therefore these boards need to be disposed of as electronic waste (e-waste). There are United States regulations such as export control and European Reduction of Hazardous Materials regulations, known as RoHS rules, that affect how and the manner surplus lasers are to be dealt with. Here is in California there is the CA Dept. of Toxic Substances. Document prepared by Ken Barat & Justine Woo April 2012 Page | 1 Table of Contents Action Points/Questions to Ask Yourself .....................................................................................................3 User Responsibilities ....................................................................................................................................3
    [Show full text]
  • Optics for Excimer Laser Lithography
    04_000479(0380)日東光器/C裏_エキシマ(リーフ) Optics for Excimer Laser Lithography Nitto Optical Co., Ltd. provides high-quality optical devices required for semiconductor manufacturing equipment such as excimer laser lithography, KrF and ArF, which become minute and precise with the progress of the semiconductor technology. Major Products and Measuring Instruments ZYGO 12" Interferometer WYKO NT1100 Fabry-Perot Etalon for Excimer Laser Etalon Flatness Etalon Roughness CaF2 Window Surface Flatness Surface Roughness CaF2 Prism Optics for Laser Interferometers Demands for highly accurate measurement technology are expanding these days. Our optical devices for laser interferometers are highly evaluated in the lithography field. Products: Corner Cube Prism (CCP)・Polarizing Beam Splitter (PBS) ・Quarter Wave Plate Quarter Wave Plate Light Source CCP CCP:Beam Deviation: < 2 arc seconds CCP:Transmitted Wavefront Distortion Reference Flat PBS (Fused Silica) P Polarization PBS (Fused Silica) 45゜rotated P&S Polarization S Polarization Detector PBS:Transmitted Wavefront Distortion PBS:Beam Deviation: < 2 arc seconds 1-14-18 Kudankita, Chiyoda-ku, Tokyo 102-0073, Japan TEL:+81-3-3511-8111 FAX:+81-3-3511-8110 E-MAIL:[email protected] URL:http://www.nitto-optical.co.jp/english/index.html 0606 -1- 04_000479(0380)日東光器/C表_バーミラー(リーフ) Bar Mirror for Semiconductor and LCD Steppers Nitto Optical provides Bar Mirrors which become large, high precision and diversified in materials with demand expansion for semiconductors and LCD market. Size : 100 mm~3500 mm Flattness : μm ~λ Measuring Instrument : Mirror Flatness by ZYGO 32" (φ800) or ZYGO 12" (φ300) interferometers. (please contact us for details about size, shape and materials) LCD Stepper Application Size: 100~3500 mm.
    [Show full text]
  • A Mode Locked Uv-Fel
    578 P. Parvin et al. / Proceedings of the 2004 FEL Conference, 578-581 A MODE LOCKED UV-FEL P. Parvin* (AUT, IR-Tehran; AEOI-RCLA, IR-Tehran), G. R. Davoud-Abadi (AUT, IR-Tehran), A. Basam (IHU, IR-Tehran), B. Jaleh (BASU, IR-Hamadan), Z. Zamanipour (AEOI-RCLA, IR- Tehran), B. Sajad (AU, IR-Tehran), F. Ebadpour (AUT, IR-Tehran) Abstract FEL mode-locking phenomena for shorter wavelengths in An appropriate resonator has been designed to generate far-infrared and infrared range of spectrum [13, 14]. femtosecond mode locked pulses in a UV FEL with the In free-electron laser operating at the FIR and IR modulator performance based on the gain switching. The spectral regions, using a radio-frequency accelerator for gain broadening due to electron energy spread affects on the electron beam, when the electron pulse length can be the gain parameters, small signal gain γ0 and saturation of the same order as the slippage length or even shorter, intensity Is, to determine the optimum output coupling as the laser emits short pulses of multimode broad-band well. radiation [14]. INTRODUCTION On the other hand, Storage ring FEL represents a very Today, there is an increasing interest in the generation competitive technical approach to produce photons with of intense, tunable, coherent light in short wavelength these characteristics. After the first lasing of a storage region. Laser pulses of very short duration in UV/VUV ring FEL (SRFEL) in visible [15], the operation spectrum, find applications in large number of areas, such wavelength has been pushed to shorter values in various as analysis of transit-response of atoms and molecules, laboratories.
    [Show full text]
  • Article Aerosol Mass Spectrometry
    Atmos. Meas. Tech., 11, 4345–4360, 2018 https://doi.org/10.5194/amt-11-4345-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Exploring femtosecond laser ablation in single-particle aerosol mass spectrometry Ramakrishna Ramisetty1, Ahmed Abdelmonem1, Xiaoli Shen1, Harald Saathoff1, Thomas Leisner1, and Claudia Mohr1,2 1Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany 2Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden Correspondence: Claudia Mohr ([email protected]) Received: 29 September 2017 – Discussion started: 10 October 2017 Revised: 11 June 2018 – Accepted: 21 June 2018 – Published: 23 July 2018 Abstract. Size, composition, and mixing state of individual firing fs laser with the single-particle mass spectrometer em- aerosol particles can be analysed in real time using single- ploying the fs laser light scattered by the particle to trigger particle mass spectrometry (SPMS). In SPMS, laser abla- mass spectra acquisition. Generally, mass spectra exhibit an tion is the most widely used method for desorption and ion- increase in ion intensities (factor 1 to 5) with increasing laser ization of particle components, often realizing both in one power density (∼ 109 to ∼ 1013 W cm−2/ from ns to fs laser. single step. Excimer lasers are well suited for this task due At the same time, fs-laser ablation produces spectra with to their relatively high power density (107–1010 W cm−2/ larger ion fragments and ion clusters as well as clusters with in nanosecond (ns) pulses at ultraviolet (UV) wavelengths oxygen, which does not render spectra interpretation more and short triggering times.
    [Show full text]
  • Safe Handling of Excimer Laser Gases Lasers Lasers Safe Handling of Excimer Laser Gases Lowing Rules for the Safe Handling of ,--"
    Safe Handling ofExcimerLaser Gases The past decade has seen a pro­ used in the laser industry have pres­ tained and vented, one must qUickly found increase in excimer laser use. sures typically between 300psi and ascertain what went wrong and Processes using excimer laser~gen~ 3(x)()psi. At these pressures, an acci~ what laser gas is escaping into the erated UV wavelengths are now be~ dent causing the cylinder to fall room. Then make sure the ventila~ coming standard in semiconductor could shear an unprotected valve, tion system is on and that all person­ fabrication, materials processing causing the cylinder to simulate the nel are removed from the area. Don't and medical procedures. With the action ofan ungUided missile. A sec­ try to be a hero and stop the leak ofa proliferation of these refillable gas ond hazard also underestimated by toxic gas. lasers, the industry must not side­ laser gas users is found in the seem~ If anyone was exposed to toxic step or ignore a critical issue in their ingly benign gases such as He, Ne gases or shows evidence of suffoca~ successful utilization: that of safely and AI which can act as suffocants tion due to the lack of oxygen, ad­ storing and handling laser gases, It due to the displacementofoxygen. minister fIrst aid (Table I) and call a is in the best interests of the laser The two hazards most often asso­ physician immediately. community to fully understand ciated with the use of excimer gases First aid for inhalation of fluorine, what precautions should be taken to are the corrosivity and tOXicity ofthe hydrogen chloride and even carbon avoid serious accidents involving halogen component.
    [Show full text]
  • Comparative Mass Spectrometric Analyses of Photofrin Oligomers By
    JOURNAL OF MASS SPECTROMETRY J. Mass Spectrom. 34, 661–669 (1999) Comparative Mass Spectrometric Analyses of Photofrin Oligomers by Fast Atom Bombardment Mass Spectrometry, UV and IR Matrix-assisted Laser Desorption/Ionization Mass Spectrometry, Electrospray Ionization Mass Spectrometry and Laser Desorption/Jet-cooling Photoionization Mass Spectrometry Marshall M. Siegel,1* Keiko Tabei,1 Rushung Tsao,1 Michael J. Pastel,1 Ravindra K. Pandey,2 Stefan Berkenkamp,3 Franz Hillenkamp3 and Mattanjah S. de Vries4 1 Wyeth-Ayerst Research, Lederle Laboratories, Pearl River, New York 10965, USA 2 Photodynamic Therapy Center, Department of Radiation Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA 3 Institute for Medical Physics and Biophysics, University of Munster,¨ D-48149 Munster,¨ Germany 4 Department of Chemistry, The Hebrew University, Jerusalem 91904, Israel Photofrin (porfimer sodium) is a porphyrin derivative used in the treatment of a variety of cancers by photodynamic therapy. This oligomer complex and a variety of porphyrin monomers, dimers and trimers were analyzed with five different mass spectral ionization techniques: fast atom bombardment, UV and IR matrix- assisted laser desorption/ionization, electrospray ionization, and laser desorption/jet-cooling photoionization. All five approaches resulted in very similar oligomer distributions with an average oligomer length of 2.7 0.1 porphyrin units. In addition to the Photofrin analysis, this study provides a side-by-side comparison of the spectra for the five different mass spectrometric techniques. Copyright 1999 John Wiley & Sons, Ltd. KEYWORDS: photofrin; photodynamic therapy; oligomer distribution; mass spectrometry; fast atom bombardment; matrix-assisted laser desorption/ionization; electrospray ionization; laser desorption/jet cooling photoionization INTRODUCTION cancers of the lung and esophagus, in Canada for bladder and esophageal cancer and in Japan for the early stages of lung, esophageal, gastric and cervical cancers.
    [Show full text]
  • Fundamentals of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry with Pulsed Infrared Lasers
    International Journal of Mass Spectrometry 226 (2003) 189–209 Fundamentals of matrix-assisted laser desorption/ionization mass spectrometry with pulsed infrared lasers Klaus Dreisewerd∗, Stefan Berkenkamp, Arne Leisner, Andreas Rohlfing, Christoph Menzel Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, D-48149 Münster, Germany Received 29 August 2001; accepted 10 August 2002 Abstract The fundamental work and current knowledge on the mechanisms of matrix-assisted laser desorption ionization with pulsed infrared lasers is reviewed and discussed, with a special emphasis on the work performed in the laboratory of the authors in the recent past. The role of the different relevant irradiation parameters (laser wavelength, laser pulse duration, irradiated area and laser fluence) and matrix properties (absorption, state of aggregation) in the MALDI process is summarized as well as results on the dynamic parameters of the expanding desorption plume. New results include an extension of former wavelength studies to the 10 ␮m wavelength range. Furthermore, a detailed analysis of matrix ion signals generated at infrared laser wavelengths around 3 and 10 ␮m is presented and compared to those generated by UV-MALDI, revealing a complex picture of the hitherto hardly understood IR-MALDI ionization mechanisms. Preliminary results from a photoacoustic study of the desorption process point to a prolonged material evaporation in case of liquid matrices and pulsed Er:YAG laser excitation. The combined description of the various fundamental work promotes the understanding of the IR-MALDI desorption and ionization processes and allows an assessment of possible solutions for current mass spectrometric limitations of the IR-MALDI method.
    [Show full text]