Atmos. Meas. Tech., 11, 4345–4360, 2018 https://doi.org/10.5194/amt-11-4345-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Exploring femtosecond laser ablation in single-particle aerosol mass spectrometry Ramakrishna Ramisetty1, Ahmed Abdelmonem1, Xiaoli Shen1, Harald Saathoff1, Thomas Leisner1, and Claudia Mohr1,2 1Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany 2Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden Correspondence: Claudia Mohr (
[email protected]) Received: 29 September 2017 – Discussion started: 10 October 2017 Revised: 11 June 2018 – Accepted: 21 June 2018 – Published: 23 July 2018 Abstract. Size, composition, and mixing state of individual firing fs laser with the single-particle mass spectrometer em- aerosol particles can be analysed in real time using single- ploying the fs laser light scattered by the particle to trigger particle mass spectrometry (SPMS). In SPMS, laser abla- mass spectra acquisition. Generally, mass spectra exhibit an tion is the most widely used method for desorption and ion- increase in ion intensities (factor 1 to 5) with increasing laser ization of particle components, often realizing both in one power density (∼ 109 to ∼ 1013 W cm−2/ from ns to fs laser. single step. Excimer lasers are well suited for this task due At the same time, fs-laser ablation produces spectra with to their relatively high power density (107–1010 W cm−2/ larger ion fragments and ion clusters as well as clusters with in nanosecond (ns) pulses at ultraviolet (UV) wavelengths oxygen, which does not render spectra interpretation more and short triggering times.