Acsvl3 Is a Novel Therapeutic Target in Glioblastoma: Drug Discovery and Role in Protein Lipidation

Total Page:16

File Type:pdf, Size:1020Kb

Acsvl3 Is a Novel Therapeutic Target in Glioblastoma: Drug Discovery and Role in Protein Lipidation ACSVL3 IS A NOVEL THERAPEUTIC TARGET IN GLIOBLASTOMA: DRUG DISCOVERY AND ROLE IN PROTEIN LIPIDATION by Emily M. Clay A dissertation submitted to The Johns Hopkins University in conformity with the requirements of the degree of Doctor of Philosophy Baltimore, Maryland October 2017 © Emily M. Clay 2017 All rights reserved Abstract Glioblastoma is an aggressive form of brain cancer with a five-year survival rate after diagnosis of less than 6%. More efficacious treatments are needed to improve patient prognosis. Very long-chain acyl-CoA synthetase (ACSVL3) is not detected in healthy glial cells, but is highly expressed in gliomas. Knockout of ACSVL3 in glioblastoma cells in culture decreases tumorigenicity and disrupts growth-factor induced cell signaling. However, the mechanism through which ACSVL3 promotes malignancy is not known. To address this question, lipid-based post-translational modifications were studied in wild-type and ACSVL3-knockout glioblastoma lines in cell culture. No significant differences were found in levels of protein palmitoylation or GPI anchors between wild-type and knockout cells. However, a global decrease in protein stearoylation was observed with ACSVL3 knockout, and mass spectrometry revealed several individual proteins that exhibited increased or decreased stearoylation with ACSVL3 knockout. From this we conclude that ACSVL3 is partially responsible for mediating stearoylation in glioblastoma cells. Next, we searched for inhibitors of ACSVL3. Inhibitors are desired both as tools to study the mechanism of ACSVL3- promoted malignancy and as potential therapeutic agents in glioblastoma. Two methods were established to screen for inhibitors of ACSVL3. The first was a small screen of known inhibitors of the homologous enzyme ACSVL1. This screen determined whether these drugs and compounds inhibited the activation of the 18-carbon fatty acid stearate by glioblastoma cells. The second was development of a screen to evaluate the ability of an ACSVL3/ACSVL1 hybrid enzyme to uptake fluorescent fatty-acid analogs. In the first ii screen, the small molecule CB5 was found to greatly inhibit activation of stearate. When glioblastoma cells in culture were treated with CB5, the compound slowed the rate of cell proliferation, induced differentiation, and decreased β-oxidation of long-chain fatty acids. Growth of subcutaneous xenografts produced from U87, but not Mayo-22, glioblastoma cells implanted subcutaneously in mice was significantly slowed by CB5 treatment. We conclude that the small molecule CB5 inhibits ACSVL3 activity in vitro and in vivo, and ACSVL3 is a promising novel therapeutic target in glioblastoma. The second screen shows high potential for conducting a high-throughput screen for additional inhibitors. Thesis Advisor/Reader: Paul A. Watkins, M.D., Ph.D. Thesis Reader: Daniel M. Raben, Ph.D. iii Acknowledgments I would like to acknowledge my committee members, who provided very valuable advice and direction over the course of my thesis research: Drs. Jun Liu, John Laterra, Jin Zhang, Paul Englund, and my committee chair Daniel Raben. I would also like to thank all of the current and former members of the Watkins lab for all their help around the lab, advice, friendship, and camaraderie, especially Yanqiu Liu, Dr. Xiaohai Shi, and Dr. Liz Kolar. They made coming to work every day enjoyable, even when it was frustrating. I was incredibly fortunate to work with the best advisor imaginable, Dr. Paul Watkins. Paul was unwaveringly supportive and always available to troubleshoot or just talk science. I thank him for instilling in me a love of lipids. Finally, I thank my family, friends, and Lance for their encouragement throughout my time as a graduate student. iv Table of Contents Abstract ............................................................................................................................... ii Acknowledgments.............................................................................................................. iv List of Tables ..................................................................................................................... vi List of Figures ................................................................................................................... vii Background ..........................................................................................................................1 Chapter 1: Identification and characterization of inhibitors of ACSVL3 Introduction ............................................................................................................14 Materials and methods ...........................................................................................19 Results ....................................................................................................................33 Discussion ..............................................................................................................53 Chapter 2: GPI-anchored proteins in WT and ACSVL3-KO U87 cells Introduction ............................................................................................................59 Materials and methods ...........................................................................................62 Results ....................................................................................................................68 Discussion ..............................................................................................................77 Chapter 3: Protein acylation in WT and ACSVL3-KO U87 cells Introduction ............................................................................................................80 Materials and methods ...........................................................................................82 Results ....................................................................................................................90 Discussion ............................................................................................................101 References ........................................................................................................................105 Curriculum Vitae .............................................................................................................122 v List of Tables Table 1: Systematic names of drugs and compounds included in assays .........................20 Table 2: Primer sequences used to detect transcripts encoding for common GPI-anchored proteins ......................................................................................................64 Table 3: Stearoylated proteins more abundant in WT U87 cells vs. ACSVL3-KO U87 cells ....................................................................................................................................99 Table 4: Stearoylated proteins more abundant in ACSVL3-KO U87 cells vs. WT U87 cells ..................................................................................................................................100 vi List of Figures Figure 1: Phylogenetic tree of human ACS proteins ...........................................................3 Figure 2: Sequence alignment of ACSVL3 and ACSVL1 ................................................16 Figure 3: Expression of ACSVL3 in WT and ACSVL3-KO U87 cells ............................33 Figure 4: Total activation of long- and very-long chain fatty acids in WT and ACSVL3- KO U87 cells......................................................................................................................34 Figure 5: Inhibition of C18:0 activation by ACSVL1 inhibitors in WT and ACSVL3-KO U87 cells ...........................................................................................................................37 Figure 6: Characterization of the ACSVL1/3 hybrid enzyme ...........................................39 Figure 7: Inhibition of ACSVL1/3 by ACSVL1 inhibitors ...............................................41 Figure 8: Inhibition of U87 proliferation by CB5 ..............................................................43 Figure 9: Morphology of U87 cells treated with CB5 .......................................................44 Figure 10: Reversion of growth rate in U87 treated with CB5 after drug removal ..........45 Figure 11: Treatment of human fibroblasts with CB5 .......................................................46 Figure 12: Scratch-wound assay of CB5-treated U87 cells ...............................................47 Figure 13: β-oxidation of long- and very long-chain fatty acids in U87 cells ...................48 Figure 14: Expression of GFAP in U87 cells ....................................................................49 Figure 15: Treatment of mice bearing glioblastoma xenograft tumors with CB5 .............52 Figure 16: Diagram of a human GPI-anchored protein .....................................................60 Figure 17: Expression of GPI-anchored proteins in WT and ACSVL3-KO U87 cells .....69 Figure 18: Expression and purification of PI-PLC from E. coli ........................................71 vii Figure 19: Assessment of purified PI-PLC activity using the Ellman assay .....................74 Figure 20: Detection of GPI-anchored proteins in WT and ACSVL3-KO U87 cells .......76 Figure 21: Detection of acylated proteins in WT and ACSVL3-KO U87 cells ................92 Figure 22: Activation of Akt by EGF in U87 cells ............................................................93
Recommended publications
  • Investigation of the Fatty Acid Transporter-Encoding Genes
    www.nature.com/scientificreports OPEN Investigation of the fatty acid transporter-encoding genes SLC27A3 and SLC27A4 in autism Received: 13 February 2015 1 1 1 1 Accepted: 12 October 2015 Motoko Maekawa , Yoshimi Iwayama , Tetsuo Ohnishi , Manabu Toyoshima , 1 1 1 1 2,3 Published: 09 November 2015 Chie Shimamoto , Yasuko Hisano , Tomoko Toyota , Shabeesh Balan , Hideo Matsuzaki , Yasuhide Iwata3, Shu Takagai3, Kohei Yamada3, Motonori Ota4, Satoshi Fukuchi5, Yohei Okada6,7, Wado Akamatsu6,8, Masatsugu Tsujii3,9, Nobuhiko Kojima10, Yuji Owada11, Hideyuki Okano6, Norio Mori3 & Takeo Yoshikawa1 The solute carrier 27A (SLC27A) gene family encodes fatty acid transport proteins (FATPs) and includes 6 members. During fetal and postnatal periods of development, the growing brain requires a reliable supply of fatty acids. Because autism spectrum disorders (ASD) are now recognized as disorders caused by impaired early brain development, it is possible that functional abnormalities of SLC27A genes may contribute to the pathogenesis of ASD. Here, we confirmed the expression of SLC27A3 and SLC27A4 in human neural stem cells derived from human induced pluripotent stem cells, which suggested their involvement in the developmental stage of the central nervous system. Additionally, we resequenced the SLC27A3 and SLC27A4 genes using 267 ASD patient and 1140 control samples and detected 47 (44 novel and 29 nonsynonymous) and 30 (17 novel and 14 nonsynonymous) variants for the SLC27A3 and SLC27A4, respectively, revealing that they are highly polymorphic with multiple rare variants. The SLC27A4 Ser209 allele was more frequently represented in ASD samples. Furthermore, we showed that a SLC27A4 Ser209 mutant resulted in significantly higher fluorescently-labeled fatty acid uptake into bEnd3 cells, a mouse brain capillary-derived endothelial cell line, compared with SLC27A4 Gly209, suggesting that the functional change may contribute to ASD pathophysiology.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Epistasis-Driven Identification of SLC25A51 As a Regulator of Human
    ARTICLE https://doi.org/10.1038/s41467-020-19871-x OPEN Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import Enrico Girardi 1, Gennaro Agrimi 2, Ulrich Goldmann 1, Giuseppe Fiume1, Sabrina Lindinger1, Vitaly Sedlyarov1, Ismet Srndic1, Bettina Gürtl1, Benedikt Agerer 1, Felix Kartnig1, Pasquale Scarcia 2, Maria Antonietta Di Noia2, Eva Liñeiro1, Manuele Rebsamen1, Tabea Wiedmer 1, Andreas Bergthaler1, ✉ Luigi Palmieri2,3 & Giulio Superti-Furga 1,4 1234567890():,; About a thousand genes in the human genome encode for membrane transporters. Among these, several solute carrier proteins (SLCs), representing the largest group of transporters, are still orphan and lack functional characterization. We reasoned that assessing genetic interactions among SLCs may be an efficient way to obtain functional information allowing their deorphanization. Here we describe a network of strong genetic interactions indicating a contribution to mitochondrial respiration and redox metabolism for SLC25A51/MCART1, an uncharacterized member of the SLC25 family of transporters. Through a combination of metabolomics, genomics and genetics approaches, we demonstrate a role for SLC25A51 as enabler of mitochondrial import of NAD, showcasing the potential of genetic interaction- driven functional gene deorphanization. 1 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. 2 Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics,
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Frontiersin.Org 1 April 2015 | Volume 9 | Article 123 Saunders Et Al
    ORIGINAL RESEARCH published: 28 April 2015 doi: 10.3389/fnins.2015.00123 Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study Norman R. Saunders 1*, Katarzyna M. Dziegielewska 1, Kjeld Møllgård 2, Mark D. Habgood 1, Matthew J. Wakefield 3, Helen Lindsay 4, Nathalie Stratzielle 5, Jean-Francois Ghersi-Egea 5 and Shane A. Liddelow 1, 6 1 Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia, 2 Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark, 3 Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia, 4 Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland, 5 Lyon Neuroscience Research Center, INSERM U1028, Centre National de la Recherche Scientifique UMR5292, Université Lyon 1, Lyon, France, 6 Department of Neurobiology, Stanford University, Stanford, CA, USA The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq Edited by: Joana A. Palha, was performed at embryonic day (E) 15 and adult with additional data obtained at University of Minho, Portugal intermediate ages from microarray analysis. The largest represented functional group Reviewed by: in the embryo was amino acid transporters (twelve) with expression levels 2–98 times Fernanda Marques, University of Minho, Portugal greater than in the adult. In contrast, in the adult only six amino acid transporters Hanspeter Herzel, were up-regulated compared to the embryo and at more modest enrichment levels Humboldt University, Germany (<5-fold enrichment above E15).
    [Show full text]
  • Transcriptomic Gene Signatures Associated with Persistent Airflow Limitation
    Hekking et al Revised manuscript ERJ-02298-2016 Transcriptomic gene signatures associated with persistent airflow limitation in patients with severe asthma P.P. Hekking1, M.J. Loza2, S. Pavlidis3, B. De Meulder4, D. Lefaudeux4, F. Baribaud2, C. Auffray4, A.H. Wagener1, P. Brinkman1, R. Lutter1, A.T. Bansal5, A.R. Sousa6, S. Bates6, Y. Pandis3, L.J. Fleming3, D.E. Shaw7, S.J. Fowler8, Y. Guo3, A. Meiser3, K. Sun3, J. Corfield9, P. Howarth10, E.H. Bel1, I.M. Adcock11, K.F. Chung11, R. Djukanovic10, P.J. Sterk1, and the U-BIOPRED Study Group* 1: Respiratory Medicine, Academic Medical Centre, Amsterdam, the Netherlands; 2: Janssen research and development; Johnsen & Johnsen, Springhouse, US; 3: Data Science Institute, Imperial College, London, UK; 4: European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS- UCBL-INSERM, Université de Lyon, France; 5: Acclarogen Ltd, Cambridge, UK; 6: Discovery Medicine, GlaxoSmithKline, Brentford, UK; 7: Respiratory Research Unit, University of Nottingham, UK; 8: Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester Academic Health Sciences Centre, UK; 9: Areteva, Nottingham, UK; 10: NIHR Southampton Centre for Biomedical Research, University of Southampton, UK; 11: National Heart & Lung institute - Imperial College, London, UK;*A list of the U-BIOPRED study group can be found in the online supplement Corresponding author: Pieter-Paul Hekking, Academic Medical Centre (AMC), Department of Respiratory Medicine, F5-260 1105 AZ, Amsterdam, the Netherlands Telephone: +31 (0) 20 566 1660 Fax: +31 (0) 20 566 9001 E-mail: [email protected] 1 Hekking et al Take home message Persistent airflow limitation in severe asthma is associated with a mechanism in which IL-13 and remodeling are involved.
    [Show full text]
  • Fine Mapping of Genes on Sheep Chromosome 1 and Their Association with Milk Traits
    doi:10.1111/j.1365-2052.2006.01412.x Fine mapping of genes on sheep chromosome 1 and their association with milk traits J. H. Calvo*, A. Martı´nez-Royo*, A. E. Beattie†, K. G. Dodds†, A. Marcos-Carcavilla‡ and M. Serrano‡ *Unidad de Tecnologia en Produccion Animal, CITA-Gobierno de Aragon, Zaragoza, Spain. †AgResearch, Invermay Research Centre, Private Bag 50034, Mosgiel, New Zealand. ‡Departamento de Mejora Gene´ tica Animal, INIA, Madrid, Spain Summary On the basis of comparative mapping between cattle/sheep and human for milk trait quantitative trait loci (QTL) on BTA3/OAR1, annexin A9 (ANXA9) and solute carrier family 27 (fatty acid transporter), member 3 (SLC27A3) were selected as candidate genes for fat content (FC) in sheep milk. Two other genes in the same region, cingulin (CGN) and acid phosphatase 6, lysophosphatidic (ACP6), were also considered. DNA fragments of 1931 and 2790 bp corresponding to ANXA9 and SLC27A3 respectively were isolated, and 14 and 6 single nucleotide polymorphisms (SNPs) respectively were found in each gene. ANXA9, SLC27A3, CGN and ACP6 were localized to chromosome 1 between INRA006 and AE57 by linkage mapping using the International Mapping Flock. Across-family analyses of a daughter design comprising 13 sire families revealed significant sire and SLC27A3 geno- type-nested-within-sire effects for FC. Within-family analyses indicated significant regres- sion coefficients for FC in four of six heterozygous sires. These results could reflect the existence of a QTL for FC linked to SLC27A3 in sheep. Keywords dairy, quantitative trait loci, ovine chromosome 1, SLC27A3, ANXA9, CGN, ACP6. family of Manchega sheep (Calvo et al.
    [Show full text]
  • RNA-Seq Reveals Conservation of Function Among the Yolk Sacs Of
    RNA-seq reveals conservation of function among the PNAS PLUS yolk sacs of human, mouse, and chicken Tereza Cindrova-Daviesa, Eric Jauniauxb, Michael G. Elliota,c, Sungsam Gongd,e, Graham J. Burtona,1, and D. Stephen Charnock-Jonesa,d,e,1,2 aCentre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom; bElizabeth Garret Anderson Institute for Women’s Health, Faculty of Population Health Sciences, University College London, London, WC1E 6BT, United Kingdom; cSt. John’s College, University of Cambridge, Cambridge, CB2 1TP, United Kingdom; dDepartment of Obstetrics and Gynaecology, University of Cambridge, Cambridge, CB2 0SW, United Kingdom; and eNational Institute for Health Research, Cambridge Comprehensive Biomedical Research Centre, Cambridge, CB2 0QQ, United Kingdom Edited by R. Michael Roberts, University of Missouri-Columbia, Columbia, MO, and approved May 5, 2017 (received for review February 14, 2017) The yolk sac is phylogenetically the oldest of the extraembryonic yolk sac plays a critical role during organogenesis (3–5, 8–10), membranes. The human embryo retains a yolk sac, which goes there are limited data to support this claim. Obtaining experi- through primary and secondary phases of development, but its mental data for the human is impossible for ethical reasons, and importance is controversial. Although it is known to synthesize thus we adopted an alternative strategy. Here, we report RNA proteins, its transport functions are widely considered vestigial. sequencing (RNA-seq) data derived from human and murine yolk Here, we report RNA-sequencing (RNA-seq) data for the human sacs and compare them with published data from the yolk sac of and murine yolk sacs and compare those data with data for the the chicken.
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]
  • Transcriptome Profiling Reveals the Complexity of Pirfenidone Effects in IPF
    ERJ Express. Published on August 30, 2018 as doi: 10.1183/13993003.00564-2018 Early View Original article Transcriptome profiling reveals the complexity of pirfenidone effects in IPF Grazyna Kwapiszewska, Anna Gungl, Jochen Wilhelm, Leigh M. Marsh, Helene Thekkekara Puthenparampil, Katharina Sinn, Miroslava Didiasova, Walter Klepetko, Djuro Kosanovic, Ralph T. Schermuly, Lukasz Wujak, Benjamin Weiss, Liliana Schaefer, Marc Schneider, Michael Kreuter, Andrea Olschewski, Werner Seeger, Horst Olschewski, Malgorzata Wygrecka Please cite this article as: Kwapiszewska G, Gungl A, Wilhelm J, et al. Transcriptome profiling reveals the complexity of pirfenidone effects in IPF. Eur Respir J 2018; in press (https://doi.org/10.1183/13993003.00564-2018). This manuscript has recently been accepted for publication in the European Respiratory Journal. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJ online. Copyright ©ERS 2018 Copyright 2018 by the European Respiratory Society. Transcriptome profiling reveals the complexity of pirfenidone effects in IPF Grazyna Kwapiszewska1,2, Anna Gungl2, Jochen Wilhelm3†, Leigh M. Marsh1, Helene Thekkekara Puthenparampil1, Katharina Sinn4, Miroslava Didiasova5, Walter Klepetko4, Djuro Kosanovic3, Ralph T. Schermuly3†, Lukasz Wujak5, Benjamin Weiss6, Liliana Schaefer7, Marc Schneider8†, Michael Kreuter8†, Andrea Olschewski1,
    [Show full text]
  • Wo 2008/156655 A9
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) CORRECTED VERSION (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 24 December 2008 (24.12.2008) PCT WO 2008/156655 A9 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07K 14/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, (21) International Application Number: CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, PCT/US2008/007377 EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, (22) International Filing Date: 13 June 2008 (13.06.2008) LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, (25) Filing Language: English PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, (26) Publication Language: English ZA, ZM, ZW (30) Priority Data: (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, 60/934,768 15 June 2007 (15.06.2007) US GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), (71) Applicants (for all designated States except US): European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, GENELUX CORPORATION [US/US]; 3030 Bunker FR, GB, GR, HR, HU, IE, IS, IT, LT,LU, LV,MC, MT, NL, Hill Street, Suite 310, San Diego, CA 92109 (US).
    [Show full text]
  • Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
    Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein
    [Show full text]