Diversity and Evolution of Monocots

Total Page:16

File Type:pdf, Size:1020Kb

Diversity and Evolution of Monocots Monocots! Diversity and Evolution We will finish our survey of angiosperms by examining the of Monocots monocots - a lineage of basal angiosperms Basal angiosperm lineage, but is . what, where, when, how . appearing to be closer to eudicots than most other basal angiosperms Monocots! Tremendous economic • Large group: ~ 60,000 species! • Old lineage: ~134 mya importance • Great diversity: habit, habitat, pollination, morphology • Adaptive radiations: (orchids–21,950 spp; grasses–10,035 spp) • Smallest & largest seeds: orchids; Lodoicea maldivica • Largest inflorescences (titan arum, palms, bromeliads) • Smallest fruit, flower & flowering plant (Wolfia) 1 Diversity in ecology Diversity of aquatic habits emergent • “Trees”, grasses, rosettes, Emergent, floating, or submerged vines, epiphytes… aquatic group of monocots • Carnivores, mycotrophs… These are the first diverging • Habitats: dry, wet, monocots aquatic… • Pollination: water, wind, zoophily submerged floating Monocot “trees” Monocot leaves No vascular cambium activity Þ no true secondary growth (wood) • Parallel venation (or Anomalous secondary growth Þ “trees” derived forms) vs. pinnate or reticulate venation as in most dicots • (more on this later) Dragon tree – a lily relative Woody palm 2 Monocot flower: common theme Diversity in pollination 3-merous Striking modifications & bracts: Tepals are common grasses, pulpits, orchids, spadices & more! Monocot Origins Monocot Origins Monocots have usually been Crown group radiation: ~135+ mya [based on DNA evidence] considered as derived out of basal Pollen & leaf: possible early Aptian (Early Cretaceous), 113-125 mya angiosperms - Ranales in the Bessey system or subclass Magnoliidae Oldest unambiguously assigned fossil: Araceae, 110-120 mya with Cronquist 3 2018, Volume 105 • Givnish et al.—Monocot plastid phylogenomics • 9 0.18 PACMAD-BOP Puelioideae Pharoideae Anomochlooideae Monocot Origins Ecdeiocoleaceae Monocot leaf evolution Joinvilleaceae Flagellariaceae Restionaceae s.l. Xyridaceae Poales Eriocaulaceae 0.12 Mayacaceae Cyperaceae Juncaceae Thurniaceae Rapateaceae Typhaceae Bromeliaceae Zingiberaceae • cpDNA genome Costaceae Marantaceae 0.077 Cannaceae Heliconiaceae Zingiberales Strelitziaceae Lowiaceae phylogeny (Givnish et al. Musaceae Pontederiaceae Haemodoraceae Philydraceae Commelinales Commelinaceae Hanguanaceae 2018) 0.029 Arecaceae Arecales Dasypogonaceae Asparagaceae Dasypogonales Amaryllidoideae Allioideae Agapanthoideae Asphodeloideae Hemerocallidoideae Xanthorrhoeoideae Xeronemataceae Iridaceae Doryanthaceae • rapid radiation at base Ixioliriaceae Asparagales Tecophilaeaceae Lanariaceae Hypoxidaceae Asteliaceae Blandfordiaceae Boryaceae Epidendroideae Orchidoideae Cypripedioideae Vanilloideae Apostasioideae Liliaceae Philesiaceae Ripogonaceae • four large burst in species Smilacaceae Classic idea of pre-monocot characteristics – Cronquist’s view: Melanthiaceae Alstroemeriaceae Luzuriagaceae Liliales Colchicaceae Petermanniaceae diversification Campynemataceae Corsiaceae Pandanaceae Cyclanthaceae Tr iuridaceae Pandanales 1. Herbs Stemonaceae Velloziaceae Dioscoreaceae Thismiaceae Taccaceae Dioscoreales Burmanniaceae 2. Aquatic Nartheciaceae Petrosaviaceae Petrosaviales Hydrocharitaceae Nymphaeales Butomaceae Alismataceae Cymodoceaceae Ruppiaceae 3. Perianth not specialized Posidoniaceae Potamogetonaceae Only non-monocot Zosteraceae Maundiaceae Alismatales Juncaginaceae Scheuchzeriaceae 4. Uni-apperturate pollen Aponogetonaceae Tofieldiaceae order with all these other Araceae Lemnoideae Orontoideae Acoraceae Acorales 5. Apocarpy characteristics 140 120 100 80 60 40 20 0 Mya 6. Laminar placentation FIGURE 3. Monocot chronogram/diversigram. Ages of divergence of taxa at the subfamily, family, and ordinal levels of monocots and angiosperm outgroups are shown by branch depth. Signifcant accelerations of diversifcation are identifed by red dots; estimated rates of net species diversifca- tion (sp sp−1 My−1) from BAMM are color- coded as indicated. Area of bubbles is proportional to the number of species in terminal taxa. The Cretaceous- Tertiary boundary is indicated by the dashed line. See Appendix S13 for ages and 95% confdence intervals for all nodes within and among families. Monocot leaf evolution Monocot leaf evolution • monocot leaf morphology due to aquatic celery (left) and tomato (right) asterid petioles showing ancestry parallel vascular traces • monocot leaf is derived from • aquatic è terrestrial è aquatic pathways an expanded bladeless petiole 4 Monocot leaf evolution Monocot leaf evolution Phyllode theory: original monocot lacked a true leaf; only expanded loss of blade petiole variable & expansion expansion of of tissue tissue between between parallel veins parallel veins of petiole in aquatic habitat Phyllodes: expanded blade-less cross veins & petioles best seen in arid ‘reticulated’ adapted woody legumes such as blades Acacia Acorus sweet flag Monocot leaf evolution Monocot leaf evolution functional ecological arguments for evolution of broad leaves and fleshy fruits of monocots in shady understory conditions (T. Givnish, 1984, 1999, 2002) loss of blade variable & expansion divergence of tissue of parallel between veins to leaf parallel veins edge of petiole in aquatic habitat ‘parallel-pinnate’ venation of palms and bananas 5 Concerted Concerted convergence convergence Occurrences of net venation are Occurrences of net venation and overlain on this monocot fleshy fruits are overlain on this phylogeny monocot phylogeny Both features: • arise multiple times • are correlated with each other • arise in understory clades Survey of monocots Acorales (*Acoraceae - sweet flag) 4 main groups: • Emergent aquatic plants with ethereal oils and no raphides • Acorales - sister to all monocots 2 species: • Alismatales Acorus calamus, Old World – inc. Aroids - jack in the pulpit • “Lilioids” (lilies, orchids, yams): A. americanus, New World – non-monophyletic Both species in Wisconsin – petaloid • Commelinids – Arecales – palms – Commelinales – spiderwort – Zingiberales –banana – Poales – pineapple – grasses & sedges Acorus sweet flag 6 *Acoraceae - sweetflag Flat filaments *Acoraceae - sweetflag Flat filaments P 6 A6 G (3) ∞ seeds P 6 A6 G (3) ∞ seeds • Inflorescence with ‘spathe’ and spadix • Inflorescence with ‘spathe’ and spadix • Flowers bisexual • Flowers bisexual Acorus americanus - sweet flag Acorus americanus - sweet flag Alismatales Alismatales - aquatics 4 main groups: • Acorales - sister to all monocots Recurring themes: • Alismatales – inc. Aroids - jack in the pulpit Aquatic Þ brackish Þ marine habitats • “Lilioids” (lilies, orchids, yams) – non-monophyletic – petaloid Insect Þ water pollination • Commelinids – Arecales – palms – Commelinales – spiderwort – Zingiberales –banana – Poales – pineapple – grasses & sedges 7 Alismatales - aquatics Alismatales - aquatics emergent Associated with the aquatic habit is Emergent, floating, or the trend from insect-pollinated, submerged aquatic group showy flowers to water-pollinated, of monocots reduced flowers . and increasing effort to vegetative rather than sexual reproduction submerged Showy flowers, insect-pollinated Reduced unisexual flowers, water- floating pollinated Alismatales - aquatics *Araceae - aroids 72% of Alismatales are unisexual - • Sister family to other Alismatales monoecious or dioecious • Tropical (to temperate) 132 species are hydrophilous (how • epiphytes, herbs, aquatic many origins?) – answer later Showy flowers, insect-pollinated Reduced unisexual flowers, water- 104 genera pollinated 2,550 species 8 *Araceae - aroids *Araceae - aroids • raphides in vacuoles with mucilage Inflorescence a fleshy spadix, surrounded by bract called the • Ca-oxalate (endo-osmosis) spathe CA 0 CO 0 A 6- G (2-3) Flowers unisexual or perfect Fruits berries clustered on spadix spadix • defining characteristic is spathe the inflorescence of spathe (cut away) and spadix • spathe (or bract) is common in monocots Symplocarpus foetidus - skunk cabbage Arisaema triphyllum - jack-in-the pulpit *Araceae - aroids *Araceae - aroids L:female R:male Cabbage-like leaves emerge later in the spring Foetid smelling spathe and spadix emerges early in spring or late winter; attracts Symplocarpus foetidus - skunk cabbage carrion flies by heating up Arisaema triphyllum - jack-in-the pulpit [or jill-in-the-pulpit ?] and volatizing off the odor 9 *Araceae - aroids Endogenous heating of skunk cabbage (S. renifolius) spadix sapromyophily pollination flesh flies – Sarcophagidae Symplocarpus foetidus - carrion flies – gnats - skunk cabbage Calliphoridae Mycetophilidae Onda Y. et.al. Plant Physiol. 2008:146:636-645 *Araceae - aroids *Araceae - aroids Calla palustris - water arum Only emergent aquatic member Monstera - tropical aroid of the family in Great Lakes 10 *Araceae - aroids *Araceae - aroids Zantedeschia other strange aroids: arum lily Amorphophallus - titan arum Pistia - water lettuce “Lemnaceae” - duckweeds funeral plants! Spathiphyllum *Araceae (Lemnaceae - duckweeds) *Araceae (Lemnaceae - duckweeds) Floating or submersed aquatic *family* almost cosmopolitan in distribution; Lemna Vegetative reproduction primarily Now known to be derived from within the Smallest member Araceae of the family and Lemna minor - small duckweed the angiosperms: Wolffia columbiana - Includes the smallest water meal angiosperm, and the smallest flower Spirodela polyrhiza Largest member of the family Inflorescence reduced to 1 great duckweed female and 1-2 male flowers Lemna turionifera
Recommended publications
  • 2007 Vol. 10, Issue 1
    Department of Botany & the U.S. National Herbarium TheThe PlantPlant PressPress New Series - Vol. 10 - No. 1 January-March 2007 Botany Profile Taking Aim at the GSPC Targets By Gary A. Krupnick and W. John Kress n 2002, the Convention on Biologi- are the contributions that the Department The data and images of more than cal Diversity (CBD), a global treaty has made towards achieving the 16 targets 95,000 type specimens of algae, Isigned by 188 countries addressing since the Strategy’s inception in 2002. lichens, bryophytes, ferns, gymno- the conservation and sustainable use of sperms and angiosperms are available on biological diversity, adopted the Global Understanding and Documenting Plant USNH’s Type Specimen Register at Strategy for Plant Conservation (GSPC), Diversity <http://ravenel.si.edu/botany/types/>. A the first CBD document that defines Target 1: A widely accessible working multi-DVD set containing images of specific targets for conserving plant list of known plant species, as a step 89,000 vascular type specimens from diversity. The 16 targets are grouped towards a complete world flora USNH has been produced and distrib- under five major headings: (a) under- uted to institutions around the world. In standing and documenting plant diversity; One of the Department’s core mis- addition, data from 778,054 specimen (b) conserving plant diversity; (c) using sions is to discover and describe plant life records have been inventoried in the plant diversity sustainably; (d) promoting in marine and terrestrial environments. EMu catalogue software. education and awareness about plant Thus, one primary objective is to conduct In addition, USNH is a partner in diversity; and (e) building capacity for field work in poorly known areas of high producing the Global Working Check- the conservation of plant diversity.
    [Show full text]
  • A Checklist of the Vascular Flora of the Mary K. Oxley Nature Center, Tulsa County, Oklahoma
    Oklahoma Native Plant Record 29 Volume 13, December 2013 A CHECKLIST OF THE VASCULAR FLORA OF THE MARY K. OXLEY NATURE CENTER, TULSA COUNTY, OKLAHOMA Amy K. Buthod Oklahoma Biological Survey Oklahoma Natural Heritage Inventory Robert Bebb Herbarium University of Oklahoma Norman, OK 73019-0575 (405) 325-4034 Email: [email protected] Keywords: flora, exotics, inventory ABSTRACT This paper reports the results of an inventory of the vascular flora of the Mary K. Oxley Nature Center in Tulsa, Oklahoma. A total of 342 taxa from 75 families and 237 genera were collected from four main vegetation types. The families Asteraceae and Poaceae were the largest, with 49 and 42 taxa, respectively. Fifty-eight exotic taxa were found, representing 17% of the total flora. Twelve taxa tracked by the Oklahoma Natural Heritage Inventory were present. INTRODUCTION clayey sediment (USDA Soil Conservation Service 1977). Climate is Subtropical The objective of this study was to Humid, and summers are humid and warm inventory the vascular plants of the Mary K. with a mean July temperature of 27.5° C Oxley Nature Center (ONC) and to prepare (81.5° F). Winters are mild and short with a a list and voucher specimens for Oxley mean January temperature of 1.5° C personnel to use in education and outreach. (34.7° F) (Trewartha 1968). Mean annual Located within the 1,165.0 ha (2878 ac) precipitation is 106.5 cm (41.929 in), with Mohawk Park in northwestern Tulsa most occurring in the spring and fall County (ONC headquarters located at (Oklahoma Climatological Survey 2013).
    [Show full text]
  • Download/Empfehlung-Invasive-Arten.Pdf
    09-15078 rev FORMAT FOR A PRA RECORD (version 3 of the Decision support scheme for PRA for quarantine pests) European and Mediterranean Plant Protection Organisation Organisation Européenne et Méditerranéenne pour la Protection des Plantes Guidelines on Pest Risk Analysis Lignes directrices pour l'analyse du risque phytosanitaire Decision-support scheme for quarantine pests Version N°3 PEST RISK ANALYSIS FOR LYSICHITON AMERICANUS HULTÉN & ST. JOHN (ARACEAE) Pest risk analyst: Revised by the EPPO ad hoc Panel on Invasive Alien Species Stage 1: Initiation The EWG was held on 2009-03-25/27, and was composed of the following experts: - Ms Beate Alberternst, Projektgruppe Biodiversität und Landschaftsökologie ([email protected]) - M. Serge Buholzer, Federal Department of Economic Affairs DEA ([email protected]) - M. Manuel Angel Duenas, CEH Wallingford ([email protected]) - M. Guillaume Fried, LNPV Station de Montpellier, SupAgro ([email protected]), - M. Jonathan Newman, CEH Wallingford ([email protected]), - Ms Gritta Schrader, Julius Kühn Institut (JKI) ([email protected]), - M. Ludwig Triest, Algemene Plantkunde en Natuurbeheer (APNA) ([email protected]) - M. Johan van Valkenburg, Plant Protection Service ([email protected]) 1 What is the reason for performing the Lysichiton americanus originates from the pacific coastal zone of Northwest-America PRA? and was imported into the UK at the beginning of the 20th century as a garden ornamental, and has since been sold in many European countries, including southern 1 09-15078 rev countries like Italy. It is now found in 11 European countries. The species has been observed to reduce biodiversity in the Taunus region in Germany.
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • 1 American Wild Celery (Vallisneria Americana)
    American Wild Celery (Vallisneria americana) Population Dynamics Within Lake Onalaska from 1980 – 2003 Amy M Seitz 1,2 1Department of Resource Analysis, Saint Mary’s University of Minnesota, Winona, MN 55987; 2United States Fish and Wildlife Service, Upper Mississippi River National Wildlife and Fish Refuge – La Crosse District, Onalaska, WI 54650 Keywords: Vallisneria americana, American wild celery, submersed aquatic vegetation, Upper Mississippi River National Wildlife and Fish Refuge, Analysis of Variance (ANOVA), Spearman rank correlation, Tukey’s test, Geographical Information Systems (GIS), Aythya valisineria, canvasback duck Abstract The United States Fish and Wildlife Service surveys submersed aquatic vegetation annually to measure American wild celery (Vallisneria americana) population density and frequency of occurrence, in Lake Onalaska, Navigation Pool 7 of the Upper Mississippi River National Wildlife and Fish Refuge. Since 1980, sampling continues to be conducted in August during peak vegetation growth along fixed transects. There has been significant change in density and frequency of occurrence since 1980. Statistically significant correlations have been found between American wild celery density and water depth. After a population decline in the late 1980’s American wild celery continues to recover. Introduction long (Muenscher 1944). It is a dioecious, vascular perennial typically American wild celery is a critical and found in shallow lakes and streams increasingly important component of throughout eastern North America, quality waterfowl staging areas ranging from Nova Scotia west to South (Korschgen et al. 1988). Temporal Dakota and then south to the Gulf of change in American wild celery Mexico (Fassett 1957). It is a common populations of Lake Onalaska is an species in Mississippi River backwaters.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Size Variations of Flowering Characters in Arum Italicum (Araceae)
    M. GIBERNAU,]. ALBRE, 2008 101 Size Variations of Flowering Characters in Arum italicum (Araceae) Marc Gibernau· and Jerome Albre Universite Paul Sabatier Laboratoire d'Evolution & Diversite Biologique (UMR 5174) Bat.4R3-B2 31062 Toulouse cedex 9 France *e-mail: [email protected] ABSTRACT INTRODUCTION In Arum, bigger individuals should An extreme form of flowering character proportionally invest more in the female variations according to the size is gender function (number or weight of female modification, which occurs in several flowers) than the male. The aim of this species of Arisaema (Clay, 1993). Individ­ paper is to quantify variations in repro­ ual plant gender changes from pure male, ductive characters (size of the spadix when small, to monoecious (A. dracon­ parts, number of inflorescences) in rela­ tium) or pure female (A. ringens) when tion to plant and inflorescence sizes. The large (Gusman & Gusman, 2003). This appendix represents 44% of the spadix gender change is reversible, damaged length. The female zone length represents female individuals will flower as male the 16.5% of the spadix length and is much following year (Lovett Doust & Cavers, longer than the male zone (6%). Moreover 1982). These changes are related to change these three spadix zones increase with in plant size and are explained by the plant vigour indicating an increasing size-advantage model. The size-advantage investment into reproduction and pollina­ model postulates a sex change when an tor attraction. It appears that the length of increase in body size is related to differen­ appendix increased proportionally more tial abilities to produce or sire offspring than the lengths of the fertile zones.
    [Show full text]
  • Phylogeny and Systematics of Lemnaceae, the Duckweed Family
    Systematic Botany (2002), 27(2): pp. 221±240 q Copyright 2002 by the American Society of Plant Taxonomists Phylogeny and Systematics of Lemnaceae, the Duckweed Family DONALD H. LES,1 DANIEL J. CRAWFORD,2,3 ELIAS LANDOLT,4 JOHN D. GABEL,1 and REBECCA T. K IMBALL2 1Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-3043; 2Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio 43210; 3Present address: Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, Kansas 66045-2106; 4Geobotanisches Institut ETH, ZuÈ richbergstrasse 38, CH-8044, ZuÈ rich, Switzerland Communicating Editor: Jeff H. Rettig ABSTRACT. The minute, reduced plants of family Lemnaceae have presented a formidable challenge to systematic inves- tigations. The simpli®ed morphology of duckweeds has made it particularly dif®cult to reconcile their interspeci®c relation- ships. A comprehensive phylogenetic analysis of all currently recognized species of Lemnaceae has been carried out using more than 4,700 characters that include data from morphology and anatomy, ¯avonoids, allozymes, and DNA sequences from chloroplast genes (rbcL, matK) and introns (trnK, rpl16). All data are reasonably congruent (I(MF) , 6%) and contributed to strong nodal support in combined analyses. Our combined data yield a single, well-resolved, maximum parsimony tree with 30/36 nodes (83%) supported by bootstrap values that exceed 90%. Subfamily Wolf®oideae is a monophyletic clade with 100% bootstrap support; however, subfamily Lemnoideae represents a paraphyletic grade comprising Landoltia, Lemna,and Spirodela. Combined data analysis con®rms the monophyly of Landoltia, Lemna, Spirodela, Wolf®a,andWolf®ella.
    [Show full text]
  • Download the Full Report Pdf, 2.9 MB
    VKM Report 2016:50 Assessment of the risks to Norwegian biodiversity from the import and keeping of aquarium and garden pond plants Opinion of the Panel on Alien Organisms and Trade in Endangered Species (CITES) of the Norwegian Scientific Committee for Food Safety Report from the Norwegian Scientific Committee for Food Safety (VKM) 2016:50 Assessment of the risks to Norwegian biodiversity from the import and keeping of aquarium and garden pond plants Opinion of the Panel on Alien Organisms and Trade in Endangered Species (CITES) of the Norwegian Scientific Committee for Food Safety 01.11.2016 ISBN: 00000-00000 Norwegian Scientific Committee for Food Safety (VKM) Po 4404 Nydalen N – 0403 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] www.vkm.no www.english.vkm.no Suggested citation: VKM (2016). Assessment of the risks to Norwegian biodiversity from the import and keeping of aquarium and garden pond plants. Scientific Opinion on the on Alien Organisms and Trade in Endangered species of the Norwegian Scientific Committee for Food Safety ISBN: 978-82-8259-240-6, Oslo, Norway. VKM Report 2016:50 Title: Assessment of the risks to Norwegian biodiversity from the import and keeping of aquarium and garden pond plants Authors preparing the draft opinion Hugo de Boer (chair), Maria G. Asmyhr (VKM staff), Hanne H. Grundt, Inga Kjersti Sjøtun, Hans K. Stenøien, Iris Stiers. Assessed and approved The opinion has been assessed and approved by Panel on Alien organisms and Trade in Endangered Species (CITES). Members of the panel are: Vigdis Vandvik (chair), Hugo de Boer, Jan Ove Gjershaug, Kjetil Hindar, Lawrence Kirkendall, Nina Elisabeth Nagy, Anders Nielsen, Eli K.
    [Show full text]
  • 1 the Global Flower Bulb Industry
    1 The Global Flower Bulb Industry: Production, Utilization, Research Maarten Benschop Hobaho Testcentrum Hillegom, The Netherlands Rina Kamenetsky Department of Ornamental Horticulture Agricultural Research Organization The Volcani Center Bet Dagan 50250, Israel Marcel Le Nard Institut National de la Recherche Agronomique 29260 Ploudaniel, France Hiroshi Okubo Laboratory of Horticultural Science Kyushu University 6-10-1 Hakozaki, Higashi-ku Fukuoka 812-8581, Japan August De Hertogh Department of Horticultural Science North Carolina State University Raleigh, NC 29565-7609, USA COPYRIGHTED MATERIAL I. INTRODUCTION II. HISTORICAL PERSPECTIVES III. GLOBALIZATION OF THE WORLD FLOWER BULB INDUSTRY A. Utilization and Development of Expanded Markets Horticultural Reviews, Volume 36 Edited by Jules Janick Copyright Ó 2010 Wiley-Blackwell. 1 2 M. BENSCHOP, R. KAMENETSKY, M. LE NARD, H. OKUBO, AND A. DE HERTOGH B. Introduction of New Crops C. International Conventions IV. MAJOR AREAS OF RESEARCH A. Plant Breeding and Genetics 1. Breeders’ Right and Variety Registration 2. Hortus Bulborum: A Germplasm Repository 3. Gladiolus 4. Hyacinthus 5. Iris (Bulbous) 6. Lilium 7. Narcissus 8. Tulipa 9. Other Genera B. Physiology 1. Bulb Production 2. Bulb Forcing and the Flowering Process 3. Morpho- and Physiological Aspects of Florogenesis 4. Molecular Aspects of Florogenesis C. Pests, Physiological Disorders, and Plant Growth Regulators 1. General Aspects for Best Management Practices 2. Diseases of Ornamental Geophytes 3. Insects of Ornamental Geophytes 4. Physiological Disorders of Ornamental Geophytes 5. Exogenous Plant Growth Regulators (PGR) D. Other Research Areas 1. Specialized Facilities and Equipment for Flower Bulbs52 2. Transportation of Flower Bulbs 3. Forcing and Greenhouse Technology V. MAJOR FLOWER BULB ORGANIZATIONS A.
    [Show full text]
  • Antiviral Activity of a Arisaema Tortuosum Leaf Extract and Some of Its Constituents Against Herpes Simplex Virus Type 2
    Published online: 2020-01-22 Original Papers Antiviral Activity of a Arisaema Tortuosum Leaf Extract and Some of its Constituents against Herpes Simplex Virus Type 2 Authors Massimo Rittà1*, Arianna Marengo 2*, Andrea Civra 1, David Lembo 1, Cecilia Cagliero 2, Kamal Kant 3,UmaRanjanLal3, Patrizia Rubiolo 2, Manik Ghosh 3, Manuela Donalisio 1 Affiliations Correspondence 1 Department of Clinical and Biological Sciences, Dr. Manik Ghosh University of Torino, Orbassano, Torino, Italy Department of Pharmaceutical Sciences & Technology, 2 Department of Drug Science and Technology, Birla Institute of Technology University of Torino, Torino, Italy Mesra, Ranchi, Jharkhand 835215, India 3 Department of Pharmaceutical Sciences & Technology, Phone: + 916512276247, Fax: + 916512275401 Birla Institute of Technology, Mesra, Ranchi, India [email protected] Key words Supporting information available online at Arisaema tortuosum ‑ , Araceae, HSV 2, antiviral activity, http://www.thieme-connect.de/products apigenin, luteolin ABSTRACT received July 18, 2019 revised December 19, 2019 Infections caused by HSV-2 are a public health concern world- accepted December 31, 2019 wide, and there is still a great demand for the discovery of novel anti-herpes virus agents effective against strains resis- Bibliography tant to current antiviral agents. In this context, medicinal DOI https://doi.org/10.1055/a-1087-8303 plants represent an alternative source of active compounds published online January 22, 2020 | Planta Med 2020; 86: for developing efficient antiviral therapies. The aim of this – 267 275 © Georg Thieme Verlag KG Stuttgart · New York | study was to evaluate the antiviral activity of Arisaema tortuo- ‑ ISSN 0032 0943 sum, a plant used in the traditional medicine of India.
    [Show full text]
  • Skunk Cabbage Guide
    New York City EcoFlora Symplocarpus foetidus (L.) Salisb. ex W.P.C. Barton Skunk Cabbage Description: Perennial herbs from thickened vertical rhizomes and numerous fleshy roots with contractile rings; leaves crowded at the apex of the rhizome, appearing after the flowers, on short petioles, the blades fleshy, bright green, hairless, ovate or elliptic, 2 feet long and 1 foot wide (50 × 30 cm), reticulate veined, malodorous when crushed; inflorescences produced in winter; outer covering (spathe) mottled maroon and yellow-green, bulbous at the base, curved and twisted, tapering to a point; floral stalk (spadix) inside the spathe, globose, producing crowded bisexual flowers; fruit a mass of fused ovaries, 2–4 inches long (8 cm), developing slowly through the year, turning black and ripening in fall; seeds to 1/4 to 1/2 inches wide (1 cm). Where Found: Native to North America from Nova Scotia to Minnesota, south in the Appalachians to Georgia; swamps and wet woods in saturated soils; most abundant in New York City on Staten Island and in the Bronx, uncommon in Brooklyn, Queens and Manhattan. The plants are important for preventing erosion and maintaining water quality. Natural History: The perennial stem of the plant is an enlarged, starchy, underground organ called a rhizome. Rope-like contractile roots anchor the plant and pull the growing rhizome firmly into the muck. Dandelions (Taraxacum officinale), another rosette forming plant with starchy rhizomes and contractile roots is subject to grazing pressure and protects the growing crown (meristems) by maintaining it below the soil surface safely out of reach from grazing animals.
    [Show full text]