1 American Wild Celery (Vallisneria Americana)

Total Page:16

File Type:pdf, Size:1020Kb

1 American Wild Celery (Vallisneria Americana) American Wild Celery (Vallisneria americana) Population Dynamics Within Lake Onalaska from 1980 – 2003 Amy M Seitz 1,2 1Department of Resource Analysis, Saint Mary’s University of Minnesota, Winona, MN 55987; 2United States Fish and Wildlife Service, Upper Mississippi River National Wildlife and Fish Refuge – La Crosse District, Onalaska, WI 54650 Keywords: Vallisneria americana, American wild celery, submersed aquatic vegetation, Upper Mississippi River National Wildlife and Fish Refuge, Analysis of Variance (ANOVA), Spearman rank correlation, Tukey’s test, Geographical Information Systems (GIS), Aythya valisineria, canvasback duck Abstract The United States Fish and Wildlife Service surveys submersed aquatic vegetation annually to measure American wild celery (Vallisneria americana) population density and frequency of occurrence, in Lake Onalaska, Navigation Pool 7 of the Upper Mississippi River National Wildlife and Fish Refuge. Since 1980, sampling continues to be conducted in August during peak vegetation growth along fixed transects. There has been significant change in density and frequency of occurrence since 1980. Statistically significant correlations have been found between American wild celery density and water depth. After a population decline in the late 1980’s American wild celery continues to recover. Introduction long (Muenscher 1944). It is a dioecious, vascular perennial typically American wild celery is a critical and found in shallow lakes and streams increasingly important component of throughout eastern North America, quality waterfowl staging areas ranging from Nova Scotia west to South (Korschgen et al. 1988). Temporal Dakota and then south to the Gulf of change in American wild celery Mexico (Fassett 1957). It is a common populations of Lake Onalaska is an species in Mississippi River backwaters. important consideration for resource American wild celery occurs in water management. As these populations are depths of 0.3-5.0 meters; totally extensively dynamic, extreme submersed or with the upper portion of fluctuations in density and frequency of leaves floating (Korschgen and Green occurrence take place. 1988). These plants predominately reproduce via tuberous tipped rhizomes, Natural History which like the fruit and other parts of the plant, are relished by canvasbacks Vallisneria americana is a submersed, (Aythya valisneria). aquatic macrophyte with long, ribbon- Healthy stands of submersed like leaves approximately 3-11 aquatic vegetation, particularly millimeters wide and 2 meters or more American wild celery, have historically 1 attracted fall migrating waterfowl to provides nursery areas for young fish Lake Onalaska (Korschgen et al. 1988). and serves as spawning habitat (Engel Food of canvasbacks during fall 1990). Food resource management on migration generally is comprised of canvasback staging areas must vegetative matter. A major component emphasize American wild celery and of this food is American wild celery and other tuber producing plants e.g. it is an excellent source of arrowhead (Sagittaria spp.) and carbohydrates. Bellrose (1980) affirms pondweeds (Potamogeton spp.) canvasbacks’ preference of American (Korschgen et al. 1988). wild celery. Approximately 75 percent, Flooding, lock and dam of North American canvasbacks use the construction and sedimentation have Upper Mississippi River during fall resulted in dramatic effects to the river migration (Korschgen and Green 1988). ecosystem. First, flooding has had Staging areas are locations along dramatic effects on aquatic macrophytes. waterfowl migration routes where birds Complex interactions of date, duration refuel and rest. In the 1950s, Lake and magnitude of floodwater inundation Onalaska became an important all collaborate to stress plants (Spink and waterfowl staging area for diving ducks, Rogers 1996). Second, American wild particularly canvasbacks. This is due in celery distribution and density has been large part to the excellent food source impacted by the development of the available and the disappearance of many Upper Mississippi River Navigation smaller traditional wetland staging areas System. The navigation system outside the river corridor. With the implemented a complex of Lock and increase in importance to preserve these Dam structures designed to maintain a 9- areas, the majority of Lake Onalaska foot navigation channel. Because of was designated a closed area to this, much of the original floodplain waterfowl hunting in 1957. This forest, marsh and agricultural lands designation means that the area is off adjacent to the Mississippi River were limits to migratory bird hunting and inundated with permanent water trapping. Closed Areas provide (Korschgen et al. 1987). The dams that migrating waterfowl with refueling and control water levels created 90,000 acres resting locations. of marshland in the Upper Mississippi American wild celery improves River National Wildlife and Fish water quality by stabilizing sediments Refuge. Soon after inundation, water and filtering suspended materials levels stabilized and submersed aquatic (Korschgen et al. 1988). It also absorbs vegetation thrived. This magnificent nutrients such as phosphorus and makes waterfowl habitat was only temporary. them unavailable for algal absorption The lack of seasonal water level (Korschgen et al. 1987; Barko et al. fluctuations eventually transformed this 1991). The roots, rhizomes, and stolons superb waterfowl marshland habitat into reduce erosion and facilitate colonization open water. Third, the trapping of aquatic invertebrates. American wild efficiency of fine sediments in off- celery foliage offers shelter, support, and channel areas has greatly increased locally enriched oxygen supply for a (Peck and Smart 1986). The resultant variety of aquatic invertebrate accumulation of fine sediments has led populations. American wild celery to a wide range of problems for aquatic 2 macrophytes (Sparks et al. 1990). The annual sample size consisted of 120 quadrats (0.33 meter2) per year. These Materials and Methods 120 data points are distributed 10 per each of the 12 transects. In 1989, Lake Onalaska is a ~7,700-acre transect 11 was cut short with the impounded lake like area immediately construction of a dredge spoil island. above Lock and Dam 7 within the Upper Twelve samples were taken at shorter Mississippi River National Wildlife and intervals. These twelve transects were Fish Refuge. Lock and Dam 7, sampled in 1980, 1983 and 1989-2003. constructed by the United States Army Transect end points were entered into a Corps of Engineers, was completed in PLGR+96 (Rockwell Precise 1937. Lightweight GPS Receiver) which In 1980, twelve 800 meter utilizes the Precise Positioning Service transects (Figure 1) were established in (PPS) of the Department of Defense areas of historically dense vegetative Global Positioning System. Using the cover to measure American wild celery Navigation feature of the PLGR, buoys population density. Monitoring was were placed to mark these end points. employed to increase understanding of PLGRs were not used prior to the mid- observed population fluctuations. 1990s to lay out transects; the Biologists surveyed submersed aquatic technology used from 1980 thru 1995 vegetation in Lake Onalaska annually was LORAN. Each three-person boat through 1984 and stopped the survey. It crew was given a map to locate their was restarted in 1989 following a crash assigned transects. Quadrat frame in submersed aquatics (Kenow 2004). spacing of 70 to 80 meters along any Figure 1. American wild celery sampling transects, the characters not in parenthesis were the original name for transects. The numbers within parenthesis were assigned to simplify the transects’ identity. 3 given transect varies due to uncontrolled multiple comparison test used to factors such as boat drivers’ spatial determine if there are differences judgment and accessibility issues between transect means within relating to sedimentation and dense individual years sampled. According to vegetation. A buoy was attached to each Zar (1999), the critical value used for the quadrat frame. This buoy facilitated Tukey test is q 0.05(60,12) = 4.808. With a ease of location on the lake bottom by a sample size of 120 points, the error diver. At each quadrat drop point all degree of freedom (DF) for the analysis American wild celery plants found of variance is 108. In the table of critical within the quadrat frame were collected values for the q distribution, v (error DF and counted. Depth readings were for the analysis of variance) jumps from recorded at each quadrat drop point 60 to 120. Since the sample error DF using a three-meter pole numbered with falls within this range the lower v value 0.1-meter increments. Depth data were was used. Twelve represents the number not collected in 1980 and 1983. of groups (transects) annually sampled. When the calculated q value was greater Statistical Analyses than the critical q the null hypothesis was rejected. Statistically significant Four null hypotheses were tested. The correlations do not necessarily imply first two null hypotheses were cause and effect but serve to illustrate discounted based on graphical possible factors (Ambrose and Ambrose illustration. The remaining two null 1995) effecting American wild celery hypotheses were rejected statistically. density. These data were analyzed with SPSSTM Statistical Software and hypotheses were Results statistically tested. Spearman Rank Correlation was used as a nonparametric Overall,
Recommended publications
  • Effects of Water Level Fluctuation on Vallisneria Americana Michx Growth
    J. Aquat. Plant Manage. 46: 117-119 NOTES Effects of Water Level Fluctuation on Vallisneria americana Michx Growth CHETTA S. OWENS1, R. M. SMART1 AND G. O. DICK1 INTRODUCTION 122 cm. Water level was maintained by continuous low-flow from nearby Lewisville Lake. Wild celery (Vallisneria americana Michx.) is a native, sub- In July 2003, six containers were harvested from each mersed aquatic plant found in the eastern United States depth, processed into aboveground and belowground mate- westward to South Dakota and south throughout the Gulf rial, and dried at 55 C in a Blue M forced-air oven (General Coast states (Korschgen and Green 1988, USDA 2007). An Signal, Atlanta, GA) to a constant weight. Rosettes (daughter important food source for waterfowl and aquatic mammals plants) were counted and maximum leaf length was mea- (Fassett 1957), wild celery also provides habitat for fish, sedi- sured. At this time, remaining containers from the four ment stabilization benefits, improved water quality and clari- depth treatments were placed at a same depth (91 cm) to ty, and can slow or prevent the invasion of nonindigenous evaluate effects of increasing, stable, and decreasing water aquatic plant species (Smart 1993, 1995, Smart et al. 1994, levels on wild celery growth. After four weeks (August 2003), Smart and Dick 1999). containers were harvested and processed as described above. Numerous constructed reservoirs in the United States are Rosette number, maximum length, aboveground, and be- devoid of aquatic vegetation, exhibit some degree of water lowground biomass means were compared using a one-way level fluctuations, and lack propagule sources for timely nat- ANOVA and LSD (least significant differences) test at p = ural establishment of wild celery to occur (Smart 1993, 1995, 0.05 level of significance (Statistix Analytical Software, Talla- Smart et al.
    [Show full text]
  • American Eelgrass (Vallisneria Americana) ERSS
    American Eelgrass (Vallisneria americana) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, July 2020 Revised, January 2021 Web Version, 4/8/2021 Organism Type: Plant Overall Risk Assessment Category: Uncertain Photo: mfeaver. Licensed under Attribution-Non Commercial 4.0 International (CC BY-NC 4.0). Available: https://www.inaturalist.org/photos/58892818. (July 2020). 1 Native Range and Status in the United States Native Range From Maiz-Tome (2016): “The species is widespread across eastern North America, northern Mesoamerica and the Caribbean (eMonocot Team 2015).” 1 From Randhawa (2018): “The native range of Vallisneria americana incudes Asia, Australia, North America, Central America, and South America.” “Vallisneria americana is widely distributed in eastern North America and is present in Canada, Cuba, Dominican Republic, Guatemala, Haiti, Honduras, Jamaica, Mexico and the United States. (IUCN Red List of Threatened Species).” Status in the United States Vallisneria americana is native to parts of the contiguous United States. According to Nature Serve (2021) Vallisneria americana is native to the following states: Alabama, Arizona, Arkansas, Connecticut, Delaware, District of Columbia, Florida, Georgia, Idaho, Illinois, Indiana, Iowa, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Texas, Vermont, Virginia, Washington, West Virginia, and Wisconsin. From Randhawa (2018): “Vallisneria americana was observed growing in water district pond in Shasta county [sic] in 2007. Vallisneria species have been intercepted by county and at CDFA border stations in 2011, 2016 and 2018. This species is introduced to California.” “Vallisneria americana has been observed growing in a man-made pond in a very limited area of California.
    [Show full text]
  • ABSTRACTS , of the AQUATIC PLANT MANAGEMENT SOCIETY, INC
    ,. ABSTRACTS , of THE AQUATIC PLANT MANAGEMENT SOCIETY, INC. THIRTY·SECOND ANNUAL MEETING and INTERNATIONAL SYMPOSIUM ON THE BIOLOGY AND MANAGEMENT OF AQUATIC PLANTS July 12 - 16, 1992 Marriott Hotel Daytona Beach, Florida, USA l • NOTE The numbers accompanying the abstracts correspond to the paper titles in the program. The abstracts have been reviewed and standardized by the Editorial Committee. The Committee did not intend to change the meanings of the abstracts, and we apologize if this inadvertent error has occurred. The alternate abstracts ( > 146) are substitute papers when cancellations occur in the program after printing. The Program and Editorial Committees wish to express their appreciation to Patti Mikel and Bobbi Goodwin for typing the abstracts. Alison Fox formatted and provided camera-ready copies of the program, and Jan Miller volunteered similar duties for the abstracts. Clarke Hudson and Bill Haller. ORGANIZING COMMITfEES LOCAL PROGRAM ARRANGEMENTS EDITORIAL Clarke Hudson (Chair) Bill Zattau (Chair) Bill Haller (Chair) Tom Madsen George Bowes Wendy Andrew John Barko Jan Miller Don Doggett Mike Bodle Sven Beer Kevin Murphy Alison Fox George Bowes George Bowes Mark Rattray Bill Haller Alison Fox John Cassani Don Riemer Joe Joyce Joe Joyce Alison Fox Fred Ryan Jan Miller Ken Langeland Kurt Getsinger David Spencer Kevin Murphy Mark Rattray Stratford Kay William Spencer Mark Rattray Bill Rushing Stephen. Maberly David Sutton Bill Rushing Mike Stewart John Madsen 1 AQUATIC WEEDS IN DEVELOPING REGIONS T. Pet[, Food and Agriculture Organization, Fisheries Department, (FIR I) 00100 Rome, Italy In spite of ~heir preference for high dissolved nutrient concentrations in water, Salvinia molesta and Eicbhornia crassipes are known to undergo an explosive growth in "clean" waters.
    [Show full text]
  • The Distribution of Vallisneria Americana Seeds and Seedling Light Requirements in the Upper Mississippi River Anne Kimber Iowa State University
    Botany Publication and Papers Botany 1995 The distribution of Vallisneria americana seeds and seedling light requirements in the Upper Mississippi River Anne Kimber Iowa State University Carl E. Korschgen U.S. Geological Survey Arnold G. van der Valk Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/bot_pubs Part of the Botany Commons, Plant Biology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Kimber, Anne; Korschgen, Carl E.; and van der Valk, Arnold G., "The distribution of Vallisneria americana seeds and seedling light requirements in the Upper Mississippi River" (1995). Botany Publication and Papers. 86. https://lib.dr.iastate.edu/bot_pubs/86 This Article is brought to you for free and open access by the Botany at Iowa State University Digital Repository. It has been accepted for inclusion in Botany Publication and Papers by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The distribution of Vallisneria americana seeds and seedling light requirements in the Upper Mississippi River Abstract Vallisneria americana declined in backwaters of the Upper Mississippi River, U.S.A., after a drought in 1988. To determine whether viable seeds of V. americana occurred in the seed bank of navigation pool 7, Lake Onalaska, the upper 5 cm of sediment was collected from 103 sites in May 1990. These sediment samples were kept in pots at a depth of 0.4, 0.8, and 1.2 m in an outdoor pond for 12 weeks. Vallisneria americana seeds germinated from sites throughout the lake, and some seedlings produced overwintering buds by the end of the study.
    [Show full text]
  • Water Celery (Vallisneria Americana) Fresh Water Aquatic Plant Activities and Lesson Plan for Grades 3, 4, 5, and 6
    Water Celery (Vallisneria Americana) fresh water aquatic plant Activities and Lesson Plan for Grades 3, 4, 5, and 6 Jennifer Reid, Woodstock Day School, 2016 Objective: To teach students about how each organism contributes to the creation of a viable ecosystem using a single species – in this case water celery in the Hudson River Estuary. Students also will learn about the ecosystem at the bottom of the Hudson River, invertebrates, and aquatic and non-aquatic animals living in or near water celery beds. Background info Description: Water celery (also called wild celery, tape grass, and eelgrass) is a submerged aquatic macrophyte recognizable by its long ribbon-like leaves. The leaves can be up to six feet long and have a visible central stripe running down their length. The plant lacks any real stems but clusters of leaves emerge from tubers in the sediment. Flowering can occur in midsummer but most reproduction is vegetative from creeping rhizomes. Habitat: We find water celery growing in solid substrates in depths ranging from elbow deep to several meters. Further, it survives in water of varying acidity and is tolerant to eutrophic and murky water conditions. Value: Water celery is a primary source of food for waterfowl, in particular canvasback ducks, and all portions of the plant are consumed (foliage, tubers, fruit, and rhizomes). This plant is also important to marsh and shore birds including plover, snipe, sand piper and rail. Small mammals like muskrat also graze on it. It provides good cover and feeding opportunities for small fish. Common invertebrates found in water celery beds: earth and fresh water worms (oligochaete), lake flies (chironomidae), hydra (related to jelly fish and coral), round worms, galls, parasites, and vinegar eels (nematoda); crustaceans with no carapace such as skeleton shrimp (amphipoda); edible shelled-creatures such as abalone, conches, and periwinkles, (gastropoda); marine flatworms, flukes, and tape worms (turbellaria).
    [Show full text]
  • Decline and Restoration of Vallisneria Americana in the Upper Mississippi River Anne Kimber Iowa State University
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1994 Decline and restoration of Vallisneria americana in the Upper Mississippi River Anne Kimber Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Kimber, Anne, "Decline and restoration of Vallisneria americana in the Upper Mississippi River " (1994). Retrospective Theses and Dissertations. 10620. https://lib.dr.iastate.edu/rtd/10620 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. U'M'I MICROFILMED 1994 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI fîkns the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Pocket Field Guide
    sapeake B he ay SAVC Watchers Pocket Field Guide Field packing list Tier 1 Tier 2 On-site reporting • Datasheets • Pencils • Smartphone equipped with the • Dry erase marker Water Reporter app • Clipboard • SAV species guide • SAV species guide Off-site reporting • Pocket field guide • Watch or clock • Paper • Camera • Pencil • GPS-enabled device • Watch or Clock • Camera • 8” Secchi disk with attached • GPS-enabled device measuring tape • SAV species guide • Device to classify sediment • First aid kit Optional items • Binoculars • Dry bag • Mask and snorkel • Life jacket • Hand lens • Waterproof camera • Boat • Trash bag 1 SAV species list Cd - Hornwort - Ceratophyllum demersum Ngd - Southern naiad - Najas guadalupensis Cal - Water starwort - Callitriche sp. Nm - Spiny naiad - Najas minor Egd - Brazilian waterweed - Egeria densa Px - Unknown pondweed - Potamogeton sp. Ex - Unknown waterweed - Elodea sp. Pc - Curly pondweed - Potamogeton crispus Ec - Common waterweed - Elodea canadensis Pe - Leafy pondweed - Potamogeton epihydrus En - Western waterweed - Elodea nuttallii Pi - Illinois pondweed - Potamogeton illinoensis Hd - Water stargrass - Heteranthera dubia Pn - American pondweed - Potamogeton nodosus Hv - Hydrilla - Hydrilla verticillata Ppf - Redhead grass - Potamogeton perfoliatus Mx - Unknown milfoil - Myriophyllum sp. Ppu - Slender pondweed - Potamogeton pusillus Mh - Low watermilfoil - Myriophyllum humile Rm - Widgeongrass - Ruppia maritima Ma - Parrot feather milfoil - Myriophyllum Sp - Sago pondweed - Stuckenia pectinata brasiliense/aquaticum
    [Show full text]
  • Hydrilla Bulletin E352
    Pond and Lake Management Part VII: Aquatic Invasive Species: Hydrilla Bulletin E352 Cooperative Extension Patricia Rector Environmental and Resource Agent, Morris and Somerset Counties Peter Nitzsche Agricultural Agent, Morris County Hydrilla [Hydrilla verticillata (L.f.) Royle)], is an invasive green, pointed and saw-toothed and are attached direct- aquatic plant species that is native to Asia. The U.S. ly to the stem in whorls of four to eight. Leaf whorls of Department of Agriculture has designated hydrilla as five are most common in the Northeast (Fig. 1). Hydrilla a noxious weed, and prohibits the importing, export- can reproduce by seeds or vegetatively by tubers (Fig. ing or interstate commerce of this aquatic plant. In the 2), turions (Fig. 3) and fragments, although seeds are southeastern U.S., hydrilla has had several negative the least common method. Hydrilla is unusual in that it impacts to water bodies and their use. Impacts include occurs in two sexual reproductive forms. One form (also water quality changes, fish community alterations, canal called a biotype) of hydrilla is a self-fertilizing (mon- flow reductions, clogging of water pumps, impediments oecious) type with both male and female flowers on to recreational uses and boat navigation, displacement the same plant. The second form has male and female of native aquatic plants, and reduced aesthetics and the flowers on separate plants (dioecious), requiring both associated economic impacts. Hydrilla has recently been plant types for seed fertilization (Table 1). In the U.S., identified in several Mid-Atlantic States, including New only the female dioecious hydrilla has been observed.
    [Show full text]
  • Phylogenetics and Molecular Evolution of Alismatales Based on Whole Plastid Genomes
    PHYLOGENETICS AND MOLECULAR EVOLUTION OF ALISMATALES BASED ON WHOLE PLASTID GENOMES by Thomas Gregory Ross B.Sc. The University of British Columbia, 2011 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The Faculty of Graduate and Postdoctoral Studies (Botany) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) November 2014 © Thomas Gregory Ross, 2014 ABSTRACT The order Alismatales is a mostly aquatic group of monocots that displays substantial morphological and life history diversity, including the seagrasses, the only land plants that have re-colonized marine environments. Past phylogenetic studies of the order have either considered a single gene with dense taxonomic sampling, or several genes with thinner sampling. Despite substantial progress based on these studies, multiple phylogenetic uncertainties still remain concerning higher-order phylogenetic relationships. To address these issues, I completed a near- genus level sampling of the core alismatid families and the phylogenetically isolated family Tofieldiaceae, adding these new data to published sequences of Araceae and other monocots, eudicots and ANITA-grade angiosperms. I recovered whole plastid genomes (plastid gene sets representing up to 83 genes per taxa) and analyzed them using maximum likelihood and parsimony approaches. I recovered a well supported phylogenetic backbone for most of the order, with all families supported as monophyletic, and with strong support for most inter- and intrafamilial relationships. A major exception is the relative arrangement of Araceae, core alismatids and Tofieldiaceae; although most analyses recovered Tofieldiaceae as the sister-group of the rest of the order, this result was not well supported. Different partitioning schemes used in the likelihood analyses had little effect on patterns of clade support across the order, and the parsimony and likelihood results were generally highly congruent.
    [Show full text]
  • Celery: Duck's Delight
    Celery: Duck’s Delight By Paul Skawinski, CLMN Statewide Coordinator, UW-Extension Lakes ave you ever wondered what valisineria). Indeed, the canvasback is named is so tasty below the surface after water celery, because it is this water that makes ducks dive for bird’s primary food source during the non- their dinner? One of the most breeding period. Other animals, like deer and important foods for waterfowl muskrats, will feed on water celery too. In is water celery (Vallisneria addition to being a food staple for many ducks, H americana), and it is probably this aquatic plant provides shade, shelter and growing in your lake! spawning habitat for a wide variety of fishes Photo by Paul Skawinski and invertebrates. Pollination is Tricky Business Water celery remains fairly inconspicuous from the water’s surface, except for the fast-growing, ribbon-like corkscrew that grows from its base and lifts the female flower to a few millimeters below the surface. The surface tension of the water causes a slight dimple to form around this delicate, white flower; this dimple is the key to its pollination (Figure 1). While the byPhoto Paul Skawinski Early in the season, water celery peeks through the sediments at the bottom of the lake. Water celery, a submersed water plant, is native in most of the United States, including Wisconsin. This plant is named for Italian botanist Antonio Vallisneri and acquired its common name of water celery because the meat of ducks that eat a lot of Vallisneria is said to have a celery-like flavor. Diving ducks, like the canvasback (Aythya valisineria), Canvasbacks even consume huge amounts of the plant by coordinate their plunging to the base of the water celery to eat migratory patterns to its rhizomes (roots).
    [Show full text]
  • The Effect of Changes in Ph on the Production and Respiration Rates of Native Tape Grass, Vallisneria Americana" (2015)
    Virginia Community College System Digital Commons @ VCCS Student Writing Student Scholarship and Creative Works Spring 2015 The ffecE t of Changes in pH on the Production and Respiration Rates of Native Tape Grass, Vallisneria Americana Adam Parker Rappahannock Community College Follow this and additional works at: http://commons.vccs.edu/student_writing Part of the Environmental Health Commons, Environmental Monitoring Commons, Fresh Water Studies Commons, and the Marine Biology Commons Recommended Citation Parker, Adam, "The Effect of Changes in pH on the Production and Respiration Rates of Native Tape Grass, Vallisneria Americana" (2015). Student Writing. 16. http://commons.vccs.edu/student_writing/16 This Paper is brought to you for free and open access by the Student Scholarship and Creative Works at Digital Commons @ VCCS. It has been accepted for inclusion in Student Writing by an authorized administrator of Digital Commons @ VCCS. For more information, please contact [email protected]. The Effect of Changes in pH on the Production and Respiration Rates of Native Tape Grass, Vallisneria Americana Adam Parker Chesapeake Bay Governor’s School Jim Beam, Instructor 1 The Effect of Changes in pH on the Production and Respiration Rates of Native Tape Grass, Vallisneria americana Abstract In the past century, the world has seen an increase in the amount of carbon dioxide (CO2) in the atmosphere. The rise in CO2 can put stress on aquatic ecosystems due to ocean acidification, an overall decrease in the pH of the ocean’s waters. Freshwater ecosystems, already stressed by pollution and recent increases in the number of invasive species are also showing signs of acidification due to the increase in CO2.
    [Show full text]
  • Lake County Aquatic Plant List for Naturalists
    CONTACT Lake County Algae: INFORMATION Aquatic Chara C. contraria For more information regarding Lake Plant List C. globularis County Aquatic Invasive Filamentous algae Species contact: Plankton algae Lake County Soil and Water Blue-green algae (Cyanobacteria) Conservation District (SWCD) Native stonewort Nitella( flexilis) (218) 834-8370 Starry stonewort (Nitellopsis obtusa) ADDITIONAL This list provides an overview of This list is NOT exhaustive! You may aquatic plants you COULD find in find other aquatic plants in the waters RESOURCES the region. Keep on the lookout of Lake County, MN. for aquatic invasive species (AIS), which are marked in bold and are threatening Minnesota waters. Emergent Plants: Floating-leaf plants: Submerged plants: Three-way sedge (Dulichium arundina- ceum) Water shield (Brasenia schreberi) Pondweeds (Potamogeton) Small’s Spikerush (Eleocharis palustris) Marsh Water Starwort (Callitriche palus- P. pusillus (Very small) tris) Rattlesnake grass (Glyceria canadensis) P. robbinsii (Robbins’) Yellow Water Lily (Nuphar variegata) Broadleaf Arrowhead (Sagittaria latifolia) P. zosteriformis (Flatstem) White Water Lily (Nymphaea odorata ssp. P. praelongus (White-stemmed) Cattails (Typha) tuberosa) P. richardsnoii (Claspingleaf) T. latifolia (Broadleaf) Pondweeds (Potamogeton) P. crispus (Curly-leaf) T. angustifolia (Narrowleaf) P. amplifolius (Large-leaved) Canada waterweed (Elodea candensis) T. x glauca (Hybrid) P. epihydrus (Ribbon-leaved) Smallest waterwort (Elatine minima) Burreeds (Sparganium) P. spirillus (Snailseed) Pipewort (Eriocaulon aquaticum) S. americanum (American) P. oakesianus (Oakes’) Braun’s quillwort (Isoetes echinospora) S. emersum (Green-fruited) P. natans (Floating leaf) S. eurycarpum (Giant) Submersed Brown-fruited Rush (Juncus pelocar- P. gramineus (Variable) pus form submerses) Sedges (Carex) P. vaseyi (Vasey’s) Water lobelia (Lobelia dortmanna) C. crinita (Typical) Narrow Floatingleaf Burreed (Sparganium Coontail (Ceratophyllum demersum) C.
    [Show full text]