Genome and Time-Of-Day Transcriptome of Wolffia Australiana Link Morphological Minimization with Gene Loss and Less Growth Control
Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Research Genome and time-of-day transcriptome of Wolffia australiana link morphological minimization with gene loss and less growth control Todd P. Michael,1 Evan Ernst,2,3,11 Nolan Hartwick,1,11 Philomena Chu,4,12 Douglas Bryant,5,13 Sarah Gilbert,4,14 Stefan Ortleb,6 Erin L. Baggs,7 K. Sowjanya Sree,8 Klaus J. Appenroth,9 Joerg Fuchs,6 Florian Jupe,1,15 Justin P. Sandoval,1 Ksenia V. Krasileva,7 Ljudmylla Borisjuk,6 Todd C. Mockler,5 Joseph R. Ecker,1,10 Robert A. Martienssen,2,3 and Eric Lam4 1Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA; 2Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; 3Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; 4Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA; 5Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA; 6Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany; 7Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA; 8Department of Environmental Science, Central University of Kerala, Periye, Kerala 671316, India; 9Friedrich Schiller University of Jena, Jena 07737, Germany; 10Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a budding type of asexual reproduction.
[Show full text]