Autonomic Nervous System

Total Page:16

File Type:pdf, Size:1020Kb

Autonomic Nervous System Autonomic Nervous System Chapter 9 Organization of autonomic neurons: CNS Preganglionic neurons Autonomic ganglion Postganglionic neurons visceral organ Autonomic Nervous System Sympathetic Division = Thoracolumbar division Preganglionic neurons paravertebral ganglion (sympathetic chain) / prevertebral ganglion postganglionic neurons visceral organ Cell bodies of Preganglionic neurons lie in lateral horns of gray matter in thoraco-lumbar part of spinal cord and enter paravertebral ganglia through white communicating ramus of spinal nerves. It travels through chain and may synapse and postganglionic nerve fiber comes out through gray ramus. Thoraco-lumbar - Sympathetic trunks (T1-T12 – L1-L2) Pre ganglionic fibers (before synapse) are shorter than postganlionic fibers Preganglionic neurons are Cholinergic and secrete Acetylcholine. Post ganglionic fibers are Adrenergic and secrete Norepinephrine formerly called noradrenalin. Mass Activation: all sympathetic neurons get simultaneously activated. fight or flight – response to unusual stimuli (emergency, excitement, exercise, embarrassment), increases activity ↑ heart rate, breathing rate, blood pressure, pupil size, bladder size Collateral Ganglia Preganglionic nerve fibers exit paravertebral ganglia below diaphragm enter prevertebral ganglia. These include: Celiac ganglion Superior mesenteric ganglion Inferior mesenteric ganglion Preganglionic nerve fibers do not synapse in paravertebral ganglia but synapse in prevertebral ganglia. Preganglionic nerve fibers above diaphragm synapse in paravertebral ganglion. Postganglionic nerve fibers innervate visceral organs. Sympathoadrenal System Adrenal Gland has outer cortex and inner medulla. Adrenal medulla is a modified sympathetic ganglion. Neurons in adrenal medulla are activated along with sympathetic division. Neurons in adrenal medulla are without axons and release mostly Epinephrine and smaller quantity of Norepinephrine into blood. Therefore, epinephrine and norepinephrine act as hormones. Somatic NS ANS • Stimulates skeletal muscles • Stimulates visceral organ • Motor neurons • Preganglionic and postganglionic neurons • No ganglia in SNS between CNS and skeletal • Autonomic ganglion between CNS and visceral muscles. organ. • Axon terminals and motor end plates • Varicosities and normal cell membrane • Only cholinergic • Both cholinergic and adrenergic Parasympathetic Division = Craniosacral division Preganglionic neurons lie in brain nuclei of cranial nerves and sacral part of spinal cord. Cranio-sacral – 3rd, 7th, 9th, 10th cranial nerves and spinal nerve cord through 2nd, 3rd, 4th sacral spinal nerves Pre ganglionic fibers are longer than post ganglionic fibers Preganglionic neurons and Post ganglionic fibers are Cholinergic and secrete Acetylcholine. Rest and Digest response: maintains house-keeping activities, conserves energy, promotes digestion, defecation and diuresis ANS - Complementary and Cooperative actions Sympathetic and Parasympathetic Divisions are mostly antagonistic in action. Complementary Action: when both divisions have similar effects on a visceral organ. For example, parasympathetic division stimulates salivary glands to secrete more saliva by stimulating more water to it and sympathetic division causes saliva to become thicker due to constriction of blood vessels. Cooperative Action: Parasympathetic and sympathetic divisions do separate acts of a bigger function. Male sexual action needs erection and ejaculation. Parasympathetic division stimulates erection by relaxing blood vessels in penis. But sympathetic division stimulates ejection to complete the function. .
Recommended publications
  • The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’S Disease
    life Review The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease Gianfranco Natale 1,2,* , Larisa Ryskalin 1 , Gabriele Morucci 1 , Gloria Lazzeri 1, Alessandro Frati 3,4 and Francesco Fornai 1,4 1 Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (L.R.); [email protected] (G.M.); [email protected] (G.L.); [email protected] (F.F.) 2 Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy 3 Neurosurgery Division, Human Neurosciences Department, Sapienza University of Rome, 00135 Rome, Italy; [email protected] 4 Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected] Abstract: The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to Citation: Natale, G.; Ryskalin, L.; identifying various neuronal cytotypes belonging to ENS in baseline conditions.
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Neuroscience
    NEUROSCIENCE SCIENCE OF THE BRAIN AN INTRODUCTION FOR YOUNG STUDENTS British Neuroscience Association European Dana Alliance for the Brain Neuroscience: the Science of the Brain 1 The Nervous System P2 2 Neurons and the Action Potential P4 3 Chemical Messengers P7 4 Drugs and the Brain P9 5 Touch and Pain P11 6 Vision P14 Inside our heads, weighing about 1.5 kg, is an astonishing living organ consisting of 7 Movement P19 billions of tiny cells. It enables us to sense the world around us, to think and to talk. The human brain is the most complex organ of the body, and arguably the most 8 The Developing P22 complex thing on earth. This booklet is an introduction for young students. Nervous System In this booklet, we describe what we know about how the brain works and how much 9 Dyslexia P25 there still is to learn. Its study involves scientists and medical doctors from many disciplines, ranging from molecular biology through to experimental psychology, as well as the disciplines of anatomy, physiology and pharmacology. Their shared 10 Plasticity P27 interest has led to a new discipline called neuroscience - the science of the brain. 11 Learning and Memory P30 The brain described in our booklet can do a lot but not everything. It has nerve cells - its building blocks - and these are connected together in networks. These 12 Stress P35 networks are in a constant state of electrical and chemical activity. The brain we describe can see and feel. It can sense pain and its chemical tricks help control the uncomfortable effects of pain.
    [Show full text]
  • Anatomy of the Spine
    12 Anatomy of the Spine Overview The spine is made of 33 individual bones stacked one on top of the other. Ligaments and muscles connect the bones together and keep them aligned. The spinal column provides the main support for your body, allowing you to stand upright, bend, and twist. Protected deep inside the bones, the spinal cord connects your body to the brain, allowing movement of your arms and legs. Strong muscles and bones, flexible tendons and ligaments, and sensitive nerves contribute to a healthy spine. Keeping your spine healthy is vital if you want to live an active life without back pain. Spinal curves When viewed from the side, an adult spine has a natural S-shaped curve. The neck (cervical) and low back (lumbar) regions have a slight concave curve, and the thoracic and sacral regions have a gentle convex curve (Fig. 1). The curves work like a coiled spring to absorb shock, maintain balance, and allow range of motion throughout the spinal column. The muscles and correct posture maintain the natural spinal curves. Good posture involves training your body to stand, walk, sit, and lie so that the least amount of strain is placed on the spine during movement or weight-bearing activities. Excess body weight, weak muscles, and other forces can pull at the spine’s alignment: • An abnormal curve of the lumbar spine is lordosis, also called sway back. • An abnormal curve of the thoracic spine is Figure 1. (left) The spine has three natural curves that form kyphosis, also called hunchback. an S-shape; strong muscles keep our spine in alignment.
    [Show full text]
  • The Peripheral Nervous System
    The Peripheral Nervous System Dr. Ali Ebneshahidi Peripheral Nervous System (PNS) – Consists of 12 pairs of cranial nerves and 31 pairs of spinal nerves. – Serves as a critical link between the body and the central nervous system. – peripheral nerves contain an outermost layer of fibrous connective tissue called epineurium which surrounds a thinner layer of fibrous connective tissue called perineurium (surrounds the bundles of nerve or fascicles). Individual nerve fibers within the nerve are surrounded by loose connective tissue called endoneurium. Cranial Nerves Cranial nerves are direct extensions of the brain. Only Nerve I (olfactory) originates from the cerebrum, the remaining 11 pairs originate from the brain stem. Nerve I (Olfactory)- for the sense of smell (sensory). Nerve II (Optic)- for the sense of vision (sensory). Nerve III (Oculomotor)- for controlling muscles and accessory structures of the eyes ( primarily motor). Nerve IV (Trochlear)- for controlling muscles of the eyes (primarily motor). Nerve V (Trigeminal)- for controlling muscles of the eyes, upper and lower jaws and tear glands (mixed). Nerve VI (Abducens)- for controlling muscles that move the eye (primarily motor). Nerve VII (Facial) – for the sense of taste and controlling facial muscles, tear glands and salivary glands (mixed). Nerve VIII (Vestibulocochlear)- for the senses of hearing and equilibrium (sensory). Nerve IX (Glossopharyngeal)- for controlling muscles in the pharynx and to control salivary glands (mixed). Nerve X (Vagus)- for controlling muscles used in speech, swallowing, and the digestive tract, and controls cardiac and smooth muscles (mixed). Nerve XI (Accessory)- for controlling muscles of soft palate, pharynx and larynx (primarily motor). Nerve XII (Hypoglossal) for controlling muscles that move the tongue ( primarily motor).
    [Show full text]
  • Nerve Blocks for Surgery on the Shoulder, Arm Or Hand
    The Association of Regional The Royal College of Anaesthetists of Great Anaesthesia – Anaesthetists Britain and Ireland United Kingdom Nerve blocks for surgery on the shoulder, arm or hand Information for patients and families www.rcoa.ac.uk/patientinfo First edition 2015 This leaflet is for anyone who is thinking about having a nerve block for an operation on the shoulder, arm or hand. It will be of particular interest to people who would prefer not to have a general anaesthetic. The leaflet has been written with the help of patients who have had a nerve block for their operation. You can find more information leaflets on the website www.rcoa.ac.uk/patientinfo. The leaflets may also be available from the anaesthetic department or pre-assessment clinic in your hospital. The website includes the following: ■ Anaesthesia explained (a more detailed booklet). ■ You and your anaesthetic (a shorter summary). ■ Your spinal anaesthetic. ■ Anaesthetic choices for hip or knee replacement. ■ Epidural pain relief after surgery. ■ Local anaesthesia for your eye operation. ■ Your child’s general anaesthetic. ■ Your anaesthetic for major surgery with planned high dependency care afterwards. ■ Your anaesthetic for a broken hip. Risks associated with your anaesthetic This is a collection of 14 articles about specific risks associated with having an anaesthetic or an anaesthetic procedure. It supplements the patient information leaflets listed above and is available on the website: www.rcoa.ac.uk/patients-and-relatives/risks. Throughout this leaflet and others in the series, we have used this symbol to highlight key facts. 2 NERVE BLOCKS FOR SURGERY ON THE SHOULDER, ARM OR HAND Brachial plexus block? The brachial plexus is the group of nerves that lies between your neck and your armpit.
    [Show full text]
  • 15-1040-Junu Oh-Neuronal.Key
    Neuronal Control of the Bladder Seung-June Oh, MD Department of urology, Seoul National University Hospital Seoul National University College of Medicine Contents Relevant end organs and nervous system Reflex pathways Implication in the sacral neuromodulation Urinary bladder ! body: detrusor ! trigone and bladder neck Urethral sphincters B Preprostatic S Smooth M. Sphincter Passive Prostatic S Skeletal M. Sphincter P Prostatic SS P-M Striated Sphincter Membraneous SS Periurethral Striated M. Pubococcygeous Spinal cord ! S2–S4 spinal cord ! primary parasympathetic micturition center ! bladder and distal urethral sphincter ! T11-L2 spinal cord ! sympathetic outflow ! bladder and proximal urethral sphincter Peripheral innervation ! The lower urinary tract is innervated by 3 principal sets of peripheral nerves: ! parasympathetic -pelvic n. ! sympathetic-hypogastric n. ! somatic nervous systems –pudendal n. ! Parasympathetic and sympathetic nervous systems form pelvic plexus at the lateral side of the rectum before reaching bladder and sphincter Sympathetic & parasympathetic systems ! Sympathetic pathways ! originate from the T11-L2 (sympathetic nucleus; intermediolateral column of gray matter) ! inhibiting the bladder body and excite the bladder base and proximal urethral sphincter ! Parasympathetic nerves ! emerge from the S2-4 (parasympathetic nucleus; intermediolateral column of gray matter) ! exciting the bladder and relax the urethra Sacral somatic system !emerge from the S2-4 (Onuf’s nucleus; ventral horn) !form pudendal nerve, providing
    [Show full text]
  • What Is the Autonomic Nervous System?
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.suppl_3.iii31 on 21 August 2003. Downloaded from AUTONOMIC DISEASES: CLINICAL FEATURES AND LABORATORY EVALUATION *iii31 Christopher J Mathias J Neurol Neurosurg Psychiatry 2003;74(Suppl III):iii31–iii41 he autonomic nervous system has a craniosacral parasympathetic and a thoracolumbar sym- pathetic pathway (fig 1) and supplies every organ in the body. It influences localised organ Tfunction and also integrated processes that control vital functions such as arterial blood pres- sure and body temperature. There are specific neurotransmitters in each system that influence ganglionic and post-ganglionic function (fig 2). The symptoms and signs of autonomic disease cover a wide spectrum (table 1) that vary depending upon the aetiology (tables 2 and 3). In some they are localised (table 4). Autonomic dis- ease can result in underactivity or overactivity. Sympathetic adrenergic failure causes orthostatic (postural) hypotension and in the male ejaculatory failure, while sympathetic cholinergic failure results in anhidrosis; parasympathetic failure causes dilated pupils, a fixed heart rate, a sluggish urinary bladder, an atonic large bowel and, in the male, erectile failure. With autonomic hyperac- tivity, the reverse occurs. In some disorders, particularly in neurally mediated syncope, there may be a combination of effects, with bradycardia caused by parasympathetic activity and hypotension resulting from withdrawal of sympathetic activity. The history is of particular importance in the consideration and recognition of autonomic disease, and in separating dysfunction that may result from non-autonomic disorders. CLINICAL FEATURES c copyright. General aspects Autonomic disease may present at any age group; at birth in familial dysautonomia (Riley-Day syndrome), in teenage years in vasovagal syncope, and between the ages of 30–50 years in familial amyloid polyneuropathy (FAP).
    [Show full text]
  • Brainstem Dysfunction in Critically Ill Patients
    Benghanem et al. Critical Care (2020) 24:5 https://doi.org/10.1186/s13054-019-2718-9 REVIEW Open Access Brainstem dysfunction in critically ill patients Sarah Benghanem1,2 , Aurélien Mazeraud3,4, Eric Azabou5, Vibol Chhor6, Cassia Righy Shinotsuka7,8, Jan Claassen9, Benjamin Rohaut1,9,10† and Tarek Sharshar3,4*† Abstract The brainstem conveys sensory and motor inputs between the spinal cord and the brain, and contains nuclei of the cranial nerves. It controls the sleep-wake cycle and vital functions via the ascending reticular activating system and the autonomic nuclei, respectively. Brainstem dysfunction may lead to sensory and motor deficits, cranial nerve palsies, impairment of consciousness, dysautonomia, and respiratory failure. The brainstem is prone to various primary and secondary insults, resulting in acute or chronic dysfunction. Of particular importance for characterizing brainstem dysfunction and identifying the underlying etiology are a detailed clinical examination, MRI, neurophysiologic tests such as brainstem auditory evoked potentials, and an analysis of the cerebrospinal fluid. Detection of brainstem dysfunction is challenging but of utmost importance in comatose and deeply sedated patients both to guide therapy and to support outcome prediction. In the present review, we summarize the neuroanatomy, clinical syndromes, and diagnostic techniques of critical illness-associated brainstem dysfunction for the critical care setting. Keywords: Brainstem dysfunction, Brain injured patients, Intensive care unit, Sedation, Brainstem
    [Show full text]
  • The Autonomic Nervous System and Gastrointestinal Tract Disorders
    NEUROMODULATION THE AUTONOMIC NERVOUS SYSTEM AND GASTROINTESTINALTRACT DISORDERS TERRY L. POWLEY, PH.D. PURDUE UNIVERSITY • MULTIPLE REFRACTORY GI DISORDERS EXIST. • VISCERAL ATLASES OF THE GI TRACT ARE AVAILABLE. • REMEDIATION WITH ELECTROMODULATION MAY BE PRACTICAL. TERRY l. POWLEY, PH.D. PURDUE NEUROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM AND GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY 50 INTERNATIONAL I:"' NEUROMODULATION SOCIETY 0 40 ·­IS 12TH WORLD CONGRESS -I: -• 30 !"' A. -..0 20 ..a• E 10 z::::t TERRY l. POWLEY, PH.D. PURDUE NEUROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM AND GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY DISORDERS TO TREAT WITH NEUROMODULATION ACHALASIA DYSPHAGIA GASTROPARESIS GERD GUT DYSMOTILITY MEGA ESOPHAGUS DYSPEPSIA ,, VISCERAL PAIN l1 ' I NAUSEA, EMESIS OBESITY ,, ' 11 I PYLORIC STENOSIS ==..:.= --- "" .:.= --- .. _ _, DUMPING REFLUX COLITIS I:' . - IBS -·-- - CROHN'S DISEASE HIRSCHSPRUNG DISEASE CHAGAS DISUSE Gastrointestinal Tract Awodesk@ Ma;·a@ TERRY l. POWLEY, PH.D. PURDUE NEUROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM AND GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY TIME The Obesity Epidemic in America ·. TERRY l. POWLEY, PH.D. PURDUE NEU ROMODUlATION : THE AUTO N OMIC NERVOUS SYSTEM A N D G A STP.OINTESTINAL TRACT DISORDERS UNI V E R SI TY ROUX-EN-Y BYPASS Bypassed portion of stomach Gastric -"'~­ pouch Bypassed - ­ Jejunum duodenum -1" food -___----_,,.,. digestivejuice TERRY l. POWLEY, PH.D. PURDUE NEU ROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM A N D GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY 8y~s~ portionof i t()(l\3Ch • TERRYl. POWLEY, PH.D. PURDUE NEUROMOOUlATION: THE AUTONOMIC NERVOUS SYSTEM ANO 0.-STP.OINTESTINAL TRACT DISORDERS UHIVlflSITY • DESPERATE PATIENTS • ABSENCE OF SATISFACTORY PHARMACOLOGICAL TREATMENTS • POPULAR MEDIA HYPE • ABSENCE OF A SOLID MECHANISTIC UNDERSTANDING • UNCRITICAL ACCEPTANCE OF PROPONENT'S CLAIMS • MYOPIA REGARDING SIDE EFFECTS TERRY l.
    [Show full text]
  • Is It Really Sciatica August, 2017
    Is It Really Sciatica August, 2017 By Dr. Derek Conte One of the most common complaints we see from patients is that of sciatic pain. They will say, “I have sciatica!” And when I ask, “How do you know it is sciatica?” they will say that’s what their friend said, or that they went online and did a medical search, or my favorite: that their “regular” doctor told them. So, what is sciatica, what are its symptoms, and what exactly is the sciatic nerve? I’ll tell you that sciatica is one for the most misdiagnosed conditions we see. The sciatic nerve is the largest nerve in the body and is made up of five nerves which arise from the low back and sacrum. These nerves converge and travel beneath the buttocks and down the outside rear of the thigh to the back of the knee, where they divide. The tibial nerve goes straight down the back of the calf around the inside of the ankle and on to the underside of the foot. The two peroneal nerves cover the rest of the lower leg and top of the foot (see chart). Sciatica is the irritation of the sciatic nerve and can be caused in several ways. First, compression of the nerve must be present or there would be no pain. Beginning centrally and going out from the spinal cord the causes may be 1) Central canal stenosis which squeezes the entire cord and produces bilateral symptoms. 2) A subluxation (malposition of vertebrae) compresses nerves at the spine. 3) A bulging disc or osteophyte (bony spur) causing stenosis of intervertebral foramen, or a dramatic loss of disc height can also leave too little room for the nerves to exit the spine.
    [Show full text]
  • A. PNS = Cranial and Spinal Nerves PNS Provides Connections Between
    Anatomy Lecture Notes Chapter 14 A. PNS = cranial and spinal nerves PNS provides connections between body and CNS sensory vs motor visceral vs somatic PNS components: 1. sensory receptors - monitor changes in environment (stimuli) convert stimuli into signals sent viA sensory neurons to CNS 2. motor endings - control effectors a. somatic axon terminal of somatic motor neuron contains neurotransmitter (ACh) stored in vesicles motor end plate of skeletal muscle cell folded for large surface area; contains ACh receptors b. visceral visceral motor axon has varicosities containing vesicles of neurotransmitter membrane of effector cell contains receptors for the neurotransmitters 3. nerves and ganglia - connect CNS to receptors and motor endings Strong/Fall2008 page 1 Anatomy Lecture Notes Chapter 14 B. classification of receptors 1. by structure a. specialized dendritic endings of sensory neurons used for general senses free / unencapsulated example: root hair plexus (also called hair follicle receptor) encapsulated - dendrites enclosed in c.t. capsule that amplifies or filters stimuli example: Pacinian corpuscle b. receptor cells (specialized epithelial cells or neurons) that synapse with dendrites of afferent neurons \ used for special senses 2. by location of stimulus a. exteroceptor b. interoceptor c. proprioceptors are located in skeletal muscles, tendons, joints and ligaments they monitor the position and movement of the body muscle spindles Golgi tendon organs joint kinesthetic receptors 3. by type of stimulus detected a. mechanoreceptor
    [Show full text]